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RESEARCH

A probabilistic proof of the multinomial theorem following the 
number p

nA

Atsu Dekpe 

INTRODUCTION 

he following multinomial theorem based on number 
p
n

(development based on a power of a number) is an important 
result with many applications in mathematics statistics and 
computations. The theorem states as follows: 

Theorem 1 

 Let n and m be non-zero natural numbers, 1 2, , ..., mx x x real 

numbers: 
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where ki are natural integers. 

For readers interested, they can see reference for further 
interpretation [1]. Recently, we have published another type of 

multinomial theorem based on numbers
p

An and given some 

applications in the case of binomials [2]. (see [1] for more details). In 
each case, the first demonstrations are based on a proof by induction 
using the binomial formula. A. Rosalsky proposed a probabilistic 
approach to this proof in the case of binomials which will be 
generalized to the multinomial theorem by Kuldeep Kumar Kataria 

[3-4]. An urn contains 1x balls numbered 1, 2x balls numbered 2, 

mx balls numbered m, such that the total number of balls is 

1
.

m

i
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N x


 Consider an experiment where we draw a ball from the

urn without replacement, and note the number on it each time. By 
repeating this experiment n times [5-6]. The probability mass function 

of the variables 1 2, , ..., mX X X is: 
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Where, 
1
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N k n
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  and 
k j
iP the probability of having the balls 

numbered ji k times. 

From (1.2) we have: 
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Next, we will establish and prove the multinomial theorem following 

the number
p

An . 
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ABSTRACT 
In this note, we give an alternate proof of the multinomial 

theorem following the number  using probabilistic approach. 

Although the multinomial theorem following the number is a 

combinatorial result, our proof may be simple for a student familiar with only 
basic probability concepts.  
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Theorem 2 

Let m and n be two non-zero natural numbers and 1 2, ,..., mx x x

natural numbers. Then, 
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Where ik  are non-negative integers, i ik x and 
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Proof: Let us consider: 

Using the distributives property without resuming the number on the 

right side of the equation, it follows that for any natural numbers 

we have : 

(2.1) 

Where 
, ,....1 2k k km

nC are positive integers and are non-negative 

integer’s satisfying 
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We have in x for 1, 2, ....,i m Let’s put:

 (2.3) 

Where
j

ix i is the remaining number of the balls numbered i before 

the jth draw. substituting (2.3) in (1.3) we obtain 

finally the subtraction of (2.4) from (2.1) gives: 

0
ki
xiA  since (2.5) is a zero polynomial in m variables, (2.2) follows 

and the proof is complete. 
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