

9th WORLD CONGRESS ON IMMUNOLOGY AND CANCER

December 09-10, 2019 | Barcelona, Spain

IL-10 mediated microvascular and epithelial perturbations in rejecting mouse airway allografts

Mohammad Afzal Khan

King Faisal Specialist Hospital and Research Centre, KSA

Microvascular injuries during inflammation are key cause of transplant malfunctioning and permanent failure, which play a major role in the development of chronic rejection of the transplanted organ. Inflammation induced microvascular loss is a promising area to investigate the decisive roles of regulatory and effector responses. The present study was designed to investigate the impact of IL-10 on immunotolerance, in particular, the microenvironment of the allograft during rejection.

Here, we investigated effects of IL-10 blockade/ reconstitution, and serially monitored regulatory T cells (Tregs), graft microvasculature and airway epithelium in rejecting airway transplants.

We demonstrated that blocking/reconstitution of IL-10 significantly modulate CD4+FOXP3+ Tregs, microvasculature and airway epithelium during rejection. Our findings further highlighted that blockade of IL-10 upregulated proinflammatory cytokines, IL-2, IL-1β, IFN-γ, IL-15 and IL-23, but suppressed IL-5 secretion during rejection, however, reconstitution of IL-10 significantly upregulated CD4+FOXP3+ Tregs, tissue oxygenation/blood flow and airway repair.

Collectively, these findings demonstrate a potential reparative modulation of IL-10 during microvascular and epithelial repair which could provide a vital therapeutic window to rejecting transplants in clinical practice.

mkhan26@kfshrc.ede.sa