

APPLIED PHYSICS AND ENGINEERING(ICAPE)

March 15, 2023 | Paris, France

Received date: 15-01-2023 | Accepted date: 18-01-2023 | Published date: 23-03-2022

Mechanical and electronic properties of al(111)/6h-sic interfaces: A dft study

Mostafa Fathalian

Institute of Fundamental Technological Research of the Polish Academy of Sciences, Poland

A density functional theory (DFT) calculation is carried out in this work to investigate the effect of vacancies on the behavior of Al(1 1 1)/6H SiC composites. DFT simulations with appropriate interface models can be an acceptable alternative approach to experimental. We developed two modes for Al/SiC superlattices, C-terminated and Si-terminated interface configurations. The results illustrate that C and Si vacancies are challenging to generate, while Al vacancies near the interface are easy to generate. C and Si vacancies reduce interfacial adhesion energy significantly, while Al vacancies close the interface have little effect on the adhesion energy. Young's modulus (E) is higher for C-terminated configurations than for Si-terminated configurations. Supercells are stretched vertically along the Z-direction to obtain tensile strength. The tensile properties show that failure usually occurs not at the interface but near the Al side. The existence of C and Si vacancies noticeably increases the tensile properties of the composite, particularly C and Si vacancies at the interface. According to the results, SiC and Al interfaces with C-terminated have better bonding properties. Furthermore, we systematically studied the surface energies (γ) and mode one fracture toughness (KIC). Finally, densities of states (DOS) were calculated to understand these systems' electronic properties better.

References

1. Qingjie Wu, Jingpei Xie, Changqing Wang, Liben Li, Aiqin Wang, Aixia Mao. First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces. Surface Science 670 (2018).

2. Masoud Tahani , Eligiusz Postek , and Tomasz Sadowski. Molecular Dynamics Study of Interdiffusion for Cubic and Hexagonal SiC/Al Interfaces. Crystals 2023, 13, 46

3. Qingjie Wu, Jingpei Xie, Aiqin Wang, Douqin Ma, Chang Wang. First-principal calculations on the structure of 6H-SiC/ Al interface. 2019 Materials Research Express 6 065015.

4. Kuiying Chen, Mariusz Bielawski. Ab initio study on fracture toughness of Ti0.75X0.25C ceramics. Journal of Materials Science (2007) 42:9713–9716.

5. Zhi-Gang Mei, Sumit Bhattacharya, Abdellatif M. Yacout. First-principles study of fracture toughness enhancement in transition metal nitrides. Surface & Coatings Technology 357 (2019) 903–909.

Biography

Mostafa Fathalian, obtain a master's degree from Semnan University in 2017. He has a good background in manufacturing composites and nanocomposites. He collaborated with Prof. Ghorbanzadeh at Mazandaran University as a researcher. He published 5 papers in the journals of Fib &Pol, Vacuum, App Surf Sci, Phys E & Mater Chem & Phys. He also has a patent in the field of nanocomposite.

mfath@ippt.pan.pl