OPINION

A proof of Fermat's last theorem by relating to monic polynomial properties

Tae Beom Lee*

ABSTRACT

Fermat's Last Theorem (FLT) states that there is no natural number set $\{a, b, c, n\}$ which satisfies $a^n+b^n=c^n$ or $a^n=c^n\cdot b^n$ when $n \ge 3$. In this thesis, we related LHS and RHS of $a^n=c^n\cdot b^n$ to the constant terms of two monic polymials $x^n\cdot a^n$ and $x^n\cdot (c^n\cdot b^n)$. By doing so, we could inspect whether these two

polynomials can be identical when $n \ge 3$, i.e., $x^n \cdot a^n = x^n \cdot (c^n \cdot b^n)$, which satisfies $a^n = c^n \cdot b^n$. By inspecting the properties of two polynomials such as factoring, root structures and graphs, we found that $x^n \cdot a^n$ and $x^n \cdot (c^n \cdot b^n)$ can't be identical when $n \ge 3$, except when trivial cases.

Keywords: Polynomials; Fermat's last theorem; Natural number; LHS; RHS

INTRODUCTION

FLT was inferred in 1637 by Pierre de Fermat, and was proved by Andrew John Wiles in 1995 [1]. But the proof is not easy even for mathematicians, requiring more simple proof.

Let a, b, c, n be natural numbers, otherwise specified. We related FLT to the following two monic polynomials.

$$f(x) = x^n - a^n \tag{1.1}$$

$$g(x)=x^{n}-(c^{n}-b^{n})$$
 (1.2)

If f(x)=g(x) is possible for $n \ge 3$, $a^n=c^n-b^n$ is satisfied, and FLT is false. But the factoring, root structure and graph properties of f(x) and g(x) do not allow f(x)=g(x) when $n \ge 3$. So, an=cn-bn can't be satisfied for $n \ge 3$.

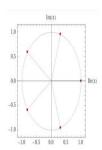
DESCRIPTION

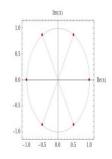
Basic Lemmas

The number of roots of x^n - a^n is as follows, as in Figure 1 [2-4].

1) Odd $n \ge 3$: One integer root and n-1 pairwise complex conjugate roots.

2) Even $n \ge 4$: Two integer roots and n-2 pairwise complex conjugate roots.





(a) Roots of
$$x^5 - 1^n = 0$$
.

(b) Roots of $x^6 - 1^n = 0$.

Figure 1) Number of roots examples of x^n-1^n

Lemma 2.1. Below (2.1) is the irreducible factoring of (1.1) over the complex field [5].

$$f(x)=x^n-a^n=\prod_{(k=1)}^n (x-ae^{(2k\pi i/n)})$$
 (2.1)

Proof. The n roots of (1.1) are $ae^{(2k\pi i/n)}$, $1 \le k \le n$, so, (2.1) is the irreducible factoring of (1.1) over the complex field.

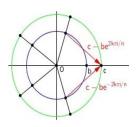
Lemma 2.2. Below (2.2) is the irreducible factoring of $h(c, b)=c^n \cdot b^n$ over the complex field.

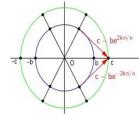
$$h(c,b)=c^n-b^n=\prod_{(k=1)}^n (c-be^{(2k\pi i/n)})$$
 (2.2)

Proof. The n roots of h(c, b) are $c=be^{(2k\pi i/n)}$, $1 \le k \le n$, so, (2.2) is the irreducible factoring of h(c, b) over the complex field.

Lemma 2.3. All n factors of (2.2) can't have same magnitude.

Proof. The n factors of (2.2) are c-be^(2kπ/n), $1 \le k \le n$. Each factor can be considered as the difference vector between (c, 0) and b(cos $2k\pi/n$, sin $2k\pi/n$), as in Figure 2.





(a) n = 5 example.

(b) n = 6 example.

