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A proof of Fermat’s last theorem by relating to monic polynomial 
properties

Tae Beom Lee* 

polynomials can be identical when n ≥ 3, i.e., xn-an=xn-(cn-bn), which satisfies 
an=cn-bn. By inspecting the properties of two polynomials such as factoring, 
root structures and graphs, we found that xn-an and xn-(cn-bn) can’t be identical 
when n ≥ 3, except when trivial cases.
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ABSTRACT

Fermat’s Last Theorem (FLT) states that there is no natural number set 
{a, b, c, n} which satisfies an+bn=cn or an=cn-bn when n ≥ 3. In this thesis, 
we related LHS and RHS of an=cn-bn to the constant terms of two monic 
polymials xn-an and xn-(cn-bn). By doing so, we could inspect whether these two 

INTRODUCTION

FLT was inferred in 1637 by Pierre de Fermat, and was proved by Andrew 
John Wiles in 1995 [1]. But the proof is not easy even for mathematicians, 
requiring more simple proof.

Let a, b, c, n be natural numbers, otherwise specified. We related FLT to the 
following two monic polynomials.

f(x)=xn-an (1.1)

g(x)=xn-(cn-bn) (1.2)

If f(x)=g(x) is possible for n ≥ 3, an=cn-bn is satisfied, and FLT is false. But the 
factoring, root structure and graph properties of f(x) and g(x) do not allow 
f(x)=g(x) when n ≥ 3. So, an=cn-bn can’t be satisfied for n ≥ 3.

DESCRIPTION

Basic Lemmas

The number of roots of xn-an is as follows, as in Figure 1 [2-4].

1) Odd n ≥ 3: One integer root and n-1 pairwise complex conjugate roots.

2) Even n ≥ 4: Two integer roots and n-2 pairwise complex conjugate roots.

Figure 1) Number of roots examples of xn-1n

Lemma 2.1. Below (2.1) is the irreducible factoring of (1.1) over the complex 
field [5].

f(x)=xn-an=∏n
(k=1)

 (x-ae(2kπi/n))   (2.1)

Proof. The n roots of (1.1) are ae(2kπi/n), 1 ≤ k ≤ n, so, (2.1) is the irreducible 
factoring of (1.1) over the complex field.

Lemma 2.2. Below (2.2) is the irreducible factoring of ℎ(c, b)=cn-bn over the 
complex field.

h(c,b)=cn-bn=∏n
(k=1)

 (c-be(2kπi/n))  (2.2)

Proof. The n roots of ℎ(c, b) are c=be(2kπi/n), 1 ≤ k ≤ n, so, (2.2) is the irreducible 
factoring of ℎ(c, b) over the complex field.

Lemma 2.3. All n factors of (2.2) can’t have same magnitude.

Proof. The n factors of (2.2) are c-be(2kπi/n), 1 ≤ k ≤ n. Each factor can be 
considered as the difference vector between (c, 0) and b(cos 2kπ/n, sin 
2kπ/n), as in Figure 2.

Figure 2) Vector factor examples of (2.2)

Because |c - be(2kπi/n)| is same only with its complex conjugate |c - be(-2kπi)/n)|, 
the magnitude of all factors of (2.2) can’t be same for all k.

Lemma 2.4. A polynomial whose roots are all factors in (2.2) is (2.3) below.

p(x)=∏n
(k=1)

 {x-(c-be(2kπi/n) )}                    (2.3)

Proof. The n factors of (2.2) are c - be(2kπi/n), 1 ≤ k ≤ n, and they are all involved 
in (2.3) as individual root. So, p(x) is a polynomial whose roots comprise all 
factors in (2.2).

Lemma 2.5. A polynomial with different root magnitude can’t be of the 
form xn-an, n ≥ 3.

n
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Proof. The n roots of xn-an are all located on a circle of radius a in the complex 
plane. But, if the magnitude of n roots is not all same, all roots can’t be 
located on a same circle. So, a polynomial with different root magnitude 
can’t be of the form xn-an, n ≥ 3.

Lemma 2.5 implies that f(x)=g(x) can’t be achieved for n ≥ 3, so, an=cn-bn can’t 
also be satisfied.

