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ABSTRACT

The movement of a material point along curves of the second order is
represented by the kinematic equation (1.10). The kinematics of second
order curves is studied on an ellipse. Formulas for the dependence of

acceleration and radius, speed and radius are derived. The direction of the
velocity and acceleration vectors is determined. The conditions for the
conservation of Kepler's laws when a material point moves along an ellipse
are shown.

Keywords: Kepler's laws; Ellipse; Speed; Acceleration; Radius

INTRODUCTION

If simple equations of speed and acceleration are sufficient to describe

rectilinear motion: V=S/t, a=S/t?, then differential equations of motion are
needed to solve problems on the curvilinear motion of material points and

their systems. "The way we derive these equations doesn’t matter”: (1,§11,m.
3).

Formulas for the dependence of acceleration and radius,
speed and radius

Point C moves in an ellipse relative to the focus (Figure 1).

Figure 1: For the dependence of acceleration and radius, speed and radius.

There is a system of equations for a parametric pendulum (1)

The parameter is time (t).

X =
y
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r@@®)sin(@@®) P

Let us substitute into system (1) the radius of the ellipse with respect to the
focus:
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Bz

X = a(l—e*CGS{:(P{t}j}
B2

y = a(l—e*CGS{:‘p[t}j}

'cos(qo(t])
(1.3)
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Let's differentiate twice. We get the coordinates of speed and acceleration:
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| T s ecoslpe)stnlp()-De w9

alercos(o(0)-1)°
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We form a system of equations from (1.6), (1.7) and solve for ¢~ We obtain
the kinematic equation of motion of a point relative to the focus along
second order curves:

. 2+e+sin(g)+p=

1—e=+cos(g) (1.10)

At different values of eccentricity, the shape of the curve will change [1].
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We substitute (1.10) into (1.9), and simplify:

b2 2 r+p?

(1.11)

a(1-e+cos(@))? - 1—e+cos(p)

The sector speed is constant:
k=1f% @y =17*@; =17 *@q = const, (1.12)

. Kk
6=~ (113)

where r, is the perifocal distance, r, is the apofocal distance We substitute

(1.13) into (1.11):

kZ

- r3(1-e=cos(@)) (1.14)

The acceleration v is recalculated using formula (14). Results (9) and (14)
are compared (Figures 2 and 3).

acceleration and radius
at given semi-axes: a=0.5,bh =0.45
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acceleration (9)

acceleration (14)

Formulas (1.14, 1.15) do not give any advantage for calculating the modulus
of speed and acceleration. First, to calculate the sector constant k, you need
to calculate the angular velocity once. Secondly, in order for the motion of a
point to comply with Kepler's laws, the angle must change according to
elliptic equations. The value of these formulas is in the logical definition of
the dependence of speed and acceleration on the radius [2].

Velocity and acceleration vectors

Let's consider two variants of point movement, Figure 4: a) Movement
relative to the center; b) Movement relative to the focus.

Figure 4: Movement relative to the center and movement relative to the
focus.

Note: v-speed, a-acceleration, dx, dy, ddx, ddy-first and second derivatives
along the coordinate axes.

Note the property of collinear vectors on the plane rectangles built on
vectors, Figure 5, should be similar:

Figure 2: Acceleration and radius.

We substitute (1.13) into (1.8):

B r+ks\/1+e2 - 2excos (t) B ke 1te2-2escosg(t)
B r2(1-escosg(t)) -

r#(1-e+cosg(t)) (L135)

velocity and radius
at given semi-axes: a=0.5,bh =0.45
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Figure 3: Velocity and radius.
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Figure 5: Rectangles built on vectors.

Movement relative to focus

Let's compare the ratio of the coordinates of the radius and acceleration:
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= 2.2)

sing

|

x (—2eZcosZ@+3e®—1)cos(@)

o= (2.3)

b sin(@l(e?—1)(2e2cosZp+1)

If e = 0 we get a circle and i = i, (2.4)

A special case of an ellipse.

