
Independent Researcher, Germany
Correspondence: Geraldine Reichard, Independent Researcher, Germany, e-mail: reichardgeraldine@yahoo.com
Received: 2 Jan, 2024, Manuscript No. puljpam-24-6968, Editor Assigned: 3 Jan, 2024, PreQC No. puljpam-24-6968 (PQ), Reviewed: 5 Jan, 2024, QC No.
puljpam-24-6968 (Q), Revised: 7 Jan,2024, Manuscript No. puljpam-24-6968 (R), Published: 31 Jan, 2024, DOI:-10.37532/2752-8081.24.8(1).01-07

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC)
(http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that
the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact
reprints@pulsus.com

J Pure Appl Math Vol 8 No 1 January 2024 1

 RESEARCH
A polynomial solution for the 3-SAT problem

Geraldine Reichard

INTRODUCTION
he decision problem 3-SAT deals with the question, wether a
boolean expression with 3 literals per clause, is satisfiable or not,
meaning it exists an assignment of variables, that makes the

boolean expression become true [1-3].

The expression consists of clauses, containing 3 literals at most. The
literals within the clauses are connected with disjunctions and the
clauses with conjunctions. For example the following expression e is a
3-SAT expression:

1 2 3 3 4 5 1 4 1() () () ()x x x x x x x x x∨ ∨ ¬ ∧ ¬ ∨ ∨ ¬ ∧ ∨ ¬ ∧ ¬

According to the theorem from Cook 3-SAT is NP-hard [1]. A
polynomial solution of 3-SAT would mean the that P = NP [4].

Until now many randomized and deterministic algorithms have been
introduced that implement an efficient way to try out variable
assignments. An example is the in 1960 introduced DPLL-
Algorithmus [5]. This algorithm uses backtracking techniques.
Another example is a deterministic algorithm introduced in 2002 by

Dantsin et al [3]. This reaches for k-SAT a runtime of (2 2 / (k 1))
n

− +

and is based on local search. A similar randomized algorithm was
introduced 1999 by Schöning [6].

All of these 3 or k-SAT algorithms are not polynomial and try to test
out assignment most efficiently.

This is different with 2-SAT, which is solvable efficiently in
polynomial runtime. An example is the algorithm by Krom
introduced in 1960, which uses a technique to utilize implications
between clauses [4]. If the negative and positive version of a literal
appear in two different clauses, for example in the expression

1 2 2 2() (),x x x x∨ ∧ ¬ ∨ a third clause 1 3()x x∨ is generated. An

expression is unsatisfiable, if after a repetitive application of the

formula does not contain the clause 1 1()x x∨ and the clause

1 1().x x¬ ∨ ¬ Is this the case the expression is called consistent. If all

clauses containing the same variable are grouped together, the

runtime is cubic
3

(()).O n Even and Shamir could reach a runtime of
2

()O n with that method, by ordering the operations to be executed
on the clauses [2]. They also introduced a backtracking algorithm that
solves 2-SAT in linear time [2].

The technique introduced within the following paper uses a similar
technique to Kroms solution of the 2-SAT problem.

As in Kroms algorithm this algorithm R, introduced in this paper,
will first group the clauses to coalitions consisting of all clauses

T

Reichard G. A polynomial solution for the 3-SAT problem. J
Pure Appl Math. 2024; 8(1): 01-07.

ABSTRACT
In this paper, an algorithm is presented, solving the 3-SAT

problem in a polynomial runtime of which implies P = NP.

The 3-SAT problem is about determining, whether or not a logical
expression, consisting of clauses with up to 3 literals connected by
OR-expressions, that are interconnected by AND-expressions, is
satisfiable.

For the solution a new data structure, the 3-SAT graph, is
introduced. It groups the clauses from a 3-SAT expression into
coalitions, that contain all clauses with literals consisting of the
same variables. The nodes of the graph represent the variables
connecting the corresponding coalitions.

An algorithm R will be introduced, that identifies relations
between clauses by transmitting markers, called upgrades, through
the graph, making use of implications. The algorithm will start
sequentially for every variable and create start upgrades, one for

the variables negated and one for its non-negated literals. It will be
shown, that the start upgrades have to be within a specific clause
pattern, called edge pattern, to mark a beginning or ending of an
unsatisfiable sequence.