Graphical interpretation of FLT and proving lemma

For graphical interpretation of FLT, example graphs of f(x) and p(x) are shown 
in Figure 3.

f(x)=xn-an (1.1)

p(x)=∏n
(k=1) {x-(c-be(2kπi/n) )} (2.3)

Figure 3) Example graphs of f(x) and p(x)

We get f(x) by vertically moving y=xn by -an. We get p(x) by horizontally moving 
y=xn by c and vertically moving by -(-b)n.

p(x)=∏n
(k=1) {(x-c)-(-be2kπi/n )}=∏n

(k=1) {X-(-be2kπi/n)}=Xn- (-b)n,X=x - c     (3.1)

In graph view, FLT is equivalent to the moving of p(x) to overlap f(x), to find 
possible solutions that satisfy an=cn-bn. Moving p(x) is equivalent to varying 
the integer values (b, c), b ≤ a<c, i.e., moving p(x) vertically or horizontally by 
integer steps. When any of (b, c) makes two graphs overlap, a solution an=cn-
bn is found, and FLT is false. To make two graphs overlap, the following two 
steps are required.

1) Horizontal movement that makes X=x-c in (3.1) to be X=x, i.e., c=0.

2) Vertical movement that makes constant terms an and cn-bn equal.

In Figure 3 (a), when n=1, p(x) always overlaps f(x) for a=c-b. In Figure 3 (b), 
when n=2, p(x) overlaps f(x) for Pythagorean triples, a2=c2-b2=(c-b) (c+b). When 
n=1, 2, all roots of f(x) and p(x) affect the (x, y) intercepts of the graphs, and 
there are infinitely many solutions.

But, when n ≥ 3, the advent of complex roots, which do not appear in graphs, 
makes situations quite different from those of when n=1, 2. Figure 3 (c) and 
(d) show that when p(x) overlaps f(x), a=c-b or a2=c2-b2 should be satisfied,
which contradicts to an=cn-bn, n ≥ 3. This is because the complex roots can’t
affect the (x, y) intercepts of the graphs. So, any integer step movements of
p(x) can’t satisfy p(x)=f(x) when n ≥ 3.

When n ≥ 3, moving p(x) to overlap f(x) is equivalent to making all n roots in  
∏n

(k=1)
  (c-be2kπi/n) same as those in ∏n

(k=1)
 (ae2kπi/n). Hence Lemma 3.1.

Lemma 3.1. When n ≥ 3, to make every n roots in ∏n
(k=1)

 (c-be2kπi/n) exactly 

match to those

∏n
(k=1) (ae2kπi/n), c=0, a=-b must be satisfied.

Proof. The complex number identity states that if x+iy=u+iv, then x=u, y=v [6]. 
To satisfy ∏n

(k=1)
 (ae2kπi/n)=∏n

(k=1)
 (c-be2kπi/n), keeping all n  roots in LHS and RHS 

identical, ae2kπi/n=c-be2kπi/n must be satisfied. 

a(cos 2kπ/n+isin 2kπ/n)-c-b(cos 2kπ/n+isin 2kπ/n).

asin 2kπ/n-bsin 2kπ/n, a=-b.

acos 2kπ/n-c-bcos 2kπ/n, c=0.

So, c=0, a=-b.

Lemma 3.1 comprises above mentioned step (1) and step (2), where step (1) 
makes c=0 and step (2) makes an=cn-bn=-bn. That is to say, only trivial solutions 
can satisfy an=cn-bn for n ≥ 3.

CONCLUSION

In this thesis, we related LHS and RHS of an=cn-bn to the constant terms 
of two monic polynomials xn-an and xn-(cn-bn). By doing so, the proof of FLT 
is simplified to the proof of whether the two polynomials can be identical 
when n ≥ 3. The properties of the two poynomials such as factoring, root 
structures and graphs showed that xn-(cn-bn)=xn-an  can’t be achieved for n ≥ 3, 
hence an ≠ cn-bn   for n ≥ 3. When n=1, 2, there can be infinitely many xn-an=xn-
(cn- bn) solutions, but when n ≥ 3, the advent of the complex roots latches 
further solutions, except for trivial ones. That is to say, as for the solutions of 
an+bn=cn, a+b=c is the first and last solution for odd n, and a2+b2=c2 is the first 
and last solution for even n.
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