In Figures 5-7 they are marked with red lines for speed, green for
acceleration [3].

dZ
dat®

@(t) = 0. pHCYHOK 6 (2.5)

Coordinates of the beginning of the velocity and acceleration vectors,
points of the initial ellipse (x,y). The coordinates of the end of the velocity
vector (dx+x, dy+y). Acceleration vector end coordinates (ddx+x, ddy+y) [4].

A brief note on ellipse kinematics

Velocity, Acceleration, a = 05000, b = 0.4500, days = 80.00 =8

Figure 7: The coordinates of the end of the velocity vector.

Velocity, Acceleration, a = 0.5000, b = 0.5000, days = 80.00

Figure 6: Coordinates of the beginning of the velocity and
acceleration vectors.

o2 fiea- % 04)
Yy

J Mod Appl Phys Vol.6 No.3 2023

Movement relative to the center

b

T((p(t)) = J1-eZcos2e(t) 2.7)

To derive the kinematic equation of motion of a point relative to the center,
we will replace the radius formula (2) with (13) in the system of equations

(L) [5].

Let's differentiate twice. We get the coordinates of speed and acceleration:

. d b*cos((p(t}) besin(g)
X=— =— . 2.8
\I‘l—ezacos((p[t})z (1metcos® @)/ ( )

s _ a b=sin(g@(t)) _ b(1-e*)cos(p) (2.9)
y= I 2| (1-e%+cos®@)?/® =
J 1-e2+cos(@(t))

] oSt 2 0l —T el
io LZ becos(wltl) __ b=cos(g)(2e?cos qosisr+l} (2.10)
ar u'l—sztmg[:p(e))g (1—e2+cos?g@)"
. & besin(@(t) besin(p)(e®—1)(2e%cos?p+1
L (o) | _ @) (e*-1)( @+1) @.11)
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\Il—ezams(w{:nz (1-e?scos”¢)®

. 2 2
v \/m _ \/bz ,,2(172(92 ro:(w((:})( ;’)E:)fﬁs(?’{b)) ) (2 1 2)
1—e“cosl@lt

We solve for ¢ . We obtain the kinematic equation of motion of a point
relative to the center along second order curves:

- 2+e2+cos(@)+sin(@)=p®
B 1—eZ=cos(gp)?

(2.13)

Let's compare the ratio of the coordinates of the radius and acceleration:
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Figure 9: The direction of the instantaneous rotation of the ruler AB
around Pap is clockwise in accordance with the direction of the known|
velocity vector of point A.

x _cosg (2.14)
v  sing -
i (—2e2cos2@+3e?—1)cos(p) (2.15)
§ sin(@)(ez-1)(2e2cos® @+1) B
Ife = 0 we get acircle and - = —, (2.16)
y ¥
A special case of an ellipse, Figure 8.
Eccentricity e=0. Substitute in equation (2.15)
aZ
—0(® =0,
[fe#0, then -, 2.17)
y oy
Velocity, Acceleration, 2 = 0.8000, b = 0.7000, days = 80.00 o|e) B

Figure 8: The ratio of the coordinates of the radius and acceleration.

Trammel of archimedes

Any point on the ellipsograph ruler moves along an elliptical path around
the center.

In order not to refer the reader to the sources, we present the derivation of

the formulas necessary for calculating velocities, accelerations, and rotation
angles (Figure 9) [6].

Ruler AB moves from horizontal to vertical position, Figure 9. Point C
describes ¥ of the ellipse. The direction of the instantaneous rotation of
the ruler AB around Ppg is clockwise in accordance with the direction of
the known velocity vector of point A.

Speeds of points B and C:

Was = s (3.1)

BPag .
Vg = Wyp * BPyp =UAE (3.2)

Vector v is directed perpendicular to CP.

CPyp

vc::w.qH*CPAB:UAE (3.3)

The directions of the velocities of the points and are determined by the
instantaneous rotation of the ruler AB around the instantaneous center of
velocities Ppp.

