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RESEARCH 

An Event Graph in Special Relativity 
Per Hokstad 

INTRODUCTION  
irst, we suggest a graph, describing an object with constant
velocity, (in its simplest form suggested in Ref 1 then generalizing 

it; allowing the velocity to be piecewise constant [1]. This event graph 
is a spacetime diagram; somewhat analogous to the ‘world line’ of 
Minkowski Ref,2, Here we use the so-called proper time and the 
position (in time units) as the two main parameters of the diagram[2].  

However, the calendar time is also provided. We apply the graph to 
variations of the travelling twin example. Also, the case of the µ-
mesons is used as an illustration 

1. Basic Notation and the Time Vector
We start out with a Reference Frame (RF), denoted K, and now 
restrict to one space coordinate, x. This RF has synchronized, 
stationary clocks located at virtually any position. Further, there is an 
object moving at a constant velocity, w, relative to K, along the x-axis. 
This moving object (is imagined to) bring with it a clock, which is 
synchronized with the clocks on K at an initial position.  

The three fundamental parameters related to the movement of this 
object are: τ = Clock reading of the clock following the moving 
object. This is usually referred to as the proper time, and can also be 
seen as the ‘internal time’ of the object/event; 𝑥𝑥 = Position of the 
moving object relative to K, (when the passing clock reads τ); 𝑡𝑡 = 
Clock reading of the clock permanently located at position 𝑥𝑥 on K, 
when the moving clock reads τ; this t is usually referred to as calendar 
time. 
Letting the object start out from the position x = 0 at time t = 0, the 
velocity of the object relative to the RF, K equals 𝑤𝑤 = 𝑥𝑥/ 𝑡𝑡, and as 
usual c = speed of light. Then - according to the so-called time 

dilation in special relativity - we have 

2 2 2( / ) 1 ( / )t x c t w cτ = − = −   (1) 

The parameters (𝑡𝑡, 𝑥𝑥) specify an event relative to the chosen RF, and 
we introduce a time vector related to the event (t, x): 

2
/

/ 1 ( / )
w c

t x c w c t
τ→     = = −      

 (2) 

This vector has absolute value 

2 2( / )t t x cτ
→

= = +  (3) 

Thus, all three parameters τ, 𝑡𝑡 and 𝑥𝑥/𝑐𝑐 represent time. In particular, 
𝑥𝑥/𝑐𝑐 equals the time required for light to traverse the distance x. We 
can interpret t as the total ‘distance’ (in time) from the initiating 
event, (t = 0, x = 0), and so Eq. (3) provides a decomposition of this t 
into its two components, 𝜏𝜏 and x/c. We see that the time vector in 
Eq. (2) comprises the information of all the above fundamental 
parameters of an event; including the velocity, w, as specified by the 

angle, [ / 2, / 2]wϕ π π∈ − through 

/sin w
w x c
c t

ϕ = =  (4) 

2. A Simple Event Graph
We now consider a simple graph to describe the series of events, as 
specified by the moving object.  

2.1 Specification: Figure 1 provides a graphical illustration of all four 
parameters: 𝜏𝜏, 𝑥𝑥/c, 𝑡𝑡 and w of a specific event; also demonstrating 
how they are related. In particular, the two components of the time 
vector are given as, see Eqs. (1) - (4): 
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21 ( / ) cos wt w c tτ ϕ= − =                                        (5)

sin w
x wt t
c c

ϕ= =  (6) 

But, in addition to provide the time vector of a specific instant, this 
line also illustrates the whole chain of events, representing the 
object’s movement from time 0, and we then denote this an event 
graph. 

Figure 1) An ‘event graph’: A chain of events, (t, 𝒙𝒙)τ≥0 on a specific RF; 

describing an object of constant velocity, w relative to this RF. 

