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ABSTRACT
In 1937, German mathematician L. Collatz proposed the following
conjecture: for any positive integer, if it is even, divide it by 2, if it

is odd, multiply it by 3 and add 1 to get an even number.

Continuing with the above rule, the final result will be 1. This paper

gives a proof of this conjecture.
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INTRODUCTION

n 1937, German mathematician L. Collatz proposed the following
Iconjecture that for a definite positive integer p, if p is even, divide

it by 2,if p is odd, multiply it by 3 and add 1 to get an even
number. Continuing with the above rule, the final result will be 1.

Collatz conjecture has been studied by many people and has long
been regarded as an unsolved problem [1-3]. This paper gives a proof
of this conjecture.

Preliminaries

Definition 2.1:

Starting from a positive integer p, the process with the rule in
introduction is called a Collatz sequence. p is said to be successful if 1
is finally obtained. Otherwise, p is not successful.

Remark:

Any positive integer p can be written as that p = 22m-1),where m is a
positive integer and k is a positive integer or 0. When k > 0, p is even,
and when k = 0, p=2m-1 is odd. If any odd number is successful, then
since the even number p = 2%Q2m-1) is divided by 2 k times to get the
odd number 2m-1, the even number p = 252m-1) is also successful.

In other words, to prove that Collatz conjecture holds, it is sufficient
to show that any odd number is successful.

In this paper, the following discussion focuses on the Collatz
sequence for odd numbers, and the even numbers in the Collatz
sequence are omitted.

Example: For a positive integer p = 44, its Collatz sequence is that 44,
22,11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8,4, 2, 1, 4, 2,1,

By removing all even numbers, it becomes that 11, 17, 13, 5,
1,1...We will omit the duplicate odd number 1 later on. It becomes
that 11, 17, 13, 5, 1. That is, the odd number 11 is successful. This
implies that odd 17, odd 13, odd 5, odd 1 are all successful. This also

implies that even 2%, even 2 x 5, even 2% x 13, even 2% x 17, even 2*
x 11 are all successful, where k=1, 2, 3, ...

Definition 2.2:

A sequence obtained by omitting all even numbers in a Collatz
sequence starting with an odd number p is called a Collatz odd
sequence. p is said to be successful if 1 is finally obtained. Otherwise,
p is not successful.

Remark:
Obviously, whether an odd number p is successful, and Definition
2.1 and Definition 2.2 are equivalent

Definition 2.3:

For two odd numbers p and q in a Collatz odd sequence, if 3p + 1=
2% q ,where k > 0 is a positive integer, then p is said to be a front odd
number of q ,and q is said to be a back odd number of p.

In the previous example, because 11 x 3 + 1 = 17 x 2, where k = 1, so
11 is a front odd number of 17, and 17 is a back odd number of 11.
Similarly, because 17 x 3 + 1 = 13 x 22 where k = 2, so 17 is a front
odd number of 13, 13 is a back odd number of 17, etc.

Theorem 2.1:

If p is a front odd number of q, then 4p+1 is also a front odd number
of q. Further if 3p+1 = 2*%q, where k > 0 is a positive integer, then
3(dp+1)+1 = 257

Proof:

Since p is a front odd number of q, there exists a positive integer k >
0, such that 3p+1 = 25q. So 3(4p+1)+1 = 12p+4 = 4(3p+1) = 4 x 2 5=
2%2q. QED

Consider the sequence {an}ai ,az ,..., an ,...,where a; is an odd number,
and an = 4an1 + I,n=2,34,....

Corollary 2.2:
For the above sequence {an}, if the odd number a; is a front odd

number of the odd number p, then each term in the sequence f{a.} is a
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Qingxue

front odd number of p. Further if 3a; + 1 = 2%p, then 3a, + 1 = 22
Dy, 3an + 1= 2550 where n = 2,3 4,....

Proof:

This is a direct corollary of Theorem 2.1.

QED

Theorem 2.3:

For any odd number p, there is a back odd number g, and q is the
unique back odd number of p.

Proof:
According to the rule of generating a Collatz odd sequence, it is
immediate. QED

Theorem 2.4:
In a Collatz odd sequence, if p is a front odd number of p, (of course,
p is also a back odd number of p). Then it is only case that p = 1.

Proof:
Since p is a front odd number of p, there exists a positive integer k >
0, such that 3p+1 = 2%p. So 2*p -3p = p(2¥-3) = 1,where p is odd.

Case 1: k = 1. Then p(2-3) = -p = 1, which cannot be true.
Case 2: k > 1. Then 2" -3 is a positive integer, and p(2*-3) = 1. This
equation can be true, only if p = 1 and k = 2. QED

Bijections between odd subsets and sequence sets

This paragraph gives two classification methods of the odd number
set, and gives a classification of sequence sets of the odd number set,
and gives a bijection between odd subsets and sequence sets.

The odd number set can be divided into three subsets {4n-1|n = 1, 2,
3, ..}, {4n+1Inis 0 or even}= {8n+1In =0, 1, 2, 3, ...}, {4n+1In is odd}.
They are disjoint with each other.

Definition 3.1:
Write A ={4n-1In = 1,2,3,...},B ={4n+1In is O or even}= {8n+1|n =
0,1,2,3,..},C ={4n+1|n is odd}.

Definition 3.2:
(1)Write Si= {{an}lai€ A, and a. = 4an1+1,n = 2,3,4,...},where {a.} is a
sequence with the first term a1 € A, and a, = 4an1+1,n = 2,3 4,....

(2)Write S; = {{an}lai€ B, and a, = 4ani*+1,n = 2,3,4,...},where {a.} is a
sequence with the first term ai1€ B, and a. = 4an1+1,n=2,3,4,....

Examples: The first two sequences in S are the following {a.} and

{ba}, where {an }:3,13,53,..., (a1 = 3); {bx }:7,29,117,..., (b1 = 7).

The first two sequences in S; are the following {a.} and {b.}, where

{an }:1,5,21,85,..., (a1 = 1); {bn }:9,37,149,..., (b1 = 9).

Theorem 3.1:

All terms (odd numbers) in all sequences of S; and S; contain all
odd numbers. And each odd number must be in the only one of
these sequences.

