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A high accurate method for solving an inverse problem of the Laplace 
equation in detection of a robin coefficient

Abdelhak Hadj

equations, or by transform the problem in to an optimization problem based 
on the Fundamental Solution Method (MFS) [17-19]. It is important to 
point out that the reconstructions were taken at a small distance because the 
Robin’s problem for harmonic and Biharmonic equation are unconditionally 
solvable in the unit ball, and its solution is unique [15, 20].

In this paper, we will examine an inverse problem arising from electrical 
impedance tomography (EIT). Our goal is to describe a highly accurate 
method for determining the impedance information that may lie within a 
non-accessible part of the pipe, based on the measurement of electrostatic 
data on the accessible part of that pipe. We use the modified collocation 
Trefftz method proposed in to complete the missing Cauchy data, and the 
least squares method to achieve more stable results so as to recover the Robin 
coefficient [3].

Formulation of the problem

Let Ω ⊂ R2 be an open disc of radius R, with circular boundary 

  m c∂ = Γ ∪ΓΩ , where mΓ  and u
n
∂
∂  are two open disjoint portions of ∂Ω. 

By n we denote the outward unit normal to ∂Ω. Formulating the Laplace 
problem in the plane using plane polar coordinates has advantages, where Ω 
= {0 ≤ r < R, 0 ≤ θ < 2π},

Γm = {r = R, 0 ≤ θ < bπ} and Γc = {r = R, bπ ≤ θ < 2π} for some 0 < t < 2.

The normal external derivative u
n
∂
∂

 is given by
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By using formula
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θ
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where 
r e  and eθ  are the polar coordinates of unit vectors [21]. It should be 

noted that, in order to make the Neumann data straightforward to calculate 
without losing generality, we restrict ourselves to a circle.

Let ( ) ( )1  2u C C∈ Ω ∩ Ω be a solution to the following BVP,
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2 2 2
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 ∂ ∂ ∂
= + = Ω ∂ ∂ ∂ 
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INTRODUCTION

The Laplace equation, usually named harmonic function, can be 
considered as a mathematical description for the study of several 

models describing various phenomena in the applied sciences, such as: 
temperature distributions, potentials of electrostatic, magneto-static fields, 
velocity potentials of incompressible irrotational fluid flows, the electrostatic 
problems, and in-compressible fluid [1-6]. Because of the powerful 
development of computers, considerable efforts have been made to solve 
Laplace’s equation in different shapes and boundary conditions [7].

The study of inverse problems became popular in modern science, and 
many problems governed by the harmonic equation can be considered as 
inverse problems. Nevertheless, these problems are generally illposed in 
Hadamard’s sense, because the existence, uniqueness and stability of the 
solution are not always guaranteed [8].

Problems governed by the Laplace equation are defined by their boundary 
conditions, for example the Dirichlet problem, the Neumann problem, the 
mixed or Direchlet-Neumann problem, and the Robin boundary value 
problem. For those problems where the appropriate boundary conditions are 
known on the entire boundary of the solution domain under consideration, 
these are direct problems. However, many experimental situations do not fall 
into this category due to physical difficulties or geometric inaccessibility. This 
is an important class of inverse problems known to be generally ill-posed.

Several methods are known for solving problems in applied sciences, such 
as: boundary integral equation methods (BIEMs), finite difference method 
(FDM), finite element method (FEM). The advantages and disadvantages 
of these methods are presented in [9]. Recently, Young, Chen and Kao 
(2007) proposed the Modified Collocation Trefftz Method (MCTM), which 
provides a very interesting method compared to the Collocation Trefftz 
Method (CTM) that renders convergent the series expansion of the solution 
and decreases the condition number of the discretization matrix [5, 10]. This 
approach has several applications for a large class of direct boundary value 
problems and also for inverse problems [11-14].

The Robin inverse problems are widely explored for the harmonic and 
also for the biharmonic equation. Their importance can be seen in many 
engineering applications such as, detection of the impedance and corrosion 
in electrostatic or thermal imaging, determine the Robin Coefficient/
Cracks’ Position in the steady-state heat conduction, the detection of 
specified functions in the elastic bending beam [3,11,15,16].