Determination of accelerations of points B and C

Let's use the theorem acceleration of points of a flat figure. Point A will be a
pole, since the acceleration of point A is known.

The vector equation for the acceleration of point B has the form:
—_— —
~ _a r c :

Where @ is the acceleration of the pole A (given);

ajaand % are the rotational and centripetal accelerations of the point B in
the rotation of the ruler around the pole A. In this case:

ag, = @jp+ BA (3.5)

The vectorag is located perpendicular to the ruler AB, its direction is
unknown, since the direction of the angular acceleration g5p is unknown.

In equation (3.4) there are two unknowns: Accelerationszand ., which can
be determined from the equations of vector equality projections onto
the directions of axes AX and AY:

J Mod Appl Phys Vol.6 No.3 2023



— r [
gy = gy T gy T Ay,

(3.6)

— r ¢

The direction of the vectors and is chosen arbitrarily. The solution of
system (3.6) allows one to find the numerical value and with a plus or
minus sign. A positive value indicates the correctness of the chosen
direction of the vectors and a negative value indicates the need to change
their direction (Figure 10).

2 2
U= J (a0 +(agy)", = \/ ()" + (a;;i?y) (3.7)
Ruler angular acceleration:

g, .
E =7, (3.8)

The acceleration of point C is determined by the equation:

— —
ac=ay4+ag,+at,

(3.9)

Figure 10: The rotational and centripetal accelerations of the point C
relative to the pole A.

Where aZ, and aé4 are, respectively, the rotational and centripetal
accelerations of the point C relative to the pole A:

as, = wip * AC (3.10)
HEB = EAB *AC (311)

Vector & is located on CA and is directed from point C to pole A. Vector
is perpendicular to CA and directed in the same direction asa..

Equation (3.10) can be represented in projections on the axes Ax and Ay:

J Mod Appl Phys Vol.6 No.3 2023
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— £ r
_ £ r =

The acceleration projections of point C are determined from (3.10). The
direction of the vector a is determined by the signs of the projections acy
and acy.

Vector modulus:

ac= [(ag)?+ (a,;y)2 (3.13)

Let's take a look at the different travel options

T is the period specified by arbitrary units of time. AB=a+b, A(0,ys) B(xp,
0). Initial coordinates of points: A(0,0), B(a+b,0), C(a,0). Initial speed
VAO=0'

Uniform movement

Given: point C divides AB into segments a and b, A(0,ya), B(xg,0), initial
A(0,0), B(AB,0). A moves uniformly from O — Y. Accelerations ay=0, ag=0,
speed

AB#d
vy = (3.14)

Find: ya;. Xc,p Yoy Vep Qcp @i
Solution

Coordinates A(0, v, ):

Ya; = Va*i (3.15)
Further, according to equations (3.4)-(3.14)
sina =241 g = asin 24L (3.16)
AB AB
Xp; =cosa *AB,yg, =0 (3.17)
Vg Va y
Wyp =——"=—" 3.18
48 = = (3.18)
Vg = Wup * BP g = wyp * Y, (3.19)
From equation (5) a§, = w3z * BA
ap,=a%,*cosa+ ay, *sina
{ Bx B4 _ BA (3.20)
0 =au, +ag,*sina+ag,*cosa
Solving the resulting equations, we find ag,
5
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. = “Gay~tpatsina _ —absrsing (3.21) Coordinates B(xp_, 0):
BA cosa cosa - : L :
o
£45 =2 (3.22)
* Xg;, = fABz—yAE.Z (3.37)
Coordinates Pyp (xgl.yAl )
Coordinates C(x¢; Ve, ) Coordinates C (xCI.. Ve )
& _Y*u b _ Ve (3.23)
AB xp; AB  ya; a _xg by (3 38)
b 4 - "
xclzﬁ”xai- Ye; =75 * Yai (3.24) AB  xg; AB Vi
CPip = |xp,?+a?— 2 a b 3.
s = [xg, 2+ a? —2(arxp, )cosa (3.25) xci:E* X }JCI_:E*}J'AI_ (3.39)
vC:wAB*CPHB:wﬂgt\/xalzntazf2*(a*x31)*cosa (3.26) wap = Va4 _ Vai (3 40)
APgp  Xp;
@ = amnzcQ (3.27)
Ci
a5, = wiz * AB (3.41)
[ _ gl 29
acy=wip* AC= wp+a (3.28) ap, = €45 * BA (3.42)
ro_ AC = : 79 .
Qcg= €4 *AC = &l (3"‘9) The vectorapa is located perpendicular to the ruler AB, its direction is
unknown, since the direction of the angular acceleration g5p is unknown.
— r [3
[ﬂ(:x = QT Qo T Ay, (3 30) We project the vector equation (3.4) on the coordinate axis:
— r [ .
Acy = Quy + Agyy T Agyy