Proof:

Note that all odd numbers can be divided into three subsets A, B, C.
Any odd number in A can be the first term a; of some definite
sequence {a.}in Si.Similarly,any odd number in B can be the first
term a1 of some definite sequence {an}in Sz. So it is enough to prove
that all terms of all sequences in Siand S; contain any odd number
with the form 4n+1 (n is odd) in C, and that any odd number in C
must be in the only one of these sequences.

Let p = 4n; + 1 € C, that is any definite odd number in C, where n:
is a definite odd number. But all odd numbers can be divided into
three subsets A, B, C.

Case 1: If n1 € A, then n; is the first term a; of some definite
sequence {an} in S1.By the construction of the sequence {a.} in Si, p =
4n; + 1 is the second term a; of this definite sequence f{a.} in
S1.Similarly, if n1 € B, then p = 4n1 + 1 is the second term a; of some
definite sequence {an} in Ss.

Case 2: If n1 € C, then there exists a definite odd number nz, such
that n1 = 4n; + 1. If n; € A (or € B), then according to Case 1, n; =
4n; + 1 is the second term a; of some definite sequence {a,}in Si (or
S2), and p = 4n1 + 1 is the third term a3 of this definite sequence
{an}in Si(or S2).

Case 3: If n, € C, then we are back to the beginning of case 2.
Continuing, since p = 4ni + 1 is a definite odd number in C, and the
odd number 1 € B and 3 € A ,Case 2 cannot occur indefinitely. So,
after finitely many case 2, we can always get some ni , so that ni1 =
4ni+ 1, 01> n2 > ... > ni, nyyny,...,nkl€ C and nk € A (or € B), where
ni is the first term a1 of some definite sequence {as}in Si(or S2) ;i1 is
the 2nd term a; of the sequence ,...,n1 is the kth term ax and p = 4n: +
1 is the k+1st term aw1 of the definite sequence {an}in Si (or S2). QED

Note that all odd numbers can again be divided into three subsets :
{6n-3| n=1,2,3,..}, {6n-1| n=1,2,3,..}, {6bn+1| n =0,1,2,3,...}.

Definition 3.3: Write D = {6n-1] n = 1,2,3..}E = {6n+1| n =
0,1,2,3,..},and F ={6n-3| n = 1,2,3,...}. Since 6n-3 is divisible by 3,an

odd number in F is also called a triple odd number.

Lemma 3.2:
The odd number 4n-1 in A is a front odd number of the odd
number 6n-1 in D, or 6n-1 is the back odd number of 4n-1, where n
=1,2,3,..

Proof:

Since 3(4n-1) + 1 = 2(6n-1), the result holds.

QED

Note that B = {4n+1|n is O or even} = {8n+1|n = 0,1,2,3,...}.

The odd number 8n+1 in B is a front odd number of the odd
number 6n+1 in E, or 6n+1 is the back odd number of 8n+1, where
n=0,1,23,..

Proof:

Since 3(8n+1) + 1 = 2%(6n+1), the result holds.

QED

Lemma 3.4:

The triple odd number 6n-3 in F cannot be a back odd number of
any odd number, where n = 1, 2, 3,....

Proof:

Suppose that 6n-3 is a back odd number of some odd number p= 2m
1.Then 3Q2m-1)+1 = 2%6n-3) holds for some positive integer k. Att
his point, the right side 2%6n-3) of the equation is divisible by 3,w
hile the left side 3(2m-1)+1 of the equation is not divisible by 3.C
ontradiction.QED

Theorem 3.5:
There exists a bijection fi: fi (D) =S, such that for any 6k-1 €
D,f1(6k-1) = {an} = {anlai = 4k-l,an= 4an1+1 ,;n = 2,34,.}J€ Si )k =
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1,2,3,..., where all front numbers of 6k-1 are exactly all terms of the
sequence {asJ,and 3a, + 1 = 22(6k-1) (n = 1,2,3,...);conversely, all
terms of the sequence {a.} have the unique back number 6k-1.

Proof:

By Lemma 3.2,for a definite positive integer k, the first term 4k-1 of
the sequence f{a.} is a front odd number of the odd number 6k-1.
Then by Corollary 2.2, each term of {an} is a front odd number of 6k-
1, and 3a, + 1 = 22(6k-1) (n = 1, 2, 3,...). We prove that any front
odd numbers of 6k-1 is contained in this sequence {a).

If an odd number p is not in {a.}, then by theorem 3.1,p is a term of
some other sequence {bn}. We prove that p cannot be a front odd
number of 6k-1.

Case 1: {ba}€ Si.Then the first term of {ba} is bi,and bi = 4s-1,where s
is a definite positive integer with s # k. As above, each term of {b.} is
a front odd number of 6s-1. So, p is also a front odd number of 6s-
1.By Theorem 2.3,6s-1 is the unique back odd number of p. Since s
# k,6k-1 cannot be a back odd number of p. In other words, p
cannot be a front odd number of 6k-1.

Case 2: {bnJ€ S2.Then b = 8s+1,where s is O or a definite positive
integer. Then by Lemma 3.3,b1 = 8s+1 is a front odd number of
6s+1.Then by Corollary 2.2, each term of {ba} is a front odd number
of 6s+1.S0,p is also a front odd number of 6s+1.Since D N E = @,6k-
1 € D and 6s+1 € E,6k-1 # 6s+1.By Theorem 2.3, 6k-1 cannot be a
back odd number of p. In other words, p cannot be a front odd

number of 6k-1.

Therefore, any front odd numbers of 6k-1 is contained in this
sequence {an}). So, for any odd number 6k-1 in D,f1(6k-1) = {aslai =
4k-1,an= 4an1+1,n=2,34,..} where k = 1,2,3,....

Conversely, by Theorem 2.3, for any sequence {a.} = {aslai = 4k-1,an =
4an1 +1,n = 2,3,4,..} in Siall terms of the sequence {a.} have the
unique back odd number 6k-1.S0,f'({aslar = 4k-1,an = 4an; +1
n=234,..}) = 6k-1,where k= 1,2,3,....

To sum up, we obtain that f1(D) = Siis a bijection.

QED

Examples: Take k = 1,f1(5) = {as}:3,13,53,213,.... Each term of {a.} is a
front odd number of 5 € D. Take k = 2, f1(11) = {a.}:7,29,117,4609,....
Each term of {an} is a front odd number of 11 € D. etc.