Numerous methods have been devoted to solve the Robin’s inverse 
problems, for example, the method of direct and indirect boundary integral 
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This study deals with an inverse problem for the harmonic equation to 
recover a Robin coefficient on a non-accessible part of a circle from Cauchy 
data measured on an accessible part of that circle. By assuming that the 

available data has a Fourier expansion, we adopt the Modified Collocation 
Trefftz Method (MCTM) to solve this problem. We use the truncation 
regularization method in combination with the collocation technique to 
approximate the solution, and the conjugate gradient method to obtain the 
coefficients, thus completing the missing Cauchy data. We recommend the 
least squares method to achieve a better stability.
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subject to the impedance boundary condition

( ) ( ) ( ) c R, p u R, f ,  on , (1.5)u
r

θ θ θ∂
+ = Γ

∂
where p is an unknown function describing the contact impedance on 
the non-accessible part of the pipe, f is a given function can be taken as 
equal to zero, and u is the electrical potential [22-24]. The inverse problem 
we are consider with is to determine the impedance function p from the 

measurements of the voltage 
mu |Γ and the current m

u
n
∂

Γ
∂

.

In [2,19] it presents that, if u0 and u
1
 are compatible on mΓ , then u is

uniquely determined throughout Ω. Further, if p is non-negative then the 
direct problem is well posed and the uniqueness of solution is guaranteed. 
So we can use (1.5) to compute

c
1 uf ,    on (1.6)p
u n

∂ = − Γ ∂ 
Many articles are devoted to recover the Robin coefficients see [11, 14, 

17, 18]. However, it should be pointed out that the solution u required a 
quantitative control of the possible vanishing. For example, if f = 0 and u

n
∂
∂

had a sign change, then u will vanish somewhere on ∂Ω, and this caused the 
equation (1.6) to become highly unstable. For the stability estimations we 
refer to the literature [1, 2, 19].

To recover the Robin coefficient on a non-accessible part of the pipe. 
The remainder of this paper can be organized as follow: in section two, we 
require to perform a regularization of the accessible boundary data, to obtain 
a new collocation Trefftz method for the inverse Cauchy problem without 
needing for any iterations. We apply the modified collocation Trefftz method 
proposed in to obtain a non-ill-posed linear equations system can be solved 
with required accuracy by the conjugate gradient method to complete the 
messing Cauchy data [10]. The least square method is adopted in section 
three to recover the robin coefficient p on the non-accessible part of the pipe 
and we give examples to show the feasibility of this method, as a result, the 
conclusion is drawn.

The data completion problem

The collocation Trefftz method (CTM; i.e., the indirect TM), is popularly 
used in the engineering computations for the direct and inverse problems 
[10,25]. We are going to describe its modification and application for the 
two-dimensional Laplace equation and the inverse Cauchy problem to 
complete the messing Cauchy data, and to recover the Robin coefficient.

We replace the Equations. (1.3) and (1.4) by the following boundary 
conditions, respectively as:

{ 0

0

( ), 0
( ), 2( , ) , (2.1)u b

bu R θ θ π
α θ π θ πθ ≤ ≤

≤ ≤= (2.1)

And

{ 1

1

( ), 0
( ), 2( , ) , (2.2)u b

b
u R
r

θ θ π
α θ π θ πθ ≤ ≤

≤ ≤

∂
=

∂
(2.2)

where 0 ( )α θ , 1 ( )α θ are unknowns functions to be determined. We assume 
that 0 ( )α θ and 1 ( )α θ are available to determine, then the Cauchy data are 
completed on the whole boundary, and the solution of Laplace equation can 
be obtained.

The numerical solution of the harmonic equation in a simply-connected 
domain is given by:

( ) ( ) ( )n
0 n

1
u r,  c r cos n d r sin n (2.3)n

n
n

cθ θ θ
∞

=

= + +∑
where nc ,d , nn ∈Ν are unknown coefficients which will be retrieved

uniquely by matching the boundary conditions (1.3-1.4). Indeed, by assuming 
that both functions ( )ou θ and 

1( )u θ are L 2 integrable on the interval [0,
bπ], then the uniqueness of u is guaranteed [10].