(gy = Q5 * COS O+ Ay, * SN 649

[a5x=0+a£A*sina+aEA*cosa

: 3.31 = ¢ #sl T
acy =0+ ag,* cosa +ag, *sine (331) 0 (gy T Ay *SINA+Apy* C0S A

Solving the resulting equations, we find ag:

ac = ’a§x+ aéy (3.32) .
—04y—Op,*Sina (3.44)

T
a =
BA cCosa
Uniformly accelerated motion

az, :
EAB = AR (345)

Given: point C divides AB into segments a and b, A moves uniformly

accelerated from O — Y, A(0,ya) B(xg,0), initial A(0,0), B(AB,0),

a,, = const, vy, =0.
! Equation (10) can be represented in projections on the axes Ax and Ay:

Find: y4,.. (xc, vc, ): ve, ac, @ {“Cx: Qax + Arypn+ Qyy (3.46)
. ac}’=aﬁ}’+aEAy+agAy .
Solution
{aCx=0+aEA*sina+a§A*cosa (3.47)
ag*iz T . 3.
vy, :AT; 1:1".;1:1 (3.33) acy, =a,+ag,*cosa+ ag,*sina
a +n? _ 2 2 :
AB =v,, = AZ (3.34) ac = ’aCx+ Qcy (3.48)
24B L
aAI. = IIA = ? (335)

Coordinates 4(0, Y, ) Elliptical (Keplerian)

The movement of the points of the ruler along the ellipse relative to the

s +i2 center,
Va; = Az (3.36)
2=eZ+cos(@)+=sin(p) =@~
Further, according to equations (3.4)-(3.14) o 1-e2 *COS{(,!J‘]'Z

Given: point C divides AB into segments a and b, A moves elliptically
according to the formula (2.13), from O — Y, A(Q,y4), B(xg,0), initial
A(0,0), B(AB,0),

6 J Mod Appl Phys Vol.6 No.3 2023



A brief note on ellipse kinematics

i r o —Ogy—ag,esing
Uy, = 0. af, = At (3.63)

s
= . Eap = (3.64)
Find: y,,. X¢;, Yo Vo Qg 48

The acceleration of point C is determined by equation (3.10): ag = a, + E—#— aTC:A'

Solution al,=wiz* AC=wig+*a (3.65)
i . afy=£3*AC=g45+a (3.66)
Equation (2.13) caleulates ¢; , X¢;, V¢;

Equation (3.10) can be represented in projections on the axes Ax and Ay:

- _ r c
a = arcsin ?C (3.49) foox T oan T oo g (3.67)

— r <
Aoy = Qay + ALy, + ALy,

ac,=0+al,*sine+al,*cosa
T { Cx cA CA (3.68)

E ZE_(PI (35{}) Qcy =@y +ag,+cosa+ag,sina

. (ri*sinf ag = ,a§x+a§y (3.69)
¥ = arcsin (T) (3.51)