It will be proven, that if after several execution steps of algorithm R,
two corresponding start upgrades circle, then the expression is
unsatisfiable and if no upgrade steps are possible anymore and the
algorithm did not return unsatisfiable, the expression is satisfiable.

The algorithm R is similar to already existing solutions solving 2-SAT
polynomial, also making use of implications using a graph.

Key words: Polynomial; Mathematics; Differential calculus; Coalitions; Logic

Reichard

2 J Pure Appl Math Vol 8 No 1 January 2024

containing the same 3 variables and then apply a technique called
upgrade to detect circles. This upgrade paths represent one or more
executions of the implication-rule.

DEFINITIONS
First the 3-SAT graph and its components are defined. Let c be a 3-
SAT clause, meaning it has exactly 3 literals connected with
disjunctions, as described within Definition 1.

Definition 1
Let c be a 3-SAT clause. c consist of exactly 3 unique literals, that are
connected by disjunctions. Each literal consists of a value of true or
false and a corresponding variable.

We say, that these literals are within the same form, if Definition 1.2
applies.

Definition 1.2
Let l1 and l2 be literals in a 3-SAT expression e. l1 and l2 are within the
same form, if they are within different clauses, but consist of the same
variable and are both either negated or non-negated.

Now we can define a coalition as a set of unique clauses of a 3-SAT
expression, that each contain 3 literals consisting of the same three
variables. We also assume, that each clause of a coalition contains a
different combination of literals and that, if the expression might
contain 1-SAT or 2-SAT clauses, they are formed into equivalent 3-
SAT clauses due to help variables as described within Definition 2.

Definition 2 – Coalition

Let 1 2 3c ()l l l= ∨ ∨ be a unique clause within a 3-SAT expression e.

Let the corresponding variable from 1 1 ,l be x the variable from

2 2l be x and the variable from 3 3 .l be x Then (, ,.) 1, ..,1 2 3
C { }x x x kc c=

with 8k ≤ ∈  is the coalition, that contains c.

Let 1 2c ()l l= ∨ be a unique 2-SAT clause within a 3-SAT expression e,

with x1 being the corresponding variable to l1 and x2 being the
corresponding variable to l2.

Then to all coalitions C e∈ containing x1 and x2 and a third variable

,y e∈ clauses 1 1 2 3c ()l l l= ∨ ∨ and 2 1 2 4c ()l l l= ∨ ∨ ¬ with

2 4 il y and l y= = ¬ will be added.

If there are no such coalitions, then a new coalition (, ,.)1 2 1
C x x h will

be created with
1

,h e∉ containing clauses 1 1 2 3c ()l l l= ∨ ∨ and

2 1 2 4c ()l l l= ∨ ∨ with 3 1 4 1 .l h and l h= = ¬

Let 1c ()l= be a unique 1-SAT clause within a 3-SAT expression e with

x1 being the corresponding variable to l1. Then for every coalition C,
that contains x1 and two other variables, four clauses will be added to
C consisting of l1 combined with and all four unique literal
combinations out of the remaining variables. If there are no
coalitions within the expression containing x1, then a coalition

(, ,.)1 2 1
C x x h will be created containing all clauses with l1 combined

with all 4 combinations of literal assignments out of the help

variables
1 2

.h e and h e∉ ∉

If a coalition contains all 8 possible clauses, then it is called full,
which is explained within Definition 3. Also a full coalition makes an
expression unsatisfiable, as stated within Theorem 1. This is because
the expression demands for each possible literal assignment of the 3
variables also the inverse assignment.

Definition 3
A 3-SAT coalition is called full, if it contains 8 unique clauses
consisting of all combinations of 3 literals.

A visualization of a full coalition is shown in Figure 1.

Figure 1) A graphic representation of a full coalition (, ,.).1 2 3
C x x x The black

dots represent negated literals and the white dots non-negated literals. The
triangles represent the clauses.

Theorem 1
A 3-SAT expression e is unsatisfiable, if it contains at least one full
coalition.