Figure 2) Vector factor examples of (2.2)

Because $|c \cdot be^{(2k\pi i)/n_j}|$ is same only with its complex conjugate $|c \cdot be^{(2k\pi i)/n_j}|$, the magnitude of all factors of (2.2) can't be same for all k.

Lemma 2.4. A polynomial whose roots are all factors in (2.2) is (2.3) below.

$$p(x) = \prod_{(k=1)}^{n} \left\{ x \cdot (c \cdot b e^{(2k\pi i / n)}) \right\}$$
 (2.3)

Proof. The n factors of (2.2) are $c \cdot be^{(2k\pi i/n)}$, $1 \le k \le n$, and they are all involved in (2.3) as individual root. So, p(x) is a polynomial whose roots comprise all factors in (2.2).

Lemma 2.5. A polynomial with different root magnitude can't be of the form $x^n a^n$, $n \ge 3$.

Department of Mathematics, University of Notre Dame, USA

Correspondence: Tae Beom Lee, Department of Mathematics, University of Notre Dame, USA; E-mail: joelejiofor@gmail.com

Received: 10-Nov-2023, Manuscript No. PULJMAP-23-6855; Editor assigned: 13-Nov-2023, PreQC No. PULJMAP-23-6855 (PQ); Reviewed: 27-Nov-2023, QC No. PULJMAP-23-6855; Revised: 13-Mar-2025, Manuscript No. PULJMAP-23-6855 (R); Published: 20-Mar-2025, DOI: 10.37532/puljmap.25.8(1).1-2

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

Proof. The n roots of x^n - a^n are all located on a circle of radius a in the complex plane. But, if the magnitude of n roots is not all same, all roots can't be located on a same circle. So, a polynomial with different root magnitude can't be of the form x^n - a^n , $n \ge 3$.

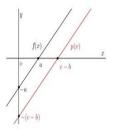
Lemma 2.5 implies that f(x)=g(x) can't be achieved for $n \ge 3$, so, $a^n=e^n b^n$ can't also be satisfied.

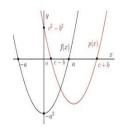
Graphical interpretation of FLT and proving lemma

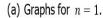
For graphical interpretation of FLT, example graphs of f(x) and p(x) are shown in Figure 3.

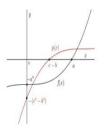
$$f(x)=x^{n}-a^{n} \tag{1.1}$$

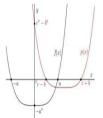
$$p(x) = \prod_{(k=1)}^{n} \{x \cdot (c \cdot be(2k\pi i/n))\}$$
 (2.3)











(c) Graphs for odd $n \ge 3$.

(d) Graphs for even $n \ge 4$.

Figure 3) Example graphs of f(x) and p(x)

We get f(x) by vertically moving $y=x^n$ by $-a^n$. We get p(x) by horizontally moving $y=x^n$ by c and vertically moving by $-(-b)^n$.

$$p(x) = \prod_{(k=1)}^{n} \{(x \cdot c) \cdot (be^{2k\pi i/n})\} = \prod_{(k=1)}^{n} \{X \cdot (be^{2k\pi i/n})\} = X^{n} \cdot (b)^{n}, X = x \cdot c$$
 (3.1)

In graph view, FLT is equivalent to the moving of p(x) to overlap f(x), to find possible solutions that satisfy $a^n=c^n \cdot b^n$. Moving p(x) is equivalent to varying the integer values (b, c), $b \le a < c$, i.e., moving p(x) vertically or horizontally by integer steps. When any of (b, c) makes two graphs overlap, a solution $a^n=c^n \cdot b^n$ is found, and FLT is false. To make two graphs overlap, the following two steps are required.

- 1) Horizontal movement that makes X=x-c in (3.1) to be X=x, i.e., c=0.
- 2) Vertical movement that makes constant terms an and cn-bn equal.