Ip =T—Y— ﬁ (3 .52) The obtained motion parameters allow checking the fulfillment of Kepler's
laws.
Ye; ta*sina
Va; == (3.53) ,
i b Kepler's second law
Vi, = Va. — Va, (354) Equahty of the areas of sectors is carried out only with elliptical motion
i A JAj-1 (Figure 11-13).
= V4. — Ua. 3.55 inter char =
aAI IAI IAI—]. ( ) I;f‘:char "y'" then the
’a - 0.500; b - 0.450; T -
of Kepler
i 89 time units
Further, according to equations (3.4)-(3.14) ol B ok b
"UNIFORM MOTION
Set the rt of the f G tor ¢ 89>: 3
d T B 0 3 the undrui' t fi (i‘ 8'}5\””1?
Coordinates B(xg, 0): cart I

>= 0.17
J.61; angleend> 0.82

Ares irs tor: 0. 176775 7E-01
Xp; = ’ABZ_}'A,-Z (3.56) o :.-H; e sector: C 5188E-01

Find the coordinates C(xci-}’ci) again:

a_% b _Yo (3.57)
AB xg; AB Va;
then the source data is specified:
= —=% = — % y
xC[- T AB * xE‘[-- J’C[- T AB * J’A[- (3'-58) = 8.500; b = 0.450; T = 360
cond law of Kepler
v v nt by s 14 ellipse counterclock in 89 time units
Ai Ai Input © - uniforn mot

“’AB = L — =t (359) I::.)nt:t 1 unki‘?;rﬁllz :g-:lmgr-.\ted motion OR,

AP 4p Xg; Input 2- elliptical motion):

1
CELERATEM MOTION
2 t t tart of the Fir C
5 _ " ¢ end of the Fi
az, = Wip * AB (3.60) the start of the sacond " “89>: 55
i tar angledend>= 0.03
glecend> = 0.59
ap, = £45 * BA (3.61)
second sector: 0.2803914E-01
The vector s is located perpendicular to the ruler AB, its direction is Figure 12: Uniformly accelerated motion.

unknown, since the direction of the angular acceleration g5p is unknown.

We project the vector equation (3.4) on the coordinate axis:

(g, = Q5 * 03+ Qg * sina 56
0=ay, +ag,*sina+ag+*cosa o

Solving the resulting equations, we find ag,

J Mod Appl Phys Vol.6 No.3 2023 7
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Enter char
if char

v
a = 0.500; b = 0.450; T 360

rce data i

"y then the

ond law of Kep
Point hypa 14
Input @ niform motion OR
Input 1 iformly accelerated motion OR,
Input 2- elliptical motion):

PTICAL MOTION
start of the Fir
end of the f
rt of tl

counterclockwise in 89 time units

2= 14
0.2748870E-01
0.2748918E-01

Figure 13: Elliptical (Keplerian) movement.

Graphical results of moving a point along an ellipse at different speeds

(Figures 14-16).

Uniform motion: velocity and acceleration vectors, a = 0.50, b = 0.45, T = 80.00

Figure 14: Uniform movement.

Uniformly motion: velocity and acceleration vectors, a = 0.50, b = 0.45, T = 80.00

Elliptical motion: velocity and acceleration vectors, a = 030, b = 045 T = B0.00

[y

{
i

i
i
/

Figure 16: Elliptical (Keplerian) movement.

Figure 15: Uniformly accelerated motion.

Kepler's laws as properties of kinematic equations of
motion of a point along curves of the second order

The equations are solved by computer programs. The calculation results are
compared with Kepler's laws. The uniqueness of the orbital velocity for the
given parameters of the curve is noted. The orbital velocity is calculated
from the kinematic equation and compared with the values of astronomical
tables.

The sector velocity modulus is a constant for a given ellipse.

1 .
|vg| == || = |[v] = sin(r*v) = const (4.1)

If a point moves along a flat curve and its position is determined by the
polar coordinates r and ¢, then

5 d
Irl“d—f = const (4.2)

SR

|I'1.:r| =

To illustrate the constancy of the sectoral velocity, a program was written to
calculate the sector area in a given time interval. The program,
TygeBraheKepler2_focal (A.1), calculates the parameters of the point
movement according to equation (8) and shows the equality of the areas of
the sectors at equal time intervals (Figures 17-19).