Theorem 3.6:

There exists a bijection f2: f2 (E) = Ss, such that for any 6k+1 €
E,f26k+1) = {a.} = {anlai = 8k+1,a, = 4an1 +1 n=2,34,..}J€ S, k =
1,2,3,..., where all front numbers of 6k+1 are exactly all terms of the
sequence f{an,and 3a, + 1 = 2(6k+1) (n = 1,2,3,...);conversely, all
terms of the sequence {a.} have the unique back number 6k+1.

Proof:

Following the method proved in Theorem 3.5, the result holds.

QED

Examples: Take k = 0, f2(1) = {a):1,5,21,85,....Each term of {an} is a
front odd number of 1 € E. Take k = 1, fu«7) =
{an):9,37,149,597,....Each term of {a.} is a front odd number of 7 € E.

etc.

Corollary 3.7: There exists a bijection f: f (D UE) =SiUS;,

where if an odd number p € D, then define f(p) = fi(p),and if p € E,
then define f(p) = fa(p).

Proof:
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Since DN E =0, and SiNS; = @, by Theorem 3.5 and Theorem 3.6,
it is immediate. QED

Successful Odd Sequence Set H

This paragraph gives such an odd sequence set H that an odd number
p is successful, if and only if p is in a sequence of H.

Theorem 4.1:

Let p be an odd number and q = 4p+1. Then

(1) if p € E, then q € D;
(2)ifpeD,thenq€F;
(3)if p €F, then q € E.

Proof:

(1) Since p € E, let p = 6k+1, where k is 0 or a definite
positive integer. Then q = 4p+1 = 4(6k+1)+1 = 24k+5 =
6(4k+1)-1,s0 q € D.

(2) Since p € D, let p = 6k-1,where k is a definite positive
integer. Then q = 4p+1 = 4(6k-1)+1 = 24k-3 = 6(4k)-3, so
q€eF.

(3) Since p € F, let p = 6k-3, where k is a definite positivei
nteger. Then q = 4p+1 = 4(6k-3)+1 = 24k-11= 6(4k-2)+1, s
oq€E. QED

Remarks: For a sequence {a.} € Si, a1 = 4k-1 € A. And all odd
numbers in A are {4k-1}:3, 7, 11, 15, 19, 23, ...; where 3, 15, ... € F,
and 7,19, ... €E,and 11, 23, . ...€ D.

For a sequence {a.}€ Sy, a1 = 8k+1 € B. And all odd numbers in B are
{8k+1}1, 9, 17, 25, 33, 41 ,...; where 9, 33,...€ F, and 1, 25,...€ E, and
17,41, ...e D.

That is, the first term a; can be any one in three odd subsets D, E, F,
whether the sequence {a,} € Si or {a,JE S; .

Let {an} € Si or {an} € S,

(1) if a1 € E, then as2 € E,as1 € D,as € F, where k= 1,2,3,..;
(2) if a1 € F, then a3z € Fas € E,ask € D, where k= 1,2,3,..;
(3) if a1 € D, then asw2 € D,asi1 € Fyasc € E, where k= 1,2,3,....

Proof:

This is a direct corollary of Theorem 4.1.

QED

According to Theorem 4.2, any term of a sequence f{an} in S or S; can
belong to any one in three odd subsets D,E,F.

Collatz sequences now under discussion are Collatz odd sequences,
so the following definition is given.

Definition 4.1:

If px ,pxt ,...,p1,1 is a Collatz odd sequence with k odd numbers other
than 1, then we say that px is k steps successful; and it is specified that
the odd number 1 is O step successful.

Example: 11,17, 13,5, 1is a Collatz odd sequence given in
Preliminaries. Then we have: odd 5 is 1 step successful, 13 is 2 step
s successful, 17 is 3 steps successful, and 11 is 4 steps successful.S
pecially,1 is O step successful.
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Corollary 4.3:
If p is a front odd number of q ,p # 1 and q is k steps successful, then
p is k+1 steps successful. Specially, p = 1 is O step successful.

Proof:

This is a direct consequence of Definition 4.1.

QED

Note that in the following,f1,f2 and f are the three bijections given i

n Theorem 3.5, Theorem 3.6 and Corollary 3.7,where f D) = f
1 (D) = Siand f (E) = f2 (E) = S.For simplicity, if R isa
sequence set, a sequence {an} € R, and a€ {an} is a term of {an},then

write a; € R. If i € R and a; € D, then write 3,€ R N D, etc.

In the following, by a recursive method, we construct such a sequence
set H that an odd number p is successful, if and only if p is in a
sequence of H.

By Theorem 3.6 and Corollary 3.7,since 1 € E, f(1) = f1) =
{an):1,5,21,85,341,...€ S,.

Write Hi ={f(1)} = {f:(1)}={{an}:1,5,21,85,341,...},where Hi is a

sequence set, and there is exactly one sequence in Hi.

In this sequence of Hi , since a; = 1 € E, by Theorem 4.2,a312 € E, a3
€ D,as € F, where k = 1,2,3,....By Lemma 3.4, asc(€ F) has no front
odd number, where k = 1,2,3,.... By Theorem 3.5,for a definite as.1 (€
D),there is the unique odd sequence {b.}€ Si such that fi(asei) =
{bn},where k = 1,2,3,...,and each term of {b.} is a front odd number of
ask1. By Theorem 3.6,for a definite asi2 (€ E),there is the unique odd
sequence {c.}€E S such that fa(ask2) = {ca},where k = 1,2,3,....and each
term of {ca} is a front odd number of asia.

Write H2= {fi(p)| p € HiN D} U {f2(p)| p € HiN E and p # 1 }Note
that (HiN D)u (Hi N E) = HiN (D U E. By Corollary 3.7,Hz = {f(p)|
p € HiN (D U E and p # 1}.(Note that the removal of f(1) = f2(1) in
H; is to prevent the sequence that appeared in H; from reappearing
in Hy.)

Write Hs = {f1(p)| p€ H:N D} U {fo(p)| p EH2NE}={f(p)| pE H:
N (DU E).

Assume that the sequence set Hy has been formed.

Write Ho ={f(p)| p € H.N (D U E)}.