The F-Trefftz method, also called, the method of fundamental solutions 
(MFS), use the fundamental solutions as basis functions to develop the 
solution. In our article we used the MCTM to obtain a non-ill-posed linear 
equations system, this method is much simpler than that of the MFS, uses a 
very simple regularization of the input data by truncating higher modes see 
[5,10,25].

The T-complete bases functions for the two-dimensional Laplace 
equation in a simply connected domain can be shown as [10,12].

( ) ( ){ }n n1, r cos n ,  r sin n ,n 1,  2... (2.4)θ θ =

In recent years, Liu has modified the T-complete functions by considering 
the characteristic length of the computational domain R to stabilize the 
numerical scheme by modifying the Trefftz method as follows [3,10]:

( ) ( )
n

1, cos n , sin n ,n 1,2... (2.5)
nr r

R R
θ θ

      =    
     

The characteristic length of the computational domain coincides with 
the radius of the pipe. We can recover the Trefftz method by taking R = 1 in 
(2.5). In the case of R > 1, the Trefftz method produces an unstable solution, 
whereas the modified Trefftz method is stable without any condition imposed 
on R. We view (2.5) as a modified collocation Trefftz method for expanding 
u in terms of T-complete functions of finite terms and replacing the infinite
series in the original expressions by [10,15]

( ) ( ) ( )
n n

0 n
1

u r, c cos n d sin n , (2.6)
k

n
n

r rc
R R

θ θ θ
=

   = + +   
   

∑
where the finite term K can play a role of a regularization parameter.

The collocation method has a great advantage to apply on different 
geometric shapes, and the simplicity for computer programming. In order to 
apply the collocation method we define 

iθ  on 
mΓ as:

mh,  for i 0,  ..., N ,  and h . (2.7)
1i

m

bi
N
πθ = = =
+

Matching the boundary conditions (1.3-1.4) on the equation (2.6). 
Afterwards, we have to apply the collocation (2.7) to obtain the non-ill-posed 
linear equations systems:

0 0A , (2.8)x y=

1 1A , (2.9)x y=

where [ ] 2Nm+1
0 1 1 2 2c ,c ,d ,c ,d ,...,  cK,dK Tx = ∈Ρ is the vector of unknown 

coefficients in (2.6), and
2Nm+2

0 0 0 0 0 0 0 00 0 0 1 1 2 2

2Nm+2
1 1 1 1 1 1 1 10 0 0 1 1 2 2

( ), ( ), ( ), ( ), ( ), ( ),..., ( ), ( ) ,

( ), ( ), ( ), ( ), ( ), ( ),..., ( ), ( ) ,

m m

m m

T

N N

T

N N

y u u u u u u u u

y u u u u u u u u

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

 = ∈Ρ 

 = ∈Ρ 

are the vectors obtains from values of the given functions 
0 1, ,u u respectively

calculate at the collocations points (2.7). The matrix  Nm 1 2K 1
0 1A ,A + +∈Ρ ×Ρ

are given by

0 0 0 00 0

1 1 1 11 1
0

cos 2 sin 2 cos( ) sin( )1 cos sin
cos 2 sin 2 cos( ) sin( )cos sin1

A

cos 2 sin 2 cos( )sin( )1 cos sin N N N NN N

K K
K K

K K

θ θ θ θθ θ
θ θ θ θθ θ

θ θ θ θθ θ

 
 
 =
 
 
 





      



0 0 0 0 0 0

1 1 1 1 1 1

1

cos sin 2cos 2 2sin 2 cos( ) sin( )0

cos sin 2cos 2 2sin 2 cos( ) sin( )0
A

cos sin 2cos 2 2sin 2 cos( ) sin( )0 N N N N N N

K K K K
R R R R R R

K K K K
R R R R R R

K K K K
R R R R R R

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

 
 
 
 
 =
 
 
 
 
 






      



In general, both systems (2.8) and (2.9) are ill-posed [26] in the sense that 
a noisy data 

0 1u , uδ δ are affected by a small arbitrary noise level δ as long as
the following conditions are fulfilled:

0 10 1
u , u (2.10)u uδ δδ δ− ≤ − ≤

For the direct problem, we solve both systems (2.8) and (2.9) with 
required accuracy, to find the unknown coefficients in the equation (2.6). 
For this, it is sufficient to employ the conjugate gradient method. We get the 
following normal equation:

0 0 0 0

1 1 1 1

(2.11)
T T

T T

A A A y
x

A A A y
   

=   
   
In order to apply the MCTM on the inverse problem using Eq. (2.5) 

stability is the most important one of our interests. In the authors study the 
condition number for the matrix A0, A1

 under different number of bases. 
They also present the advantages of the MCTM over the TCM. For accurate 
completion of the missing Cauchy data, we only consider the case where b 
≥ 0.5 [10].