In Figure 3 (a), when n=1, p(x) always overlaps f(x) for a=cb. In Figure 3 (b), when n=2, p(x) overlaps f(x) for Pythagorean triples, $a^2=c^2-b^2=(cb)$ (c+b). When n=1, 2, all roots of f(x) and p(x) affect the (x, y) intercepts of the graphs, and there are infinitely many solutions.

But, when $n \ge 3$, the advent of complex roots, which do not appear in graphs, makes situations quite different from those of when n=1, 2. Figure 3 (c) and (d) show that when p(x) overlaps f(x), a=cb or $a^2=c^2\cdot b^2$ should be satisfied, which contradicts to $a^n=c^n\cdot b^n$, $n\ge 3$. This is because the complex roots can't affect the (x, y) intercepts of the graphs. So, any integer step movements of p(x) can't satisfy p(x)=f(x) when $n\ge 3$.

When $n \ge 3$, moving p(x) to overlap f(x) is equivalent to making all n roots in $\prod_{(k=1)}^n (c \cdot b e^{2k\pi i/n})$ same as those in $\prod_{(k=1)}^n (a e^{2k\pi i/n})$. Hence Lemma 3.1.

Lemma 3.1. When $n \ge 3$, to make every n roots in $\prod_{(k=1)}^{n} (c \cdot be^{2k\pi i/n})$ exactly

match to those

 $\prod_{(k=1)}^{n} (ae^{2k\pi i/n}), c=0, a=-b$ must be satisfied.

Proof. The complex number identity states that if x+iy=u+iv, then x=u, y=v [6]. To satisfy $\prod_{\binom{l_i-1}{(k-l)}}^n (ae^{2k\pi t/n}) = \prod_{\binom{l_i-1}{(k-l)}}^n (cbe^{2k\pi t/n})$, keeping all n roots in LHS and RHS identical, $ae^{2k\pi t/n} = cbe^{2k\pi t/n}$ must be satisfied.

 $a(\cos 2k\pi/n + i\sin 2k\pi/n) \cdot c \cdot b(\cos 2k\pi/n + i\sin 2k\pi/n)$.

asin $2k\pi/n$ -bsin $2k\pi/n$, a=-b.

acos $2k\pi/n$ -c-bcos $2k\pi/n$, c=0.

So, c=0, a=-b.

Lemma 3.1 comprises above mentioned step (1) and step (2), where step (1) makes c=0 and step (2) makes $a^n=c^n.b^n=.b^n$. That is to say, only trivial solutions can satisfy $a^n=c^n.b^n$ for $n \ge 3$.

CONCLUSION

In this thesis, we related LHS and RHS of $a^n=c^nb^n$ to the constant terms of two monic polynomials x^na^n and $x^n(c^nb^n)$. By doing so, the proof of FLT is simplified to the proof of whether the two polynomials can be identical when $n \geq 3$. The properties of the two polynomials such as factoring, root structures and graphs showed that $x^n(c^nb^n)=x^na^n$ can't be achieved for $n \geq 3$, hence $a^n \neq c^nb^n$ for $n \geq 3$. When n=1, 2, there can be infinitely many $x^na^n=x^n(c^nb^n)$ solutions, but when $n \geq 3$, the advent of the complex roots latches further solutions, except for trivial ones. That is to say, as for the solutions of $a^n+b^n=c^n$, a+b=c is the first and last solution for odd n, and $a^2+b^2=c^2$ is the first and last solution for even n.

REFERENCES

- Wiles A. Modular elliptic curves and Fermat's last theorem. Ann Math. 1995;141(3):443-51.
- 2. Wikipedia. Rational root theorem. Wikimedia Foundation, Inc.
- 3. Wikipedia. Root of unity. Wikimedia Foundation, Inc.
- 4. Wikipedia. Cyclotomic polynomial. Wikimedia Foundation, Inc.
- 5. Wikipedia. Absolute irreducibility. Wikimedia Foundation, Inc.
- Kreyszig E. Advanced engineering mathematics. 10th Ed. WileyPLUS.