Proof

Let solE be a solution of the 3-SAT expression e that contains a full

coalition (, ,.).1 2 3
C x x x solE assigns every variable 1 ,..., nx x from e a value

of either true or false. Let (, ,.).1 2 3sol x x x solE E⊆ be an assignment for

the variables , , .
1 2 3

x x x from the full coalition (, ,.).1 2 3
C x x x Per

definition of (, ,.)1 2 3
C x x x being full, meaning it contains all possible

unique combinations of literals out of the three variables

31 2
, ,x x and x ∀ possible assignments for (, ,.).1 2 3sol x x xE a∃ clause c,

that claims the inverse assignment for each literal and because of c
being in E and E being defined as a 3-SAT expression, meaning its
clauses are connected with conjunctions, that makes also E
unsatisfiable.

THE 3-SAT GRAPH
The 3-SAT graph for an expression e consists of a set of coalitions C
and a set of nodes V, one for every variable in the expression. Each
node contains pointers to the coalitions, that contain the nodes
corresponding variable. This is stated within Definition 4.

Definition 4 - 3-SAT graph

Let eG be the corresponding graph to the 3-SAT expression e. Let

1{ , ..., }e nV v v= be the set of all nodes, that can be built out of the

A polynomial solution for the 3-SAT problem

J Pure Appl Math Vol 8 No 1 January 2024 3

variables 1 ,..., ,nx x that appear within expression e with n∈  and let

1{ , ..., }e kC C C= be the set of all unique coalitions, that can be built

out of clauses 1 ,..., jc c of expression e with . .k j ∈ 

Each node i ev V∈ contains the corresponding variable ix and a set

of coalitions iC , that contain variable ix .

Each coalition iC within the graph consists of the 3 corresponding

nodes to its variables and its set of clauses.

Then the 3-SAT graph G for expression e is defined as .e e eG V C= 

For a sample expression E the 3-SAT graph is visualized in the
following picture (Figure 2).

1 2 3 1 2 3 1 3 4() () ()E x x x x x x x x x= ∨ ¬ ∨ ∧ ∨ ¬ ∨ ¬ ∧ ∨ ∨

1 3 4 1 2 1 2() () ()x x x x x x x∧ ¬ ∨ ∨ ∧ ¬ ∨ ¬ ∧ ∨ ¬ (1)

Figure 2) Visualization of the 3-SAT-graph for expression E.

Processing dependencies between coalitions
As proven within the last section, a single full coalition causes an
expression e to be unsatisfiable. But also there is the possibility of
dependencies between clauses of different coalitions.

For example two clauses from different coalitions within a 3-SAT

expression 1 2 3 3 4 5() ()E x x x x x x= ∨ ¬ ∨ ∧ ¬ ∨ ¬ ∨ could form a

single 4-SAT clause 1 2 4 5()x x x x∨ ∨ ¬ ∨ per implication rule.

A series of executions of the implication rule could result in multiple
4-SAT clauses, that could add up to a potential full 4-SAT coalition,
which would make the expression unsatisfiable without a 3-SAT
expression being full within the initial graph. For example by
reducing a full 4-SAT coalition to 3-SAT by using help variables, there
would be no full 3-SAT clause within the expression, but it would still
be unsatisfiable.

Also it could for example be possible, that multiple dependent 3-SAT
clauses from different coalitions could form a new 3-SAT coalition
with different variables by implications, that could be full.

Theorem 2 states, that only if there is either a full coalition within the
expression already, or if there is a way to generate a full coalition by
making use of implications within one or more execution steps of
implication rules, then e is unsatisfiable and otherwise satisfiable.
Later it will be also proven, that the algorithm R, introduced in this

paper, is able to find this way of generating a full clause within a 3-
SAT expression, if it is possible, in a polynomial runtime.

The algorithm R will not apply the implication rule to form the
expression, but send markers called upgrades trough the 3-SAT graph
to detect possible implications of clauses either within a coalitions or
between different coalitions.

To do so it sends upgrades trough the 3-SAT graph, starting with a
pair of two upgrades called start-upgrades.

Theorem 2
If there is no way to form a 3-SAT expression e per repetitive
execution of implication rules in such a manner, that there is at least
one full coalition, the expression e is satisfiable, and otherwise
unsatisfiable.