4-angular uelocity, S-polar radius, G-linear uelocity

Enter char
if char =
Y

then the source data is specified

a: 9.00 b= 7.00
dpi = ©.0000000 = 1.0000080SE-03
Second lau of Kepler H:= 1.0000800SE-03
The point buypasses the ellipse in 1/H time units (0 < H < 1), counterclockuwise.
998
Set the start of the first sector (i®=1, 999 ) il =
Set the end of the first sector (i@®<il1<1/H) i1 =
EEL]
Set the start of the second sector (0<iB2<1/H-i1+i@) ie2 =
1
angle(i®) ©.00; angle(il) 6.28
angle(i®2)= ©0.00; angle(il2) 6.28
area of the first sector 0.1975210E+03
IERR: 0
area of the second sector:
IERR: 0

0.1975210E+03

Figure 17: Shows the program test. The area of the ellipse is mab.
3.14159%9*7=197.92017.

J Mod Appl Phys Vol.6 No.3 2023



4-angular velocity, S-polar radius, 6-linear velocity

Enter char :
1f char = "y" then the source data 1s specified:
Y
a: 9.00 b= T7.00
dpi = 0.0000000 H = 1.00000005E-03
Second law of Kepler H= 1.00000005E-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockuise.
1/H = 999

Set the start of the first sector (i0:1 999 ) i0 =

555
angle(10) ©.04; angle(il) ©.81
angle(i02): 4.57; angle(i12) 6.03
frea of the first sector: 0.6155315E+02
IERR: ]
Area of the second sector:
IERR: 0

0.615534TE+02

Figure 18: Shows equal time intervals at different points in the period.

On Figure 19 added precession (dpi=0.1) to the parameters of
Figure 18.

pi<=pi/10) dpi=

1, 8 <HK

Second law of Kepler H= 1.0000000SE-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockuise.
1/H = 999

Set the start of the first sector (i@:=1,..., 999 ) i0 =

et the end of the first sector (iB<i1<1/H) i1 =

S
333

Set the start of the second sector (9<182<1/H-11+1@) 102 =
5SS

angle(if) ©.04; angle(il) ©0.89

angle(i02)= 4.94; angle(i12) 6.12

Area of the first sector: 0.648T499E+02

the second sector: 0.6487521E+02

Figure 19: Shows the equality of the areas of the sectors at equal time|
intervals.

Kepler's third law

At perihelion and aphelion, sin(p)=0, so the acceleration at these points is
zero, and the modulo velocity difference is a constant:

Vp — Vg = O 4.3)

Sector velocity according to the law of conservation of momentum is a
constant value:

(4.4)

Let us express the sector velocity modulo the linear velocity.

v, =1/2vr

J Mod Appl Phys Vol.6 No.3 2023
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ince 5'fn(1lp""rp) = sin(v4'ry) 1.then

v =1/2v,1 = 1/27,(vq + &) (4.5)
v, =1/2u,1, (4.6)
1/21(vg +6) = 1/21,7, 4.7)
v =2 (4.8)

We substitute (4.8) into (4.6):

Srpig
Z e (4.9
Calculate the area of the ellipse. One side:
Sellipse:’r(ab (4.10)

where a is the length of the major semi axis, b is the length of the minor
semi axis of the orbit.

On the other hand
SrpT
- = = pa
5elfipse =T = TZ(TH—TP) (4.11)
Consequently,
e — gab 4.12)

ZCra—rp)
For further transformations, we use the geometric properties of the ellipse.
We have ratios: r,1,=2c, c=ae, ryr,=a’c?=b’.

Substitute into (4.12):

iR S (4.13)
4ae
b
T—=4m. rneT =1 (4.14)
a=e
&b =
4ma’e - (4-15)
- s T2
Kepler's third law: pri 1 (4.16)
sv = T_ZMS_D = T—z: T = E Sﬂ — E {:Vr’ivﬂ)ba (417)
4mace a*4me a 24 me PAY ne

The program Movement of a mat point along an ellipse (A.2), using formulas
(4.16) and (4.17), calculates the periods (Figures 20 and 21). 000z00(au/planet
year).