Now the sequence sets Hi, Hz, Hs, ...,Hu,... have been constructed.
Write H = Up-q Ha.

Remark:

To get an intuitive sense of the composition of the set H, several
sequences in Hi,H2and Hs are given here according to Theorem 3.5
and Theorem 3.6.

The unique sequence in H is  f(I) = fA) =
{an}:1,5,21,85,341,1365,....

Note that H2= {fi(p)| p € HiN D} U {fo(p)| p € HiN E and p = 1}.
In the sequence {a.} of Hi,a3 = 21 a6 = 1365,... (€ F) have no front
odd number. Since p =5,341€ Hi N D, by Theorem 3.5,f1(5) =
{bn}:3,13,53,...€ H3,f1(341) = {b.}:227,909,3637,...€ H:.And since p =
8 € Hi N E and p = 85 # 1by Theorem 3.6,f285)=
{bn}:113,453,1813,...€ H,. And so on.

And see H3.Hs = {fi(p)| p € H:N D} U {f2(p)| p € H2N E }.Because
F1(5) = {bn}:3,13,53,...€ H;, where 3 (€ F) has no front odd number,13

4

€ H; N E, and 53 € H, N D, so, by Theorem 3.6, f2(13) = {ca}:
17,69,277,...€ Hsand by Theorem 3.5,f1(53) = {ca}: 35,141,565,...€
Hs.Because f1(341) = {b.}:227,909,3637,...€ H, where 909 (€ F) has
no front odd number, 227 € H: N D, and 3637 € H: N E, so, by
Theorem 3.5,1(227) = {ca}: 151,605,2401,...€ Hs, and by Theorem
3.6,f23637) = {ca}: 4849,19397,77589,..€ Hs.Because f2(85)=
{bn}:113,453, 1813,...€ Hzwhere 453 (€ F) has no front odd
number,113 € H; N D, and 1813 € H, N E, so, by Theorem 3.5,
F1(113) = {ca}: 75,301,1205,...€ Hs,and by Theorem 3.6,f2(1813) =
{co): 2417,9669,38677,... € H3.And so on.

Theorem 4.4:

(1)  There are no identical sequences in all sequences of H
= Unp=1 Ha.And no two different sequences in them have
the same term.

(2) All terms of any sequence in H. are n steps successful,
where n =1, 2, 3, ..., except for the odd number 1 in Hi.

(3) Ifan odd number p is successful, then p must be in some
sequence of the sequence set H.

Proof:

(1)Induction. Because Hi = {f(1)} and H:= (f(p)| pE HHN (DUE) a
ndp = 1},s0 HiU Hx = {f(p)| pE HIN(D VE) ).

Because Hi= {f(1)} is a sequence set = {{an}:1,5,21,85,341,1365,...},and

it has not the same term, so, there is no same odd number in Hi N (D
U E) . Since f is a bijection, all sequences in Hi U H; are not

identical to each other. Then since HiU H: € SiU S;, by Theorem
3.1,n0 two different sequences in Hi U H; have the same term.

Consider Hs = {f(p)| p € H2N (D U E)}.Then HiUHUH;s={f(p)| p €
HiN(D U E) JU{f(p)| p € HaN (D U B)} = {f(p)| p € (HiUH,
)N(DUE)}.Since no two different sequences in Hi U H; have the same
term, there is not the same odd number in (HiUH2)N(DUE).Since f
is a bijection, all sequences in HiUH,UH3 are not identical to each
other. By Theorem 3.1, no two different sequences in HiUH,UH;
have the same term.

Suppose all sequences in U}, H« are different from each other, and
no two different sequences have the same term.

Consider Ha1= {f(p)| p € HaN (D U E)L.Then UKL Hi={f(p)| p €
HiNM UE) W f(p)| p€ HN (D UE}U..U{f(p)| p € H.N (DU
E)} = {(f(p)| p € (UR=1 HIJN(DUE)}.By the inductive assumption, no
two different sequences in Uf=; Hx have the same term. So, there is
no same odd number in (Ug=; H)N(DUE).Since f is a bijection, all
sequences in UFE] Hy are not identical to each other. By Theorem
3.1, no two different sequences in U¥Z] Hy have the same term.

(2)Induction. First of all, all terms of the sequence in HI are the front
odd numbers of the odd number 1. By Definition 4.1,all terms of the
sequence in H1 are 1 step successful, except for the odd number 1.

Consider any sequence {as} in H2.Then Hz= {f(p)| p € HiN (D U E)
and p # 1}.So, there is a definite odd number q, such that g€ HiN (D
U E),q #* 1, and f(q) = {a.}.Note that all terms of {a.} are all front
numbers of q, and q € Hi,q # 1 is 1 step successful. By Corollary 4.3,
all terms of {a.} are 2 steps successful. Therefore, all terms of any
sequence in Hj are 2 steps successful.
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Assume that all terms of any sequence in H, are n steps successful, n =

2.

Consider any sequence {bs} in Hun+1.Then Hui1 = {f(p)| p€ Ho-N (DU E
) ). So, there is a definite odd number g, such that g€ H.N (D U E),
and f(q) = {b.}. By the inductive assumption, q € H. is n steps
successful. Note that all terms of {b.} are all front numbers of q. By
Corollary 4.3, all terms of {ba} are n+1 steps successful. Therefore, all
terms of any sequence in Ha+1 are n+1 steps successful.

(3) Firstly, the odd number p = 1 is O step successful,1 € Hi.Now let p
# 1.Since the odd number p is successful, there must exist some
positive integer n, such that p is n steps successful. It is enough to
prove that p must be in some sequence of Ha.

Induction. Look at n = 1.Let p be 1 step successful. Then p # 1.And let
Collatz odd sequence of p be p,1. Then p is a front odd number of 1.
Note that H ={f(1)} = {{an}:1,5,21, 85,341,...},and f is a bijection, so, all
front odd numbers of 1 belong to Hi.So,p € Hi.

Look at n = 2.Let p be 2 steps successful. And let Collatz odd sequence
of p be p ,pi,1. Then the odd number piis 1 step successful, and p1 #
1.As above,pi € Hi and p1 # 1.Because pi has the front odd number p,

sopr€EDUE, and pi€ HiN (D U E) and pi1 # 1. Note that H; =

{f@] g € HiIN (DU E) and q = 1},then f(p1) € Hywhere f(p1) is a
sequence of H2.And f(p1) contain all front odd numbers of pi,and p is
a front odd number of p1.So,p €f(p1)€ Ha.

