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ABSTRACT

In this paper, an efficient and accurate computational method based on the 
Genocchi polynomials is proposed for solving a class of fractional optimal 
control problems. In the proposed method, the Caputo  fractional derivative

operator for the Genocchi polynomials is given. The proposed technique is
applied to transform the state and control variables into non-linear
programing parameters at collocation points. The most important
advantages of our method are easy implementation, simple operations.
Some illustrative examples are presented to show the efficiency and accuracy
of the method.
Keywords: Fractional optimal; Control problems; Caputo derivative;
Genocchi polynomials; Operational matrix; Non-linear programming

INTRODUCTION

In the present paper, we consider a class of optimal control problems the

objective function and the dynamic system with the Caputo fractional
derivative as follows:

where h is a scalar function, x(t) is state vector and u(t) is control vector of 
dimension n × 1 and m × 1, respectively [1-3]. In the real word, many 
physical phenomena are controlled by the differential equations. Therefore, 
in recent years, Optimal Control Problems (OCPs) have been the interest of 
many scientists. A lot of research has been done in the context of OCPs, but 
the research on the Fractional Optimal Control Problems (FOCPs) is not so 
high. Ashpazzadeh, et al., in have used Hermite spline multiwavelest to solve 
the FOCPs. In, the ractional Remann-Liuovel is used to numerically solve 
the problem. Also, is a used numerical simulation for FOCPs with the 
Caputo fractional derivative in. In, Legandar functions are used as basis for 
solving FOCPs. Keshavarze used Bernoulli,s polynomials to solve FOCPs. 
Mashayekhi, et al., used hebrid functions basis to numerically solve FOCPs. 
The main aim of this paper is to solve fractional optimal control problems in 
the sense of Caputo derivative by using Genocchi polynomials. With the 
help of the Genocchi polynomials, the objective function, state and control 
vectors are expanded. To calculate coefficients, we used the collocation 
method with the nodes in the Chebyshev roots as collocation points. In 
finally, the FOCPs transformed into a problem with algebraic equations that 
can be solved by suitable algorithm. The paper is organized as follows: In the 
next section, we introduce the preliminary integration and fractional 
derivative. In section 3, we describe the basic formulating of the Genocchi 
polynomials required for our subsequent development. I section 4, we apply 
the Genocchi polynomials on [0, 1] to solve equations (1)-(4). In section 5, 
we will solve two numerical examples with the proposed method [4-6].

MATERIALS AND METHODS

Some preliminaries in fractional calculus:

Here, we give two definitions related to Rieman-Liouvill fractional integral
and Caputo fractional derivative.

Definition 1: The Riemann-Liouvill fractional integral of order β>0 of a
function f is de- fined as follows:

which Iβ is called the Riemann-Liouville fractional integration operator.
Caputo,s derivative operator Dβ of a function f (t) is defined as follow:

Definition 2: The Caputo fractional derivative of order β with the lower
limit zero for a function

f ∈ Cn(0, ∞) is defined as follows. Some properties of Caputo, s fractional
derivatives as:

Where ⌈.⌉ is the ceiling function. Also the Caputo fractional-order
derivative operator is a linear operator. That is, for all real scalers λ and µ
and for all functions f (t) and g(t), we have:
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RESULTS AND DISCUSSION

Properties of Genocchi polynomials

The genocchi polynomials: Suppose Gi(t) is the Genocchi polynomials 
that obtained from the formula below:

where Gi−r, r = 0, 1, . . . , i in Eq. (6) are the Genocchi numbers, that can be
found as:

where Bi is the Euler, s numbers, which is defined as:

And

Thus, using Eq (6) and Genocchi numbers, we can write:

The set G(t) = G0(t), G1(t), . . . , Gn(t) is a complete orthogonal set in the 
Hilbert space L2[0, 1]. Thus, we can expand any functions in this space

in terms of G(t) polynomials [7,8]. The Genocchi polynomials satisfies 
in the following relations:

The function approximation

Suppose G(t) is a N -vector as:

Function f (t) ∈ L2[0, 1] may be represented by the Genocchi polynomials as

Where;

And, using Eq.(8) we obtain

Where;

Thus,

Operational matrices of fractional derivative

The kth derivative of G(x) is defined as:

Therefore, we can approximate derivative of arbitrary function f(t) using the
Genocchi polynomials.
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Where wi in Eq (13) is

(i − 1) denotes the (i-1)th order derivative of f (t). In, for non-integer β > 0,
the Caputo derivative of the vector G of order β can be defined as:

Where Dβ is a N × N matrix. It can be show:

where ηi,k,j is given by:

Where Gi−r denotes the Genocchi numbers.