The differential equation of the second order curu
with respect to the focus is calculated

The data table is displayed in the file ellpi.txt
Table columns:1-number, 2 - time, 3 - angle,
4-angular speed. S-polar radi 6-linear speed

T-angular acceleration, 8-linear acceleration

Enter 8 or 1 or 2 or 3 or 4
@ - enter a, b. Select planet 1 - Mercury, 2 -Uenus, 3 - Earth, 4 - Mars:

a= 9.0 b= T
orbital points (N) 999
period(Kepler3 sqrt(axx3)= 27.000000
period(sqrt(((v1-u2)=bxa)/(pixex))/2) =
PAUSE
To resume execution, type go. Other input will terminate the job.

26.999981

Figure 20: The differential equation of the second order curves.




Viktor S

The differential equation of the second order curves
with respect to the focus is calculated.

The data table is displayed in the file ellpi.txt.
Table columns:1-number, 2 - time, 3 - angle,
4-angular speed, S-polar radius, 6-linear speed
7T-angular acceleration, 8-linear acceleration

Enter @ or 1 or 2 or 3 or 4
0 - enter a, b. Select planet 1 - Mercury, 2 -Uenus, 3 - Earth, 4 - Mars:

a: 0.39 b= 0.38

orbital points (N): 999
period(Kepler3 sqrt(axx3 0.24084271
period(sqrt(((v1-u2)xbxa)/(pixex))/2) = ©.24084280

sume execution, type go. Other input will terminate the job.

Figure 21: The differential equation of the second order curves with respect]
to the focus is calculated.

Differential equation of motion of a point along an ellipse with respect to
the center

Let's move the origin of coordinates to the center of the ellipse, Figure 22.
The radius function (2.7) will change.

i

Figure 22: The origin of coordinates to the center of the ellipse.

4-angular velocity, S-polar radiu 6-linear velocity

Enter char =
if char = "y" then the source data is specified

9.00 b= T.00
0.0000000 H = 1.00000005E-03
Second law of Kepler H= 1.00000005E-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockwise
1/H = 999

Set the start of the first sector (i0=1 999 ) ie =

end of the first sector (10<i1<1/H) i1 =
start of the second sector (8<iB2<1/H-i1+i@) iB2 =
; angle(il) 2.20
; angle(il2) 5.56
first sector: 0.615531TE+02

second sector: 0.6155319E+02

Figure 24: Equal time intervals are given at different moments of
the period.

0.10000000
(period = 1, @ < H<1 ) H:=
.01

‘ Second law of Kepler H:= 1.00000005E-03
The point bypasses the ellipse in 1/H time units (@ < H < 1), counterclockwise
1/H = 999

Set the start of the first sector (ie=1,.
r3

Set the end of the first sector (iB<i1<1/H) i1 =
333

Set the start of the second sector (8<i®2<1/H-i1+i@) 162 =
55

angle(i@) ©.10; angle(il) 2.25

angle(i02)= 3.47; angle(il2) S.67

first sector: 0.6280998E+02

999 ) i@ =

second sector: 0.6280998E+02

Figure 25: Added precession to the parameters.

M-Material point. Q is a generalized force acting on a point. O-center, v-
linear speed of the point. ¢(t) is the angle between the X-axis and the point,
counterclockwise.

Kepler's second law

The TygeBraheKepler2_center (A.1) program calculates the parameters of
the point movement according to equations (2.7-2.13), and shows the
equality of the areas of the sectors at equal time intervals (Figures 23-25).