Assume that the result holds for n = k, that is, if the odd number p is k
steps successful, then p € Hi.

Now let n = k+1, that is, the odd number p is k+1 steps successful. And
let Collatz odd sequence of the odd number p be p ,pk ,pet ,...,p1 ,1.
Then the odd number pris k steps successful. By inductive assumption,
px € Hi. Because px has the front odd number p,so pk€ D U E,and pr €

HiN (D U E) . Note that Hier = {f(q)] q € HiN (D U E) }then f(p)

€ Hi1, where f(pi) is a sequence of Hi-1.And f(px) contain all front odd
numbers of px,and p is a front odd number of px. So, p €f(px)€ His1.

Possibility of not successful odd sequence set

Remark:

From Theorem 4.4, it follows that every term of every sequence in H =
Up=1 Huis successful, and every odd number that is successful must be
in one of these sequences of H. Therefore, to prove that all odd
numbers are successful, it is sufficient to show that every odd number is
in one of these sequences of H.

Lemma 5.1:

(1) If pisa front odd number of g, and the odd number q is
not successful, then the odd number p is also not
successful.

(2) Ifris a back odd number of g, and the odd number q is
not successful, then the odd number r is also not
successful.

Proof:

(1)  First, since q is not successful, q # 1. Assume that the odd
number p is successful, then there exists a positive integer k,
such that p is k steps successful. And by Theorem 2.3, q is
the unique back odd number of p. Then, by Definition 4.1,
k> 1, and q is k-1 steps successful. Contradiction.

(2) Assume that the odd number r is successful, then there
exists a positive integer m, such that r is m steps successful,

J Pure Appl Math Vol 7 No 6 Nov 2023

A proof of collatz conjecture

so q is m+1 steps successful. Contradiction.

QED

By Theorem 3.1, any odd number is a term of only one sequence in S

U S
Lemma 5.2:

If an odd number p is not successful, and p is a term of some sequence
{an} in S1U Sy,then all terms of {a.} are not successful.

Proof:

From Theorem 4.4, it follows that all odd numbers in the sequence set
H are successful. Since the odd number p is not successful, p is not in
H. And the odd number p is a term in some sequence {an}.Since H ist
he sequence set , that sequence {a.} is also not in H. In the otherw
ords, all terms of {a.} are not in H. By Theorem 4.4, all terms of {a.}ar

e not successful. QED

Remarks:

(DIn a Collatz odd sequence, if there is a situation like qi,qz,...,qx,q1,
where q1,q2,...,qx are different from each other, and the odd number q;
recurring, then we call these k odd numbers to form a k-cycle. In fact, it
is impossible to have such a k-cycle in a successful Collatz odd
sequence. Because there must be a positive integer s for a successful
odd number q1,50 that qi is s steps successful, so, there is a Collatz odd
sequence qi,ps1,Ps2y---,p1, L. Assume q1 is in a k-cycle q1,qz,...,qx,q1. Then
qi has a Collatz odd sequence qi,q2,...,qr,Pr,Petye-,p1, 1,where q2 = ps
Ley@r = P, 1 =1 =k, 1 is a definite integer. Then g has 2 back odd
numbers qr+1and p,, where if r = k, then qr+1= g1 = qi,and if r = 1,then
pe = ps1.By Theorem 2.3,this is impossible.

(2)Assuming that p: is not successful, and p: is in a kcycle
PL,DP2--- PPt Then by Theorem 2.3,Collatz odd sequence of these k
odd numbers is the k-cycle, and any one of these k odd numbers can
not appear in other jcycle. And these k odd numbers are not
successful.

(3)Let p be a front odd number of q. Then there exists a positive
integer i, such that 3p+1 = 2'q.If i = 1, then q = BGp+1)/2 > p. If i =
2,then q = (3p+1)/2' < p. Note that any odd number is a term of some
sequence in S1U S2.By Theorem 3.5,for any sequence {an} = {anlai= 4k-
lan= 4ani+1 ,n=2,34,.)€ Si,3a, + 1 = 22(6k1) (n = 1,2,3,...),where
any term of {an} is a front odd number of 6k-1.And when n =1,that is, i
=2n-1 =1,6k-1>ai.When n 2 2,that is, i = 2n-1 2 3,6k-1 < a.. And by
Theorem 3.6,for any sequence f{a.} = {anlai = 8k+l,an = 4an1 +1
n=2,3,4,..J€ Sy,3a, + 1 = 22%(6k+1) (n = 1,2,3,...),where any term of {a}
is a front odd number of 6k+1.When n = 1,2,3,...,that is, i = 2n =
2,6k+1 < a,.

Lemma 5.3:
(I)There are no 2-cycles in Collatz odd sequences.
(2)There are no 3-cycles in Collatz odd sequences.

Proof:

(I)Suppose that there is a 2-cycle qi, qz, q1 in Collatz odd sequences.
Let q1 < q2.Because qi is a front odd number of qz,s0 there is a positive
integer i, such that 3qi+1 = 2'q2.By Remark(3) above, i = 1,that is,3qi+1
= 2q2.And because q; is a front odd number of qi,s0 there is a positive
integer j, such that 3q2+1 = 2'qu,i.e,(3q2+1)/2' = q1.By Remark(3) above,
since q2 > qi,j 2 2.But Gqi+1)/2 = qa.When j = 2,3q+1)/2
=3(Bqi+1)/2)+1)/2* = (9q1+5)/8 > qi.When j = 3,3q:*+1)/2 =
(B(Bqi+1)/2)+1)/2° = 9qi+5)/16 < qi. That is to say, 3q2+1)/2 #
q1-So, there are no 2-cycles in Collatz odd sequences.

(2)And suppose that there is a 3-cycle qi, q2, @3, qi in Collatz odd
sequences. Let qi < qzand qi < g3.The following are divided into two
cases.