In what follows we use the conjugate gradient method to solve the 
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normal equations (2.11) to complete the messing Cauchy data α0, α1
 on [bπ,

2π]. Inserting the calculated x into Equation. (2.6) to obtain that

( ) 1 2 2 1
1

u r, cos( ) sin( ), (2.12)
n nK

n n
n

r rx x n x n
R R

θ θ θ+
=

   = + +   
   

∑
and to complete the messing Cauchy data α0, α1

 on the following collocate
points:

( )
c

2  b
j b j ,  for j 1,..., N ,  and .     (2.13)

Nc  1
π

θ π θ θ
−

= + ∆ = ∆ =
+

Robin coefficients detection

To illustrate the high accuracy of the method presented in section (2), we 
show its feasibility to the inverse problem of recovering Robin coefficient. 
We see that, after having determined α0, α1

 on the non-accessible part [bπ,
2π], then the Robin coefficient is obtained as a function in space from the 
following equation [17]:

[ ]1 0p ,          on , 2 (3.1)f bα α π π+ =
We compute the Robin function p at the collocation points (2.13) by 

solving

( ) ( ) ( ) ( )1 j j 0 j j cp ,  j 1,..., N (3.2)fα θ θ α θ θ+ = =
In some instances, to achieve further stability in Eq. (1.6) under noisy 

data and to avoid dividing by small values of ( )0 j α θ .We assumed that p
can be represented by a linear combination of M appropriate basis functions 
as follows:

( ) ( )i i
1

p  w , (3.3)
M

i
aθ θ

=

≈∑
where the basis w

i
(θ) can be chosen as the polynomials { }

0

Mi

i
θ

=
 or the

Gaussians as { }2

0

i
M

i
e β θ−

=

, and M ≤ K [27].

The design matrix B is a rectangular matrix of order N
c
-by-M with 

elements j,i i jb w ( )θ= . In matrixvector notation, the residuals is given by:

r  p Ba. (3.4)= −
The least squares method consists in searching for the best approximation 

of p that makes the square sum of the residual in (3.4) as small as possible.

We solve the equation that is obtained by inserting (3.3) into (3.2) in the 
least squares sense for the coefficients ia  as follow:

( ) ( ) ( ) ( )1 j i i j 0 j j j
1

 a w r ,  j 1,..., N (3.5) 
M

i
fα θ θ α θ θ

=

+ − = =∑
In numerical examples we used cubic B-splines on an equidistant 

subdivision, here the collocation (2.13) is considered [28].

Numerical examples

In the stability of the data completion problem using MCTM is investigated 
when the boundary data is contaminated with noise (2.10) [10]. Several 
sets of noisy data have been generated in with noise added to the Dirichlet-
Neumann data of the form [18].

2 2
1

0 0 1 12 2

u L u1 L
u u ,  u u ,

L L
δ δξ ξ

η η
= +∈ = +∈

where ξ is a normally distributed random variable and is the relative noise 
level. Here, we present an examples show the reconstruction of Robin 
coefficient by the completion of messing Cauchy data using the MCTM [29].

Example 1. In the first let Ω be the unique disc, and the exact solution 
is given by:

u(r, θ) =2 + y = 2 + r sinθ,

We can apply the MCTM on this example to obtain the data on the 
accessible boundary as

u0(θ) = 2 + R sin(θ), on [0, π],

u
1
(θ) = sin(θ), on [0, π], and the impedance profile

( ) 0, [0, ]
sin , [0,2 ]

2 sin

p  
R

θ π
θ θ π
θ

θ ∈

− ∈
+


= 


We show the reconstructed profile for exact data and about 5% random 
noise added to the DirichletNeumann data (respect to the L2 norm) by using 
N

m
 = N

c
 = 150 collocate points with b = 1, and the regularized truncation 

number K = 6. In Figure 1 we compare the exact solution with it’s computed 
approximation for the exact data and for noise level ∈= 0.035. The errors
were plotted in Figure 2 for the exact data and the noisy data. For the B-spline 
approximation of the impedance profile, the dimension M = 70 was used.