Sloving the fractional optimal control problems by the
proposed method

In this section, we consider the FOCPs given in Eq (1)-(4). The factional
state rate

state t vector x(t) and control vector u(t), can be approximated by Genocchi
polynomials as:

Where Dβ operational matrix given in Eq (16). We suppose:

Then using Eqs (21, 22), we can write:

we assume two models for h in Eq (26):

h(x(t); u(t); t) is quadratic function. Thus Eq (26) is to form:

Where T denotes transposition, Q is positive semi-definite matrix and R is
the positive

definite matrix. Using Eqs (23, 24) we get:

Therefore;

Using by Eq (10) we get:

h(x(t); u(t); t) is non-quadratic function. We evaluate objective function J by
a suitable

Newton-Cots numerical integration as:

ρi, i = 0; 1; : : : ; k are the Newton-cots integration weight functions

By collocating Eq (27) at the points:

We get

A numerical approach for solving a class of fractional optimal control problems using 
Genocchi polynomials

Im and In are m × m and n × n dimensional identity matrices, G(t) is N-
vector, ’⊗’ denotes Kronecker product and G1(t) and G2(t) are matrices of 
order mN × m and nN × n.
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Now the problem changed to find the minimum solution of (33) or (34)
with the conditions (29) and (36). Using lagrange multiplier method we
have:

Where λ=(λ1, λ2, . . . , λN) and µ = (µ1, µ2, . . . , µN) are the lagrange
multipliers. To find the optimal solution of Eq (37) we put

Eqs(38) given an algebraic system of equations which can be solved to find
the values E, U, λ and µ [9-14].

Illustrative examples

Example 1 consider the following free final state FOCPs:

With ptimal value J∗=0.171118. By applying present method, we obtain the
numerical results (Table 1).

Methods J

Classical chebyshev

m=8, k=26 0.17358

m=16, k=28 0.17185

Hybrid function

w=15, m=3, n=4 0.170136

w=15, m=4, n=4 0.170136

Haar wavelet collocation

K=8 0.172548

k=16 0.171262

k=32 0.170112

 Present method

N=8 0.179078

N=10 0.170291

N=12 0.170049

values of N. Figure 1 shows the control function curves and plots of state
vectors for β = 0.9, 0.99, 1 with N=10. Also, Table 1, shows the values of J
for β=1 and gives a comparison between our results [15,16].
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Example: This example has been chosen from. The problem is:

The state and control functions that minimize the preformance index J are 
given by x∗(t)=2t-1 and u∗(t)=1, respectively. This problem for β is adapted
from e and has been studied by several authors. This problem has the 
minimum value objective function J∗=−0.30682 for β=1. Table 2, gives the
results reported and the presented method. Also, Figure 2, (a) shows the 
plot of x(t) for exact value of state vector and approximate state vector where 
β approach to 1 and (b) shows plot of control vector for the different values 
of β, that approaches to 1 [17-20]. Also, for this problem, we define error of 
x(t), En(x), in the following from:

TABLE 2

Comparison of the value of J for β=1, for example 2

Methods J En(x)

Method

n=2 -0.3064 8.07e-4

n=4 -0.30682 4.99e-5

n=8 -0.30685 3.09e-6

n=16 -0.30669 1.92e-7

n=32 -0.30685 1.20e-8

Method

M=3, N=1 -0.30683 -

Method

M=3, N=1 -0.30684 -

Method

M=3 -0.30685 -

Present method

N=5 -0.30685 9.61e-6

N=6 -0.30685 2.98e − 6

N=8 -0.30685 3.21e − 9

A numerical approach for solving a class of fractional optimal control problems using 
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Figure 1) Curves of x1(t), x2(t) and u(t) with N=10 for=0:9; 0:99



CONCLUSION

We demonstrated how to apply the Genocchi polynomials in the 
approximation of FOCPs. The developed technique proved to give accurate 
and consistent results for both the state and control variables. Computed 
errors between our approximate solutions and the analytical solutions of 
specific problems were negligible, proving the accuracy of our suggested 
scheme.
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Figure 2) Curves of x(t) and u(t) with N=5
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