5



Qingxue

Case 1 :

q2> qs.Since qi1 < qz,and qi is a front odd number of qz,by Remark(3)
above,3qi+1 = 2qu,i.e,(3q1+1)/2 = q2.Since q2> q3,and qz is a front odd
number of q3,3qu+1 = 2'qs,i.e,(3qu+1)/2" = qs,where i = 2.Since q3>
quand s is a front odd number of qi,3qs+1 = 2qu,i.e,3qs+1)/2 =
quwhere j 2 2.But 3qs+1)/2'S (3qs+1)/27= 3((3qa+1)/2)+1)/2* =(3(
(Bqe+1)/2)+1)/2% = Oq*7)/16 = (HBqi+1)/2)+7)/16 = 27q1+23)/32
< q1.(Note that because small odd numbers must be successful, and odd
numbers in k-cycle are all not successful, so, we can set qi > 99.) That
is to say,(3qs+1)/2' # qi. Contradiction.

Case 2 :

q2 < @3.Since qi < qzand qi is a front odd number of q2,by Remark(3)
above,3qi+1 = 2qu,i.e,(3q1+1)/2 = q2.Since q2< g3,and qz is a front odd
number of q3,3qx+1 = 2q3,i.e,(3q2+1)/2 = @3.Since @3> qi,and g3 is a
front odd number of q1,3q3*+1 = 2'qu,i.e,(3q3+1)/2' = qi,where i =2 2.But
(Bas+1)/2'= B(Bqu+1)/2)+1)/2' = (9q2+5)/2"" =(9((3qi+1)/2)+5)/2"" =
(27q1+19)/2™%, where i Z 2.And when i = 2,3q3+1)/2'= 27q1+19)/2™*
= (27qi+19)/16 > quwhen i = 3,3qs+1)/2' = 27qi+19)/2" =
(27q1+19)/32 < qi,where set qi > 99. That is to say,(3qs+1)/2" # qu.
Contradiction.

So, there are no 3-cycles in Collatz odd sequences.

QED

Remark:

The same method can be used to prove that there are no 4-cycles,5-
cycles,etc. But there are too many cases to consider, and it will not go
on. Later, in Theorem 5.5, we will prove that the k-cycle does not exist.

Remark:

Suppose that an odd number q1is not successful. Then a Collatz odd
sequence qi, qz, --.,qn,-..can be obtained, where qgi+1 is the unique back
odd number of qi,i = 1,2,3,....By Lemma 5.1,each odd number in the
Collatz odd sequence is not successful. In this point, there exist two
cases for the Collatz odd sequence qi, q2,...,Qn,-..

Case 1:
All odd numbers of the Collatz odd sequence qi, qz,...,qn,... are
different from each other.

q1,q2y-+-yqkqk+1,qke2 are different from each other, and g3 is an odd
number in q1,qz,...,qe2,such as,quss = q3.Then q3,q4y...,qu2,q3 is a k-
cycle, k = 4.(k 2 4 is because the non-existence of 2-cycle and 3-cycle
has been proved in Lemma 5.3.).

And the Collatz odd sequence qi,q2,...,qny-.. is changed to
q1,q2,03ye++sqky Qkr 1, k2,035 Qo Qe 1, k12, 3y, by Theorem 2.3 here this
k-cycle keeps appearing repeatedly. For convenience, in the following,
the Collatz  odd sequence has been replaced with
T1,12,q1,d2,d3y-sqky 1,2, 35405 Qg 1yeeee

Now, As with the construction of the sequence set H, from not
successful Collatz odd sequence qi, qz,...,qn,-., the following series Ga
of sequence sets is constructed. In the above Case 2,q1,qz,...,qn,...has
been replaced with q1,q2,q3,-+-,qk,q1,92,03 -0k q 1yee--

The following construction is unified for Case 1 and Case 2.In the
construction of Gy, for Case 2,when n = ik + m, let gn= qm, where i =

0,1,2,..m=12,.k

Firstly, we construct a sequence set Gi.

Note that each odd number in the Collatz odd sequence qi,
q2y++»qny---is Not successful, and q; is the unique back odd number of qi

Write Gui = {f(q2)} = {{an}},where {an} € S1U S,all terms of {a.} are all
front odd numbers of q2,and the odd number qiis a term of {ax}.

Write G2 = {f(p)| p € Gu N (D UVE)}.
Write Gis = {f(p)| p € G2 N (D UE)}.

Assume that the sequence set Gi, has been formed.
Write G = {f(p)| p € GinN (D UE)}L
Denote Gi = Up=q1 Gin.

And construct a sequence set G.
Note that g3 is the unique back odd number of qq.
Write Ga1= {f(q3)} = {{bn}},where the odd number q2is a term of {bn}.

Write G2 = {f(p)| p € Ga N (DU E)}.
Write Go3 = {f(p)| p € G2 N (D UE)}.

Assume that the sequence set Gz. has been formed.
Write Gone1 = {f(p)| p € Gaa N (D U E)}.

Denote G; = U?{):l Gon.

So on and so forth.

Suppose again that Gn = UpZ; G has been constructed. In the
construction of Gy, for Case 2,when n = ik + m, let gn= qm, where i =
0,1,2,...m = 1,2,... k.

At this point, Ga1 has only one sequence, denoted {c.}, and qn € {ca).qnt
is the unique back odd number of gu.

Write Gori,1 ={f(qn+2)}= {{dn}}.where the odd number ga:1is a term of
{da}

Write Gne12 = {f(p)| p € Gari,i N (D U E)}L
Write G153 = {f(p)| p € Gori, 2 N (D UV E)L

Assume that the sequence set Gu1k has been formed.
Write Gne1e1 = {f(p)| p € Guix N (DUE)}L
Denote Gni = Upzq Gusike

Now Ga has been constructed recursively, where n = 1, 2, 3,....
Remark:

For r1 and r mentioned in Case 2,because r; is a front odd number
of qi,and r1is a front odd number of r2,and q1 € Gii,s0,12 € f(q1) €

G2 and 11€ f(r2) € Gis.In other words, r1 and rzare all in Gi.

.The following Theorem 5.4 is valid for both Case 1 and Case 2.