Proof
Let e be a 3-SAT expression, that is unsatisfiable, but cannot be
formed to a 3-SAT expression, that contains a full coalition via
repetitive executions of implication rules. Let e′ be an expression
that contains all clauses from e and all possible clauses, that can be
formulated out of e via applications of the implication rule. Because
the implication rule only formulates arguments, that are already
contained within e, that does not change the satisfiability of e. Each

assignment e ,sol that satisfies e also satisfies e′ .

Per Theorem 2 e′ should also contain no full clause and per
definition, there could not be new clauses added to e′ by using
implication rules.

Because e′ being not full, for every coalition (,1 2,)3
C x x x

in e′ , there

are still assignment
(,1 2,)3

e sol x x x
′ left for the variables within

(,1 2,)3
C x x x

for that there is no clause ,c C∈ that does demand the

inverse assignment to
(, ,1 2,)3

e sol x x x
′ which makes

(,1 2,)3
e sol x x x
′

satisfiable within (,1 2,)3
C x x x

and, because all implications are already

priced in the graph of e′ , a union of possible solutions for every

coalition ()1,...,
e esol sol C Cn
′ ′= with n∈  would be a solution for e′ ,

meaning e′ is satisfiable. That would also make e satisfiable, which is
a contradiction to the unsatisfiability of e.

Let e be a 3-SAT expression, that is satisfiable, but can be formed to a
3-SAT expression e′ , that contains a full coalition. It is already
proven, that a full coalition makes an expression unsatisfiable and so
e′ is unsatisfiable. Assuming the implication rules being correct, the
satisfiability of e′ is the same as the satisfiability of e, so e is also
unsatisfiable, which is a contradiction to the assumption of e being
satisfiable.

The algorithm R makes use of implications between coalitions
without changing the graph. Instead, markers, called upgrades, will be
processed throughout the graph.

Upgrades can be assigned to multiple literals and contain pointers to
previous and following upgrades. They are defined within Definition
4.

Definition 4 - Upgrade
An upgrade u within the 3-SAT graph G of an expression e with a

base literal l is defined a set of literals 1{ ,.., }ul kL l l e= ⊆ with .k ∈ 

Reichard

4 J Pure Appl Math Vol 8 No 1 January 2024

The literal l is also stored with the set ulL and is called the base literal

of u. The variable of l is called the base variable and the value of l,
either true or false, is called the base value. Also u contains pointers

to one or more previous upgrades 1{ , .., }prev kU u u= and upgrade u

can have following upgrades 1U { ,.., }follow ju u= with k, j .∈ 

Also each upgrade is assigned an upgrade path. In the case of the start
upgrade, the path is empty.

Definition 4.1 - Upgrade Path

Let u be an upgrade. Then P ,u G⊆ the upgrade path of u, is defined

as the sequence of upgrades, that lead from one or more start
upgrades to u. While there can also be multiple ways, that lead from
the start upgrades to u, every upgrade lying on a possible way is
integrated within the upgrade path.

Definition 4.2 - Corresponding upgrade

Every upgrade u is created with a corresponding upgrade u c with the

base literal of u, ul being of the inverse form to the base literal of

u , , .c c Cprev prev
l and U U= If it is not possible to create a corresponding

upgrade according to the algorithm R, then the upgrade step cannot
be performed.

PATTERNS
Patterns are combinations of clauses, that transport upgrades to
neighbor clauses in a certain manner or let them run into a circle.
This would mean, that an upgrade is unsatisfiable on its path.

Start pattern
First, the algorithm R will search for start pattern. Every start pattern
is also an edge pattern, but not every edge pattern has to be a start
pattern. If an upgrade later comes into contact with an edge pattern,
it is called an end pattern and the upgrade is then called circling.

The idea is, that every unsatisfiable implication sequence within the
graph has to start with a pattern, that consists of all four literal-
combinations for two variables. The idea of the proof will be, that if
this would not by the case, then there are always two possibilities left
on how to satisfy the sequence and if the two would have different
implications with other clauses, this could not be called the start of
the sequence.

To define an edge pattern, first a border pattern will be defined. This
is half an edge pattern and consists out of a clause combination of at
least two clauses with one literal of the same form and one literal
inverse to the literal within the other clause. A border pattern,
defined within Definition 5 with an example shown within Figure 3,
consists of a clause combinations of at least two clauses, that contain,
besides of the literals within the upgrade, one common and one
disjunct literal.

An edge pattern is defined within Definition 6.

