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ABSTRACT

In this note, we give an alternate proof of the multinomial

theorem following the number 4 f; using probabilistic approach.

. . . P
Although the multinomial theorem following the number 4, is a

combinatorial result, our proof may be simple for a student familiar with only

basic probability concepts.
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INTRODUCTION

he following multinomial theorem based on number »”
(development based on a power of a number) is an important
result with many applications in mathematics statistics and

computations. The theorem states as follows:

Theorem 1
Let n and m be nonzero natural numbers, XXy X real

numbers:

n! K ok dm (11)
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where k; are natural integers.

For readers interested, they can see reference for further

interpretation [1]. Recently, we have published another type of

. . P .
multinomial theorem based on numbers 4, and given some

applications in the case of binomials [2]. (see [1] for more details). In
each case, the first demonstrations are based on a proof by induction
using the binomial formula. A. Rosalsky proposed a probabilistic
approach to this proof in the case of binomials which will be

generalized to the multinomial theorem by Kuldeep Kumar Kataria

[3-4]. An urn contains x| balls numbered 1, X, balls numbered 2,

x, balls numbered m, such that the total number of balls is

m

N=2_x. Consider an experiment where we draw a ball from the

iz
urn without replacement, and note the number on it each time. By

repeating this experiment n times [5-6]. The probability mass function

of the variables XX, X st

m ki

E./
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(1.2)

Where, N:Zk,:n and Ekj the probability of having the balls

i=1

numbered i k, times.

From (1.2) we have:

.
- Y affl (1.3)

i= k!
k=0 7 kj!

Next, we will establish and prove the multinomial theorem following

P
L -

the number 4
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Theorem 2

Let m and n be two non-zero natural numbers and x,x

5 e X

natural numbers. Then,

An n! ko ko km
(X5 X2 50005 Xy ) S Yy, U2 Xm
Where k, are non-negative integers, k,<x, and

Proof: Let us consider:

n

Fotx, )(x] + X, . +xm—1).“(x] + X, . +xm—n+1)

2 2

):(xl+x )

(X +X +..4+ X
Using the distributives property without resuming the number on the
right side of the equation, it follows that for any natural numbers x,

we have :

n _ K, koo km p KL AK2 pKm
A(X1+X2+---+Xm)72m%7ncn " A A A 2.1
=14 =

L) .. . .
Where C, are positive integers and ¥; are non-negative

m
integer’s satisfying Z k; =n. We just need to show that.

i=1

ks ke Ky n!

" Tk Lk, 2.2)

We have n > x, for i=1,2,...m Let’s put:

x/
1

X +Xy +o X,

}?(1): *jJrl (23)
Where xij i is the remaining number of the balls numbered i before
the j" draw.0< p, (i) <1substituting (2.3) in (1.3) we obtain

n n! ki ko km
- LI (2.4)
O Xg i) oy S8 gLk {002

finally the subtraction of (2.4) from (2.1) gives:

Nt aAR A" o (2.5)

- X1 X: X
Ky tho ok 108 02 ™

Az >0 since (2.5) is a zero polynomial in m variables, (2.2) follows

and the proof is complete.
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