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Editorial

Materials scientists increasingly employ machine or statistical learning 
(SL) techniques to accelerate materials discovery and design. Such pursuits 
benefit from pooling training data across, and thus being able to generalize 
predictions over, k-nary compounds of diverse chemistries and structussres. 
This work presents a SL framework that addresses challenges in materials 
science applications, where datasets are diverse but of modest size, and 
extreme values are often of interest. Our advances include the application 
of power or Hölder means to construct descriptors that generalize over 
chemistry and crystal structure, and the incorporation of multivariate 
local regression within a gradient boosting framework. The approach is 
demonstrated by developing SL models to predict bulk and shear moduli 
(K and G, respectively) for polycrystalline inorganic compounds, using 1,940 
compounds from a growing database of calculated elastic moduli for metals, 
semiconductors and insulators. The usefulness of the models is illustrated by 
screening for superhard materials. In recent years, first-principles methods 
for calculating properties of inorganic compounds have advanced to the 
point that it is now possible, for a wide range of chemistries, to predict many 
properties of a material before it is synthesized in the lab1. This achievement 
has spurred the use of high-throughput computing techniques as an engine 
for the rapid development of extensive databases of calculated material 
properties. Such databases create new opportunities for computationally-
assisted materials discovery and design, providing for a diverse range of 
engineering applications with custom tailored solutions. But even with 
current and near-term computing resources, high-throughput techniques can 
only analyze a fraction of all possible compositions and crystal structures. 
Thus, statistical learning (SL), or machine learning, offers an express lane 
to further accelerate materials discovery and inverse design.  As statistical 
learning techniques advance, increasingly general models will allow us to 
quickly screen materials over broader design spaces and intelligently prioritize 
the high-throughput analysis of the most promising material candidates.

One encounters several challenges when applying SL to materials science 
problems. Although many elemental properties are available, we typically 
do not know how to construct optimal descriptors for each property, over 
a variable number of constituent elements. For instance, if one believes 
that some average of atomic radii is an important descriptor, there are 
many different averages, let alone possible weighting schemes, that one 
might investigate. This challenge may be reduced by placing restrictions on 
the number of constituent elements or types of chemistries or structures 
considered, but such restrictions reduce the generalizability of the learned 
predictor. Materials science datasets are often also smaller than those 
available in domains where SL has an established history. This requires that 
SL be applied with significant care in order to prevent over-fitting the model. 
Over-fitting leads to predictions that are less generalizable to new data than 
anticipated, such that predictions are less accurate than expected. At the 
same time, smaller datasets challenge us to use the available data as wisely as 
possible. This may include leveraging observations related to the smoothness 
of the underlying physical phenomenon, and the use of an appropriate risk 
criterion, rather than partitioning the available data into distinct training 
and test sets. For SL to have the greatest impact on materials discovery and 
design, we must pursue techniques that make maximal use of the available 
data. This requires approaches that are capable of systematically pooling 

training data across, and are thus capable of generalizing predictions over, 
k-nary compounds of diverse chemistries and structures.

The successful application of SL requires the selection of an appropriate 
set of descriptor candidates. In materials science problems, the candidates 
must be capable of both “uniquely characterizing” a diverse range of 
compounds, and sufficiently explaining the diversity of the phenomenon 
being learned. Thus, the selection of descriptor candidates is a crucial and 
active field of investigation within materials science, as the field endeavors 
to develop general models with high predictive accuracy. Previous work in 
materials science has included both categorical descriptors and continuous 
descriptors. Although both types of descriptors may be legitimately used in 
SL, special care should be taken when using categorical descriptors, as each 
such descriptor essentially (i.e., unless there is sufficient smoothing across 
cells) partitions the space of compounds into disjoint cells, which quickly 
increases the degrees of freedom and thus the risk of over-fitting the model.

SL applications should always include descriptor candidates suggested 
by known, scientifically relevant relationships. But in order to construct 
models that accurately generalize across diverse datasets, such candidates 
will typically need to be augmented with additional descriptor candidates, 
capable of bridging across the simplifying assumptions that divide less 
generalizable models. Without these additional candidates, attempts to learn 
more general models will be stifled, as it will be impossible to discover new, 
unexpected relationships. Here we introduce the use of Hölder means, also 
known as generalized or power means, as an ordered approach to explicitly 
constructing descriptor candidates from variable length numeric lists. 
Hölder means describe a family of means that range from the minimum 
to maximum functions, and include the harmonic, geometric, arithmetic, 
and quadratic means. This paper advances previous work by constructing 
descriptor candidates as Hölder means, which, to the best of our knowledge, 
has not previously been done in the field of materials science.

Having discussed the construction of descriptor candidates, we now 
introduce gradient boosting machine local polynomial regression, which is 
a SL technique that we developed to leverage the available data as wisely 
as possible. Energy minimization problems often enforce smoothness in 
the functions mapping useful descriptors to outcomes. Statistical learning 
techniques may exploit such smoothness, when present, in order to produce 
models that are as accurate as possible for a fixed amount of training 
data; such considerations are more important when working with smaller 
training datasets than with larger datasets. GBM-Locfit utilizes multivariate 
local polynomial regression, as implemented in Locfit, within a gradient 
boosting machine framework. Local polynomial regression performs a series 
of weighted regressions within a moving window, with a weight function 
that gives greatest weight to observations near the center of the window, 
producing a smooth curve that runs it.