Theorem 5.4:
(I) Any term of all sequences in the set Ga is not successful,
wheren=1,2,3,....
2) GicG; c..cGn C.., whereGiisa proper subset of
Girnyi=1,2,3,....
Proof:

(DInduction for Guk, where n = 1, 2, 3,.... Firstly, consider Ga1.Since
gn is not successful,and g» € {ca},(see Gn1.) by Lemma 5.2,any term of
the unique sequence {ca} in Gui is not successful. The result holds for
k=1.
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Consider Guz = {f(p)| p € Ga1 N (D U E)}.Let £(q) = {(bulE S1US,) be
any sequence in Gn2.Then q € Gui N (D U E),and all term of {b.} are
all front odd numbers of q. Since q € Gui,q is not successful. And by
Lemma 5.1(1), all term of {b.} are not successful. So the result holds
when k = 2.

Assume that the result holds for k = i, that is, any term of any
sequence in Gy is not successful.

Consider Gnis1= {f(p)| p € Gui N (D U E)}.Let f(q) = {d}(€ S1U Sy)
be any sequence in Gu+1. Then g € GniN (D U E), and all term of {d.}
are all front odd numbers of q. Since q € Gu, by inductive
assumption, q is not successful. And by Lemma 5.1(1), all term of {d.}
are not successful. So the result holds when k = i+1.

(2) First prove that Gi € Ga. Look back at the construction of G;. Note
that Gi1= {f(q2)} = {{an}}, where {a.} € S1U S;, and the odd number q:is
a term of {an}. Ga1= {f(q3)} = {{ba}}, where {b.} € Si U S;,and the odd
number qzis a term of {b}. G2z = {f(p)| p € G N (D U E)}. Since q:€
{bn} € Ga1, and f(q2) = {an}, (any term of {an} is a front odd numbers of
q2.)q2 € G21 N (D U E). Thus f(q2) € Gui.e, Gi1 € Gau.Because Giz =

{f®)| p € Guu N (D U E)}land Gis = {f(p)| p € G2 N (D U E)}, and

(Gt N (D UE) € (G N(D U E)), so, Gz € Gas. By analogy, it
follows that Gi3 € Gug,...,Gin € Ganet, etc.

Since Gi=Gn UG U..U G U..
G;=GuUGRU...UGWmUG1 U ...

So Gi € Gu.Obviously, Gi is a proper subset of Gi. By analogy,
G:cGs c...c G ... QED

Theorem 5.5:
Case 2 cannot exist, that is, there are no k-cycles in not successful
Collatz odd sequence.

Proof:
Firstly, for Case 2,by Theorem 5.4,G; € G; C ... € Gie1,where Gi is a
proper subset of Gi«1,i = 1,2,...,k.S0,G1 is a proper subset of Gi1,

On the other hand, consider the constructions of Gi-1 and Gi.Note
that Gie11 = {f(Qk+Z)}, where qk+2 = qz‘SO,Gbl,l = {f(qz)}.But Gu =
{f(q2)},50,Gis1,1 = Gi1.And because Gis1,2 = {f(p)| p € Gt N (D U
B} ={fp)| p€Gu N(DUE)}and Gi2={f(p)| p € Gu N (D U E)},
50,Gir12 = Gu2.By analogy,Gis1i = Gu,where i = 3,4,5,...Thus,G1 =
Upe1Gin = Up=1 Gir1n = Gier. Contradiction. Case 2 cannot exist.

Next, we just need to discuss Case 1.Consider Gi first.

Theorem 5.6:

If q1, q2,-ry Qny...is the Collatz odd sequence in the construction of
Ghn,where all odd numbers of the Collatz odd sequence are different
from each other, then

(1) q2¢ Gu,where i =1,2,3,....
(2) There are no identical sequences in the sequence set Uj2; G1i, and
no two different sequences in U2, G 1 have the same term.

Proof:

(1) Firstly,Gi1 = {f(q2)} = {an}},where all terms of {a.} are all
front odd numbers of quBecause q: is not
successfulso,q# 1, and by Theorem 2.4,q0 €
Gi1.Suppose that qzis a term of some sequence {d.} in
some Gi,where i = 2 is a definite integer. Since Gy =
{f(P)| p € Giu N (D U E)}there exists a definite odd
number s € Gi,1 N (D U E),such that f(s) = {d.},and all
terms of {dn} are all front odd numbers of s.But gsis the

unique back odd number of q2 (€{d.}),s0,q3= s € G1,.1.By
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analogy,qs € Gi2,...,qi € Gi2,qi+1 € Gi1.But Gui = {f(q2)} =
{{an}},where all terms of {a.} are all front odd numbers of
q2.S0,qzis a back odd number of qi+1(€ {a.}).Then qi+1 has
two back odd number qu,qua(* qu),where i = 2.By
Theorem 2.3,this is impossible.

(2) Induction. First prove that the result holds for Gi1 U
Gn.Note that Gui= {f(q)} = {{al}= {f/(p)| p € {q} N (D
U E)},and Giz = {f(p)| p € Gut N (D U E)}..So,Gi1 U Gi2=
{fe)| p € ({(qu Gi)N (D U E).By (1),q: ¢ Gi1.And
({q2Ju Gi)N (D U E) has not the same odd number.
Because f is a bijection, so, there are no identical
sequences in the sequence set Gii U Giz. Then since Gii
U G < Si1U S;,by Theorem 3.1, no two different
sequences in G11U G2 have the same term.

Consider Gi3 = {f(p)| p € Giz N (D U E).Then U3, G1i = {f(p)| p €
(UGN D UE} U {f(p)| p € G2 N (D UE) = {f(p)] p €fqlu
GuU Gi2) N (D U E)L.By (1),q:€ G U Gi2.And because there is no
same odd number in G11U Giz,s0, there is no same odd number in
({q2}u GuiU Gi2) N (D U E).Because f is a bijection, so, there are no
identical sequences in the sequence set U_; Gi. Then by Theorem
3.1, no two different sequences in U3_; G1: have the same term.

Assume there are no identical sequences in the sequence set U= G1;,
and no two different sequences in U=, G1i have the same term, i,e.
there is no same odd number in U7, G1.

Note that UM G1i = {f(p)| p €{qU(U™, G1))N (D U E)LBy (1),q
¢ UL, G By the inductive assumption, there is no same odd
number in UL, Gu. So, there is no same odd number in ({q2}U(
UL:G1)) N (D U E).Because f is a bijection, so, there are no
identical sequences in the sequence set U™ Gii . Then by Theorem
3.1,n0 two different sequences in U} G i have the same term.