Definition 5 - Border pattern

Let u be an upgrade. We say, that u contains a border pattern, if Lu

contains literals 1 2 ,l and l that belong to clauses 1c and 2c and if 1c

contains also a literal
1

,Fl that is of the same form as a literal
2Fl with

1 21 2
, , ,F Fl l l l≠ called the common literals, and if 1c contains a literal

3l , that is in the inverse form to a literal

4 2 3 4 1 2 1 2c , , .l with l l l l l and l∈ ≠ are also called the connector literals.

If R performs an upgrade via a border pattern, u will be led on via the
common literals of the pattern to clauses of neighbor coalitions
containing literals of the inverse form to the connector literal with
respect to the rules of upgrade connection (Figure 3).

Figure 3) Two examples of border patterns. In (I) the two clauses from the
pattern are within the same coalition. Upgrades received by x1 are led on via
all literals of the inverse form to x2. If the upgrade is received via x2, then it
can be led on via x1. Also an upgrade could be received by two clauses from
different coalitions and be sent via the common literal, as shown in (II). In
both cases the patterns fulfill the requirement of containing one disjunct and
one common literal.

Border patterns transport upgrades on without changing them. An
edge pattern consists out of two border patterns with inverse
common literals, as defined within Definition 6.

First the algorithm will define initial starting pattern, which will
always be an edge pattern, defined within Definition 7. An edge
pattern is shown within Figure 4.

Definition 6 - Edge pattern
Let u be an upgrade. We say, that u contains an edge pattern, if Lu

contains 2 border patterns, p1 and p2, and the common literals of p1
are inverse to the common literals of p2 and the other common literal
of p1 is equal to the common literal of p2.

Definition 7 - Start upgrades
Let e be an edge pattern, then e can be chosen as a start pattern for R,
where the 2 corresponding upgrades created out of the disjunct
common literals u1 and u2 are called the start upgrades. They will
divide at the inverse literals of their respective border pattern again
into 2 corresponding upgrades each, having u1 or u2 as previous
upgrades. So there are 4 start upgrades after running trough the start
pattern (Figure 4).

A polynomial solution for the 3-SAT problem

J Pure Appl Math Vol 8 No 1 January 2024 5

Figure 4) The first image (I) shows a starting edge pattern within a single
coalition. Initially for every combination out of the two literals, one upgrade is
built, but they merge back at x1 to one single start upgrade. The same happens
in (III). In (II), all start upgrades are passed on individually via the third
literals.

Theoretically upgrades could merge together right at the beginning.
The rule of upgrade connection explains, how upgrades connect, if
two or more upgrades are sent to the same literal.

Definition 8: Rule of upgrade connection
If an upgrade u attempts to upgrade to a literal l, that already contains
an upgrade uc, then.

1. If u and uc are on disjunct upgrade paths, then, if uc is a
leading upgrade, u will be added as a previous upgrade to
uc. If uc is no leading upgrade, then there will be createda
new leading upgrade ul with uc and u as previous
upgrades.

2. If ,uc uP P⊆ then there is no need to perform the

upgrade step.

3. If ,u ucP P⊆ then u will be assigned to l and be passed

on.

4. If an upgrade u and its corresponding upgrade u attempt
to upgrade to a literal l, then their common previous
upgrade uprev will be passed on to l. If all four start
upgrades attempt to upgrade to the same variable, then
all the upgrade paths integrate the upgrade is called
neutral.

If an upgrade u is later led into an edge pattern, u it is called circling.
If an upgrade circles, then the algorithm will start with the
backtracking process. A small circle is sown within Figure 5 and
defined within Definition 9.

Figure 5) A small upgrade circle. After the start upgrade got send via x1, it
reaches another edge pattern, that lets the upgrade circle. Because now every
start upgrade circles, the expression is unsatisfiable.

After the start upgrade is sent, within the next coalitions, if there
would be another edge pattern, then the expression is called circling.

Definition 9 - Circling
An upgrade u is called circling, if all connector literals of the pattern
also receives an upgrade u or from the path of u Pu. If two
corresponding upgrades circle, then their common previous upgrades
circle. If a neutral upgrade circles, then the expression is unsatisfiable.

