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Choroid plexus carcinomas (CPCs) are World Health Organization 
[WHO] grade III brain tumors predominantly found in children (1,2). 

Implementation of successful therapy for CPCs has been hampered by 
the lack of appropriate preclinical models. Here we review the Otx2CreER/+; 
RosaMycT58A/MycT58A; Trp53fl/fl novel CPC mouse model we recently generated, 
and compare it to existing models (Table 1). CPCs derive from the choroid 
plexus (CP), a secretory epithelium of the lateral, third and fourth brain 
ventricles that is essential for the formation and maintenance of the brain 
through production of the cerebrospinal fluid (3,4). These highly malignant 
tumors are characterized by large chromosomal alterations, confusing the 
identification of the genes actually involved in tumorigenesis (5-7). CPCs 
have been associated to TP53 germline and somatic mutations, and more 
recently to c-MYC overexpression, suggesting that these genetic alterations 
play a crucial role in CPC tumorigenesis (8-10). Improved therapy for these 
cancers depends on the generation of animal models closely reproducing 
the genetics of human tumor susceptibility, which can then be used to study 
tumor biology and for preclinical testing. CPCs were initially observed in 
transgenic mice expressing SV40 large T antigen, which alters Trp53 and 
retinoblastoma (Rb) function (11-13). These mice developed various choroid 
plexus tumors (carcinomas but also benign papillomas) with different latency 
and incidence rates. However, these models did not allow spatial or temporal 
control of genetic alterations. More recently, refined approaches were used 
to incorporate conditional genetic alterations in specific tissues and/or with 
temporal control. In 2015, Tong et al. generated two novel mouse models 
of CP tumors by in utero electroporation of a Cre recombinase-expressing 
plasmid into the fourth ventricle of Trp53fl:fl; Rbfl:fl or Trp53fl:fl; Rbfl:fl; Ptenfl:fl 

embryos (14). This provoked the formation of CPCs similar to human tumors 
in 10% and 38% of the cases, respectively, and led to the identification of a 
group of three oncogenes concurrently gained in CPCs: TAF12, NFYC and 
RAD54L, which might favour tumoral progression by promoting aberrant 
DNA repair and epigenome remodelling. In 2017, Kawauchi et al. (15) 
used a similar approach to conditionally overexpress c-Myc and inactivate 
Trp53 in various embryonic subpopulations via in utero electroporation 
of BlbpCre/+ and Atoh1Cre/+ embryos. Although these models were initially 
designed to get type 3 medulloblastomas (MBs), another paediatric cancer 
with frequent overexpression of c-Myc, CPC were frequently observed 
in both genetic backgrounds. This was attributed to partial expression of 
the Cre-genetic drivers in choroid plexus cells, in addition to cerebellar 
precursors from which MBs normally occur. Interestingly, although tumoral 
development occurred with a total penetrance in these systems, CPC and 
MB were never obtained in the same animal, suggesting that inhibitory 
mechanisms might come into play between these two types of tumors. 
Lately, we designed a new genetically-engineered mouse model of CPC 
(16). In this model, expression of a stabilised form of c-Myc (MycT58A) and 
ablation of Trp53 can be induced by an Otx2-driven, tamoxifen-inducible 
Cre recombinase (Otx2CreER/+; RosaMycT58A/MycT58A; Trp53fl/fl). This system enables 
to target the two genetic alterations most frequently observed in human 
CPCs directly into the choroid plexus of all brain ventricles, and at any 
development stage, since Otx2 is strongly expressed in all choroid plexuses 
from embryogenesis till adulthood (16). In contrast, electroporation is 
restricted temporally to specific embryonic stages (E12.5-E13.5) and spatially 
to choroid plexus of the fourth ventricle. Induction of these alterations in 
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CPT: Choroid plexus tumor (not necessary defined as CPC). MB: Medulloblastoma

TABLE 1
Overview of mouse models of choroid plexus carcinomas (CPCs) 

Mouse genotype Genetic alteration(s) 
induction method

Induction 
Stage Target cells Tumor 

latency
Tumor 

incidence 
Tumor 

Location Notes Ref

Wild type Eggs microinjected  with SV40 T 
expression vector E0 Whole embryo 1-5 months 64% 