QED

The same method can be used to prove the following Theorem 5.7.
Theorem 5.7:

If q1, q2,.--,qny---is the Collatz odd sequence in the construction of Gn,
where all odd numbers of the Collatz odd sequence are different from
each other, then for n = 2,3 ,4,...,

(1) gn+1 & Gui, where i =1,23,....
(2) There are no identical sequences in the sequence set U2 Gui, and
no two different sequences in UjZ; G have the same term.

QED

RESULTS

In order to make a comparison between the sequence sets H and G,
another construction method of H is introduced here.

Let the odd number qibe k steps successful. And let q1, qz,...,qk, 1 (here
set qi+1= 1)be the Collatz odd sequence.

Next the following series Ti of sequence sets is constructed, where i =

1,2,...k.
Firstly, we construct a sequence set T1.

Note that each odd number in the Collatz odd sequence q1,qz,...,qx, 1 is
successful, and qz is the unique back odd number of q: .

Write Ti1= {f(q2)} = {{an}},where {a.} € S1U Sz,and the odd number qiis

a term of {an).



Qingxue

Write Tiz = {f(p)| p € Tiu N (D U E)}.Assume that the sequence set Tin
has been formed.

Write Ti,n1 = {f(p)| p € TiaN (D U E)}L
Denote Ti = Up=1 Tin.

Note that gs is the unique back odd number of qa.
Write Tz21= {f(q3)} = {{bu}},where {b.} € S1U Sz,and the odd number qzis
a term of {bn}.

Write To2 = {f(p)| p € Ta N (D U E)}.

Assume that the sequence set Tz. has been formed.

Write Tonet = {f(p)| p € TN (D U E)}.

Denote T2 = Upzq Tan.

So on and so forth.

Suppose again that Ti = Up=; Tin has been constructed,where i =

3,4,...k2.

At this point, Tii has only one sequence, denoted {c.},and qi € {cn}.qis1 is
the unique back odd number of gi.

Write Tiet,1 = {f(qi+2)}= {{du}},where {ds} € S1U S;,and the odd number
qi+1is a term of {da}.

Write Ti12 = {f(p)| p € Tiers N (D U E)}.

Assume that the sequence set Tis1; has been formed.

Write Tie101 = {f(p)| p € Tier; N (D U E)}.

Denote Tis1 = U‘}';l Tioj.

And consider i = k-1.Then qi2 = qu1 = 1, Tt = T = {f(qw2)} =
{f(1)},where f(1) is the odd sequence {e.}:1,5,21,85,341,...,qi+1 = qx is a
term of {en}.

Write Tie = {f(p)| p € T N (D U E),and p * 1}.

Assume that the sequence set Ty has been formed, where j = 2.
Write Ti+1 = {f(p)| p € Ty N (D U E)}.

Denote T = UjZ; T

Remarks:

(1)Note that Tk = H, that is, the sequence set H in §5 can also bec
onstructed by the above method, and this process is the same as theg
eneration process of G.

(2)See §5.Consider the constructions of Gi and G2.G11 = {f(q2)},and
Ga1 = {f(g3)} = {{bu}},where the odd number q; is just a general odd
number in the sequence {bx} of G21, or in G21 N (D U E).Gui = {f(q)}
grows in the front odd number direction (let's say) to obtain a Gi.
While there are infinitely many odd numbers in G21 N (D U E),and
G; is obtained by growing the infinitely many odd numbers of G2 N
(D U E) in the front odd number direction. Where each odd number
in Gu N (D U E) also generates a sequence set equivalent to
G1.Thus,G: is "infinitely many times" larger than Gi .

Similarly, for n = 3,4,...,Gs is "infinitely many times" larger than Ga.1.
It can also be obtained for i = 1,2,...,.k-1,Ti1 is "infinitely many times"
larger than T..

(3)By the constructions of Ga and T, the difference between sequence
set Gn and the sequence set Ti is that all terms of all sequences in Ti
are successful, so when it grows in the back odd direction (let's say ),it
stops at odd number 1 to obtain T« = H; while all terms of all
sequences in Gn are not successful, so as n increases infinitely, G is
endlessly expanding at a great speed. From Theorem 4.4, we know
that the sequences in H are not identical to each other, and no two
sequences have the same term (odd number).So H can be regarded as
a set of odd numbers. Similarly, from Theorem 5.7, G. can also be
regarded as a set of odd numbers. From the above, it is obtained that

as a set of odd numbers, H is a definite set of odd numbers, and as n

increases infinitely, lim G. is an indeterminate set of odd numbers.
n-—oo

Any odd number is successful.

Proof:

Let the set of all odd numbers be Q. Consider H as a set of odd
numbers. By Theorem 4.4,the set of all successful odd numbers is H.
Suppose there is an odd number that is not successful. And let the set
of all not successful odd numbers be G. then G N H =@, and G U H
=Q.

From Theorem 5.4 and Theorem 5.7, suppose there is an odd
number that is not successful, then the sequence set Gn, which is
regarded as the set of odd numbers, can be obtained. And it is known
that any odd number of G, is not successful. And from the above
remark (3),rlli_r)1°10 G, is an indeterminate set of odd numbers Because

GnC G, where n = 1,2,3,...,50 lim G.c G, and the set G of all odd
n—-oo

numbers, those are not successful, is also an indeterminate set of odd
numbers. And the sets of odd numbers H and Q are both definite
sets of odd numbers. So the equation G U H = Q does not hold,
contradiction. Thus, G = @, H = Q, and any odd number is
successful. QED

Remark:

Treat each odd number in the set H as a vertex. Then connect an
edge between any two odd numbers (vertices) in H that have a front
and back odd number relationship. In particular, connect an edge
between odd number 1 and any other odd number in the odd
number set H1 except for odd number 1.At this point, H can be
regarded as a tree with an odd root 1.We call it the H-tree. This H-
tree contains all odd numbers. Because any triple odd number has no
front odd number, each odd number in the triple odd number set F
is a leaf of this H-tree.

Theorem 6.2:
Any positive integer is successful, i.e., Collatz conjecture holds.

Proof:

See Remark at the top part of

Preliminaries . QED

Problem:

For any odd number p, how to get a integer k with a formula, so that
p is kesteps successful, or, p € Hrin H
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