Not only edge patterns can circle, but if an upgrade reaches a second
edge pattern, then it immediately circles. An upgrade has to reach
both connector literals of a border pattern to circle. If the upgrade is
sent to a border pattern from the start upgrade, then it is led on via
the common literal of the border pattern as in Figure 6.

Figure 6) After the start upgrade is sent to a border pattern from 3 3x to x¬

by making use of implications, it is led on from 4 4 .x to x¬

It is also possible, that the sender and receiver clause are connected
via two literals. From the start pattern the upgrades will be sent on via
the connector literals of the pat tern to all neighbor clauses with
literals of the inverse form as stated in Definition 10 and
shown within Figure 7.

Reichard

6 J Pure Appl Math Vol 8 No 1 January 2024

Figure 7) An upgrade is sent to neighbor clauses. If the sender clause is
connected via one inverse literal to all receiver clauses, that do not already
have the upgrade, as shown in (I). If two clauses share two common variables,
then the upgrade is only sent, if the clauses share besides off the sender and
receiver inverse literal a literal of the same form with the second common
variable, as shown in (II).

Intermediate pattern
If an upgrade contains two clauses with only one common variable,
one containing the negated form and one the non-negated form of
literals with this variable, this is called an intermediate pattern. For all
literals of the negated and for all literals of the non-negated form, a
new following upgrade will be built and sent on via the connector
literals (Figure 8).

Figure 8) From the starting edge pattern, an upgrade from 5 5x to x¬ is
performed. Then there is an intermediate pattern, because the upgrade u
contains non-upgraded clauses containing the true and false representation of
x6 and also the two clauses have different connector literals x7 and x8.

Intermediate clause
If a clause does not belong to a pattern, it is called an intermediate
clause.

Intermediate clauses have three connector literals to other coalitions.
If an upgrade reaches an intermediate clause, it is not immediately
sent on. Only if one other literal of the pattern also received the

upgrade or an upgrade within the same path, it is sent on and only if
all three literals received a respective upgrade, it circles, as defined
within Definition 12 (Figure 9).

Figure 9) An intermediate clause. Only if there are two incoming upgrades,

for example at 1 3 ,x and x¬ an upgrade is sent via 2 .x¬

Definition 10 - Intermediate clause
If the literal set of an upgrade u Lu contains a literal from a clause c,
that cannot be assigned to any kind of pattern, c is called an
intermediate clause. c only passes on u, if two literals of c received u or
another upgrade from Pu and circles, only if all three literals received
u or an upgrade from Pu.

THE ALGORITHM
Now let us put the algorithm together. Figure 10 shows a sample
execution of R. If there is no full coalition within the graph making
the expression unsatisfiable immediately, the algorithm R starts by
searching for an edge pattern. If an edge pattern is identified, the
start-upgrades are created and build the current set of upgrade U, that
always contains the current tips of all upgrade paths and their set of
literals. The start upgrades are sent on via the connector literals to all
neighbor literals of the inverse form.

If one or more upgrades encounter another edge pattern or all
connector literals of another pattern have been upgraded, the
upgrade circles. If it is a neutral upgrade, the expression is
unsatisfiable and if also the corresponding upgrade circles, all the
common previous upgrades circle. If the start upgrades circle, then
the algorithm returns unsatisfiable.

If there is no edge pattern or circle, then all upgrades with border
patterns will be sent on to neighbor coalitions. If yes, then within the
following neighbor clauses, the algorithm will go back to the step
checking for edge patterns or circles (Figure 10).

A polynomial solution for the 3-SAT problem

J Pure Appl Math Vol 8 No 1 January 2024 7

Figure 10) A sample execution of algorithm R. Starting at the edge pattern
e1, 4 startupgrades u1, u4 are created. They merge together at x3 building the
neutral upgrade u. u is sent via a border pattern from.

If there are no circles or border patterns within upgrades of the
current set of upgrades U, intermediate patterns are evaluated. If an
upgrade encounters an intermediate pattern, then 2 new following
corresponding upgrades for the pattern are created and the upgrades
are sent on via the connector literals. Also the algorithm now starts at
the step evaluating circles or edge patterns again. When no upgrade
steps are possible anymore and the start upgrades do not circle, the
algorithm tries to start from another edge pattern, if there are edge
patterns left without upgrades and repeats the execution steps. If
afterwords still no corresponding start upgrades circle, then the
algorithm returns satisfiable. As soon as corresponding start upgrades
circle, R returns unsatisfiable.