(n=16/25)

Lateral, 
3th and 4th 
ventricles

CPT [10] 

Wild type Single cell embryos microinjected with 
modified SV40 T expression vector E0 Whole embryo 11-44 

weeks

Lateral, 
3th and 4th 
ventricles

CPT [9] 

Trp53-/- Single cell embryos microinjected with 
modified SV40 T expression vector E0 Whole embryo 1 month 100% 

(n= 4/4)

Lateral, 
3th and 4th 
ventricles

CPT [11] 

Trp53fl/fl; Rbfl/fl 4th ventricle in utero eletroporation of 
Cre recombinase plasmid E12,5 Electroporated 

cells 3-10 months 10% 
(n=7/68) 4th ventricle [12] 

Trp53fl/fl;  
Rbfl/fl;  
Ptenfl/fl

4th ventricle in utero eletroporation of 
Cre recombinase expression vector E12,5 Electroporated 

cells 2-8 months 38% 
(n=26/69) 4th ventricle [12] 

BlbpCre/+
4th ventricle in utero electroporation 
of Myc and dominant negative Trp53 

expression vectors 
E13,5

Blbp-
electroporated 

cells
1-2 months 43% 

(n=6/14) 4th ventricle
 MB
57% 

(n=8/14)
[13] 

Atoh1Cre/+
4th ventricle in utero electroporation 
of Myc and dominant negative Trp53 

expression vectors 
E13,5

Atoh1-
electroporated 

cells
1 month 67% 

(n=2/3) 4th ventricle  MB
33% (n=1/3) [13] 

Otx2CreER/+; RosaMycT58A/

MycT58A; Trp53fl/fl Tamoxifen injection P1-P7 Otx2-positive cells 1-5 months 100% 
(n=24/24)

Lateral, 
3th and 4th 
ventricles

[14] 
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the choroid plexus of newborn mice led to aberrant proliferation and to the 
formation of fatal carcinoma within 1 to 5 months in 100% of the cases. 
These tumors recapitulate many features of their human counterparts, such 
as hydrocephalus, pleomorphic epithelioid cytology and prevalence in the 
lateral and the fourth ventricles. Genomic analysis revealed that, as in the 
model of Tong et al. (14), tumoral progression was associated to genomic 
instability and aberrant DNA metabolism, which may constitute hallmarks 
and key vulnerabilities of CPCs. In contrast to the models reported 
by Kawauchi et al. (15), medulloblastomas were never observed in the 
Otx2CreER/+; RosaMycT58A/MycT58A; Trp53fl/fl model, despite expression of Otx2 in a 
large fraction of cerebellar granule cell precursors (GCPs), which constitute 
one of the best-characterised cell of origin for these tumors and the fact that 
MBs can be experimentally induced in mice by overexpressing Myc in GCPs. 
While further investigation will be required to understand why Otx2CreER/+; 
RosaMycT58A/MycT58A; Trp53fl/fl mice exclusively develop CPCs, the exclusion of 
other neoplastic lesions makes it an ideal system to elucidate the mechanism 
of CPC formation (17). The temporal control offered by this model also 
opens up new opportunities to uncover unknown properties of these 
cancers, such as how the stage of induction of defined oncogenic alterations 
might influence later tumoral development. Finally, this novel animal model 
provides an invaluable tool to address the function of Otx2 itself in CPC 
tumorigenesis. Indeed, overexpression and focal gain of OTX2 were recently 
observed in cohorts of human plexus choroid tumors (18,19). OTX2 has 
been identified as an oncogene in the context of medulloblastomas, where 
it is frequently overexpressed (20-26) and might functionally interact with 
c-MYC (27). It is therefore conceivable that OTX2 could also play a role in 
CPC tumorigenesis and constitute a potential therapeutic target. Consistent 
with this hypothesis, Otx2 was shown to be required for both development 
and maintenance of choroid plexuses (28). Combination of the Otx2CreET2R/+; 
RosaMycT58A/MycT58A; Trp53fl/fl model to the previously described Otx2fl/fl mouse 
line (29) now offers a unique opportunity to assess the function of Otx2 in 
choroid plexus oncogenesis. 
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