RESEARCH

A probabilistic proof of the multinomial theorem following the number A_{n}^{p}

Atsu Dekpe
combinatorial result, our proof may be simple for a student familiar with only basic probability concepts.

Dekpe A. A probabilistic proof of the multinomial theorem following the number A_{n}^{p}. J Pure Appl Math. 2023; 7(3):202-203.

Abstract

In this note, we give an alternate proof of the multinomial theorem following the number A_{n}^{p} using probabilistic approach. Although the multinomial theorem following the number A_{n}^{p} is a

Key words: Probabilistic Proof; Multinomial Theorem; Probability; Number

INTRODUCTION

The following multinomial theorem based on number n^{p} (development based on a power of a number) is an important result with many applications in mathematics statistics and computations. The theorem states as follows:

Theorem 1

Let n and m be non-zero natural numbers, $x_{1}, x_{2}, \ldots, x_{m}$ real numbers:
$\left(x_{1}+x_{2}+\ldots+x_{m}\right)^{n}=\sum_{\Sigma_{i=1}^{m} k^{k_{i}=n}} \frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} x_{1}^{k_{1}} x_{2}^{k_{2} \ldots x_{m}^{k m}}$
where k_{i} are natural integers.

For readers interested, they can see reference for further interpretation [1]. Recently, we have published another type of multinomial theorem based on numbers A_{n}^{p} and given some applications in the case of binomials [2]. (see [1] for more details). In each case, the first demonstrations are based on a proof by induction using the binomial formula. A. Rosalsky proposed a probabilistic approach to this proof in the case of binomials which will be generalized to the multinomial theorem by Kuldeep Kumar Kataria
[3-4]. An urn contains x_{1} balls numbered $1, x_{2}$ balls numbered 2 ,
x_{m} balls numbered m , such that the total number of balls is $N=\sum_{i=1}^{m} x_{i}$. Consider an experiment where we draw a ball from the urn without replacement, and note the number on it each time. By repeating this experiment n times [5-6]. The probability mass function of the variables $X_{1}, X_{2}, \ldots, X_{m}$ is:
$P\left[X_{1}=k_{1}, X_{2}=k_{2}, \ldots, X_{m}=k_{m}\right]=n!\prod_{i=1}^{m} \frac{P_{i}^{k_{j}}}{k_{j}!}$
Where, $N=\sum_{i=1}^{m} k_{i}=n$ and $P_{i}^{k_{j}}$ the probability of having the balls numbered $i k_{j}$ times.

From (1.2) we have:

$$
\begin{equation*}
1=\sum_{\Sigma_{i=1}^{m} 1^{k_{i}}=n} n!\prod_{i=1}^{m} \frac{P_{i}^{k_{j}}}{k_{j}!} \tag{1.3}
\end{equation*}
$$

Next, we will establish and prove the multinomial theorem following the number A_{n}^{p}.

A PROBABILISTIC PROOF OF THE MULTINOMIAL

 THEOREM FOLLOWING THE NUMBER A_{n}^{p}[^0]
Theorem 2

Let m and n be two non-zero natural numbers and $x_{1}, x_{2}, \ldots, x_{m}$ natural numbers. Then,

Where k_{i} are non-negative integers, $k_{i} \leq x_{i}$ and $A_{n}^{k i}=k_{i}!C_{n}^{k i}=k_{i}!\binom{n}{k_{i}}$

Proof: Let us consider:
$A_{\left(x_{1}+x_{2}+\ldots+x_{m}\right)}^{n}=\left(x_{1}+x_{2}+\ldots+x_{m}\right)\left(x_{1}+x_{2}+\ldots+x_{m}-1\right) \ldots\left(x_{1}+x_{2}+\ldots+x_{m}-n+1\right)$
Using the distributives property without resuming the number on the right side of the equation, it follows that for any natural numbers x_{i} we have :
$A_{\left(x_{1}+x_{2}+\ldots+x_{m}\right)}^{n}=\sum_{\sum_{i=1}^{m} k_{i}=n} C_{n}^{k_{1}, k_{2}, \ldots . k_{m}} A_{x_{1}}^{k_{1}} A_{x_{2}}^{k_{2}} \ldots . . A_{x_{m}}^{k_{m}}$
Where $C_{n}^{k_{1}, k_{2}, \ldots . k_{m}}$ are positive integers and x_{i} are non-negative integer's satisfying $\sum_{i=1}^{m} k_{i}=n$. We just need to show that.
$C_{n}^{k_{1}, k_{2}, \ldots . k_{m}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}$

We have $n \geq x_{i}$ for $i=1,2, \ldots ., m$ Let's put:
$P_{i}(j)=\frac{x_{i}^{j}}{x_{1}+x_{2}+\ldots+x_{m}-j+1}$

Where $x_{i}^{j} \mathrm{i}$ is the remaining number of the balls numbered i before the $\mathrm{j}^{\text {th }}$ draw. $0 \leq p_{i}(j) \leq 1$ substituting (2.3) in (1.3) we obtain
$A_{\left(x_{1}+x_{2}+\ldots+x_{m}\right)}^{n}=\sum_{\sum_{i=1}^{m} k_{i}^{k_{i}=n}} \frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} A_{x_{1}}^{k_{1}} A_{x_{2}}^{k_{2}} \ldots A_{x_{m}}^{k m}$
finally the subtraction of (2.4) from (2.1) gives:
$\sum_{\sum_{i=1}^{m} k_{i}=n}\left(C_{n}^{k_{1}, k_{2}, \ldots . k_{m}}-\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}\right) A_{x_{1}}^{k_{1}} A_{x_{2}}^{k_{2}} \ldots A_{x_{m}}^{k m}=0$
$A_{x i}^{k_{i}} \geq 0$ since (2.5) is a zero polynomial in m variables, (2.2) follows and the proof is complete.

REFERENCES

1. A Dekpe. Mutinomial development. 2023;1-18.
2. D Dacunha-Castelle, M Duflo. Exercise de probalites et statistiques. Masson, Paris. 1982;1.
3. A Rosalsky. A simple and probabilistic proof of the
binomial theorem. Amer statist. 2007;61(2):161-62.
4. K K Kataria. A Probabilistic proof of the multinomial. Amer Math Monthly. 2016;123(1):94-96
5. K K Kataria. Some Probabilistic interpretation of the multinomial theorem. Math Mag. 2017;90(3):224-24
6. S Abbas. Multinomial theorem Procured from Partial differential equation. Appl Math E-notes. 2022;22:457-59

[^0]: Independent Researcher, Togo
 Correspondence: Atsu dekpe, Independent Researcher, Togo, e-mail: estatchala@gmail.com
 Received: May 3, 2023, Manuscript No. puljpam-23-6397, Editor Assigned: May 8, 2023, Pre-QC No. puljpam-23-6397(PQ), Reviewed: May 11, 2023, QC No. puljpam-23-6397(Q), Revised: May 15, 2023, Manuscript No. puljpam-23-6397(R), Published: May 31, 2023, DOI:-10.37532/2752-8081.23.7(3).202-203.

 This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