CONCLUSIONS
The algorithm R creates a new data structure, the 3-SAT graph, which
can more easily display dependencies between clauses of input

expressions for the 3-SAT problem, by ordering them into coalitions
and making use of dependencies between different coalitions. Also
different kinds of clause patterns are defined. In that manner, a
solution of the 3-SAT problem can be found without just trying out
different assignments, but by making use of implications. That makes
it possible to find a solution within polynomial runtime by sending
markers, called upgrades, through the graph, creating the upgrade
paths, storing a history of previous implications and dissolving it, if
circles, marking contradicting variable assignments, are found. The
approach is similar to existing graph algorithms solving 2-SAT in
polynomial runtime already. The runtime of the algorithm R has a

worst case complexity of
3

O(n). With some optimizations, it should
be possible to reduce the runtime algorithm R runtime to be within

2
O(n).

REFERENCES

1. Cook SA. The complexity of theorem-proving procedures.
Sym Theo Comp. 1971; 143-52.

2. Even S, Itai A, Shamir A. On the complexity of time table
and multi-commodity flow problems. In16th annual
symposium on foundations of computer science. 1975;
184-93.

3. Dantsin E, Goerdt A, Hirsch EA, et al. A deterministic (2−
2/(k+ 1)) n algorithm for k-SAT based on local search.
Theor Comp Sci. 2002;289(1):69-83.

4. Krom MR. The decision problem for a class of first-order
formulas in which all disjunctions are binary. Math Log
Quart. 1967;13(1):15-20.

5. Davis HPM. A probabilistic algorithm for k-sat and
constraint satisfaction problems. Found Comp Sci.
1999;410-14.

6. Schoning U. A probabilistic algorithm for k-sat and
constraint satisfaction problems. Found Comp Sci. 1999.

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=1.%09Stephen+A.+Cook.+The+complexity+of+theorem-proving+procedures.+Symposium+on+Theory+of+Computing%2C+1971&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=2.%09Shamir+A.+Even+S.%2C+Itai+A.+On+the+complexity+of+time+table+and+multi-commodity+flow+problems.+SIAM+Journal+on+Computing%2C+5%2C+1976.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=2.%09Shamir+A.+Even+S.%2C+Itai+A.+On+the+complexity+of+time+table+and+multi-commodity+flow+problems.+SIAM+Journal+on+Computing%2C+5%2C+1976.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=3.%09Edward+A+Hirsch+Evgeny+Dantsin%2C+Andreas+Goerdt.+A+deterministic+%282-2%2F%28k%2B1%29%29n+algorithm+for+k-sat+based+on+local+search.+Theoretical+Computer+Science%2C+8%2C+1979.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=3.%09Edward+A+Hirsch+Evgeny+Dantsin%2C+Andreas+Goerdt.+A+deterministic+%282-2%2F%28k%2B1%29%29n+algorithm+for+k-sat+based+on+local+search.+Theoretical+Computer+Science%2C+8%2C+1979.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=4.%09Krom+MR.+The+decision+problem+for+a+class+of+first-order+formulas+in+which+all+disjunctions+are+binary.+Math+Log+Quart.+1967&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=4.%09Krom+MR.+The+decision+problem+for+a+class+of+first-order+formulas+in+which+all+disjunctions+are+binary.+Math+Log+Quart.+1967&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=5.%09H.+Putnam+M.+Davis.+A+probabilistic+algorithm+for+k-sat+and+constraint+satisfaction+problems.+Foundations+of+Computer+Science%2C+1999&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=5.%09H.+Putnam+M.+Davis.+A+probabilistic+algorithm+for+k-sat+and+constraint+satisfaction+problems.+Foundations+of+Computer+Science%2C+1999&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=6.+Uwe+Schoning.+A+probabilistic+algorithm+for+k-sat+and+constraint+satisfaction+problems.+Foundations+of+Computer+Science%2C+1999&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=6.+Uwe+Schoning.+A+probabilistic+algorithm+for+k-sat+and+constraint+satisfaction+problems.+Foundations+of+Computer+Science%2C+1999&btnG=