4-angular velocity, S-polar radius, 6-linear velocity

Enter char
if char = "y" then the source data is specified:
a= 9.00 b= T7.00
dpi = ©.0000000 H = 1.00000005E-03

Second law of Kepler H= 1.00000005E-03
The point bypasses the ellipse in 1/H time units (0 < H < 1), counterclockuise.
1/H = 999

Set the start of the first sector (i0:=1,..., 999 ) ie =
1

Set the end of the first sector (iB<i1<1/H) i1 =
999

Set the start of the second sector (08<i02<{1/H-i1+i0) i02 =
u

angle(i0) 0.00; angle(il) 6.28
angle(i02): 0.00; angle(il2)
Area of the first sector:

IERR: 0
of the second sector:
]

6.28
0.1976214E+03

0.1976214E+03

Figure 23: Shows the program test. The area of the ellipse is [lab
2'3.14159'9"7=197.92017
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On figure 25 added precession (dpi=0.1) to the parameters of figure 23.

Kepler's third law

The program movement of a mat point along an ellipse center (A.2), using
formulas (4.16-4.17), calculates the periods. 8=v1-v2 (au/planet year).

In Figures 25-30 we see that with an increase in the eccentricity, the
difference between the periods increases.

The differential equation of the second order curues
with respect to the focus is calculated.

The data table is displayed in the file ellpi.txt
Table columns:1-number, 2 - time, 3 - angle
4-angular speed, S-polar radius, 6-linear speed
T-angular acceleration, 8-linear acceleraticn

Enter @ or 1 or 2 or 3 or 4
© - enter a, b. Select planet 1 - Mercury, 2 -Uenus,

a
b

a:z 9,00 b=
orbital peint ) 999
period(Kepler3 27.000000

period(sqrt(((vi-u2)xbxa)/(pixex))/2) = 21.000002

me execution, type go. Other input will terminate the job

Figure 26: The program movement of a mat point along an ellipse center.

J Mod Appl Phys Vol.6 No.3 2023



A brief note on ellipse kinematics

The differential equation of the second order curues
with respect to the focus is calculated.

The data table is displayed in the file ellpi.txt.
Table columns:1-number, 2 - time, 3 - angle,
4-anqular speed, S-polar radius, 6-linear speed
T-angular acceleration, 8-linear acceleration

Enter 0 or 1 or 2 or 3 or 4
0 - enter a, b. Select planet 1 - Mercury, 2 -Uenus, 3 - Earth, 4 - Mars
1
a: 0.393 b= 0.38
orbital points (N): 999
period(Kepler3 sqrt(axx3):= 0.24084271
period(sqrt(((vi-v2)xbxa)/(pixex))/2) = ©.23569536
PAUSE
To resume execution, type go. Other input will terminate the job.

Figure 27: Increase in the eccentricity, the difference between the
periods increases.

The differential equation of the second order curues
with respect to the focus is calculated.

The data table is displayed in the file ellpi.txt.
Table column “number, 2 - time, 3 - angle,
4-angular eed, S5-polar radius, 6-linear speed
7-angular acceleration, 8-linear acceleration

Enter @ or 1 or 2 or 3 or 4

@ - enter a, b. Select planet 1 - Mercury, 2 -Uenus, 3 - Earth, 4 - Mars
2

a= 0.73 = ©9.73

orbital points (N): 999

period(Kepler3 sqrt(axx3)= 0.62144679

period(sqrt(((vi-u2)xbxa)/(pixex))/2) = ©.62116992
PAUSE
To resume execution, type go. Other input will terminate the job.

Figure 28: Shows the equality of the areas of the sectors at equal
time intervals.

Figure 30: For modeling streamlines of liquid and gas particles.

Figure 29: The motion of three or more bodies along second order curves.

J Mod Appl Phys Vol.6 No.3 2023 (MRPFT)

CONCLUSION

The kinematic equation (1.10) accurately describes the motion along ideal
second order curves. The real orbits of cosmic bodies have deviations from
the ideal curve: Precession, periodic asymmetry of the lengths of the radii,
and other types of deviation.

Equation (1.10) and the center of mass theorem make it possible to simulate
the motion of three or more bodies along second order curves.

The kinematic equation (2.13) is applicable for modeling streamlines of
liquid and gas particles.

The article used materials from textbooks on mechanics.
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