Example 2. In this example we consider a circle with radius R=3. The 
exact solution is taken as:

( ) ( ) ( )4 21 1, 5 cos 4 cos 2 ,
32 4

u r r rθ θ θ= + −

The data on the accessible boundary can be obtained as:

( ) ( ) ( )

( ) ( ) ( )

4 2
0

3
1

1 1 15 cos 4 R cos 2 ,  [0, ],  
32 4 2

1 1 1R cos 4 R cos 2 ,  [0, ], 
8 2 2

u R on

u on

θ θ θ π

θ θ θ π

= + −

= −

and the impedance profile

( ) 3

4

10, [0, ]
2

4 cos(4 ) 16 cos(2 ) 1, [ ,2 ]
2160 cos(4 ) 8 cos(2 )

R R
R R

p
θ π

θ θ θ π π
θ θ

θ
∈

−
− ∈

+ −

= 


This example, show the reconstructed profile for exact data and for 3% 
random noise added to the Dirichlet Neumann data (respect to the L2 norm) 
by using N

m
 = N

c 
= 130 collocate points with b = 0.5, and the regularized 

truncation number K = 4. In Figure 3 we compare the exact solution with 
the numerical solution for the exact data and for noise level ∈ = 0.07, the
corresponding error was plotted in Figure 4 for exact data and for noisy data. 
We take M = 80 for the B-spline approximation of the Robin profile.

Example 3. In this example we consider a circle with radius 1
2R = , and

the exact solution is given by:

( ) ( ) ( )2 4r, 1  sin 2 cos 4 ,u r rθ θ θ= + +

Figure 1) Reconstruction of the function profile p for a circle with radius R = 2.

Figure 2) Reconstruction of the function profile error under for a circle with radius R = 2.
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Figure 3) Reconstruction of the function profile p for a circle with radius R = 3.

Figure 4) Reconstruction of the function profile error under for a circle with radius R = 3.

Figure 5) Reconstruction of the function profile p for a circle with radius R = 1.

Figure 6) Reconstruction of the function profile error under for an circle with radius R = 1.

The data on the accessible boundary can be obtained as:

( ) ( ) ( )

( ) ( ) ( )

 2 4 
0

3
1

1 sin 2 R cos 4 ,  [0, ],  
2

2Rsin 2 4R  cos 4 ,  [0, ],
2

u R on

u on

πθ θ θ

πθ θ θ

= + +

= +
and the impedance profile

( ) 3

2 4

0, [0, ]
2

2 (2 ) 4 cos(4 ) , [ ,2 ]
21 (2 ) cos(4 )

Rsin R
R sin R

p
πθ

θ θ πθ π
θ θ

θ
∈

+
− ∈
+ +

= 


The following example, illustrate the reconstruction of the exact solution 

and for 4% random noise added to the Dirichlet-Neumann data (respect to 
the L2 norm) by using N

m
=N

c
= 130 collocate points with b = 0.5, and the 

truncation number K =4. In Figure 5 we compare the exact solution with the 
numerical solution for the exact data and for noise level ∈= 0.1. In Figure 
6 we plot the errors, and we take M = 90 for the B-spline approximation of 
the Robin profile.

CONCLUSION

We investigated the Robin inverse problem using the MCTM, the Cauchy 
data are given on the accessible part of the pipe and the Robin boundary 
condition is imposed on the non-accessible part of that pipe, in addition 
the Cauchy data are assumed to have Fourier expansions. We consider the 
finite truncation of the Fourier data to show the regularization of the inverse 
Cauchy problem, and the minimization to achieve stability.

As our interest is in inverse problems, we have seen that the MCTM 
provides a highly stable method that is straightforwardly compatible with the 
data completion problem. In particular, we have considered

The inverse Robin boundary value problem in a disk, where the solution 
of this inverse problem is highly accurate and robust against the noise.
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