2.2 Examples: We illustrate the above graph with a couple of 
standard examples. 

Example 1. The twin paradox 
The travelling twin example is discussed by a number of authors, 
Refs. [3, 4]. We apply a rather standard numerical example, letting 
the travelling twin leave the earth in a rocket of velocity, w = 0.6c, 

giving 21 ( / ) 0.8w c− = . He travels to a ‘star’ located 3 light years

from the earth. This means that 𝑥𝑥/𝑐𝑐 = 3 years, and by this arrival to 
the star, the (imagined) clock permanently located at the star reads 𝑡𝑡 = 
𝑥𝑥/𝑤𝑤 = 3c/0.6c = 5 years. 

According to special relativity, the travelling twin’s clock will at this 
instant read, see Eq. (1), 

2 .1 ( / ) 50.8 4t w c yearsτ = − = =
In summary, by the arrival of the rocket to the star, we have 𝜏𝜏 = 4 
years, 𝑥𝑥/𝑐𝑐 = 3 years, 𝑡𝑡 = 5 years. Or, expressed by the time vector of 
this even, (see the line OB of Figure. 2.a)): 

4

3/OB x ct
τ→   = =      

, with 5t t
→

= =  (7) 

Here O represents the travelling twin’s start of the travel from the 
earth, and B is the event of his arrival to the star. In this figure we 
have also inserted two other event graphs. First, the red line OA, 
illustrates the clock of the brother who remains on the earth, (having 
x/c ≡ 0); and finally, the line CD, illustrates the (imagined) clock 
permanently situated on the star. 
These three event graphs are related to the RF of the earth; all 
starting simultaneously with t=τ=0, (at events O and C, respectively). 
So, in the perspective of this RF, the figure gives the three time 

vectors, , ,OA OB CDt t t
→ → →  which also represent three simultaneous chains 

of events. We note that the event B, representing the end point of 
OB, and event D, representing the end point of CD, might be seen as 
two equivalent events, as they have the same t = 5, and the same x/c = 
3 relative to the chosen RF. However, they are not fully equivalent; as 

they are not represented by the same time vector, (having different 
𝜏𝜏′𝑠𝑠). This stems from the fact that they represent events chains, 
starting out from different positions, (and having different w’s). This 
will also cause us to provide different predictions for the two event 
chains, occurring after this single common event, ( 5, / 3)t x c= =

Example 2. The Mu-mesons. 
This is another standard example, typically described [5]. The µ-
mesons are produced by cosmic rays in the upper atmosphere [5]. 
When 'at rest' they have a lifetime of about 2 microseconds. So, if 
their internal clocks ran at a rate independent of their speed, about 
half of them would be gone after they had traveled 2.000 feet. Yet 
about half of the µ-mesons produced in the upper atmosphere (about 
100.000 feet up) manage to make it all the way down to the ground. 
This is because they travel at a speed so close to the speed of light that 
they can survive for 50 times as long as when they are stationary. 

Describing this phenomenon in the perspective (RF) of the earth, the 
situation is quite similar to that of Example 1. An illustration is given 
in Figure. 2.b); here the creation of the µ-mesons in the upper 
atmosphere is event O, (x/c = τ = 0). The line OB represents the 
movement (calendar time) of themesons, and by the arrival to the 
earth (B), the τ-value of the mesons equals (cf. CB), τ = 2∙10-6 sec. 

Further, the line CD is the event graph of a clock located on the 
earth, giving the duration t ≈ 2∙10-6 ∙50 = 10-4 sec for the travel of the 
mesons. This is equal to the distance OB. Here, OC gives the ‘spatial 

distance’ traveled by the µ-mesons, given by 2 2 4/ 10x c t τ −= − ≈ .

The vector OA illustrates an imagined clock located in the upper 
atmosphere. Here we see τ = 2∙10-6 sec as the reading of an imagine 
‘internal clock’ of the mesons, measuring their lifetime. So, we do not 
see the apparent slowing of the inner clocks as a ‘real physical’ effect, 
but rather an ‘observational phenomenon’, caused by the choice of 
‘observational RF’. 

Figure 2) Examples of event graphs, (both in the perspective of the earth). 

3. Generalizations
Now consider a couple of generalizations of the above approach. 

3.1 An event graph of piecewise constant velocity: 
The event graph of Ch. 3 describes a chain of events with constant 
velocity, w, but can similarly be applied for a process with a piecewise 
constant w. In the illustration of Figure. 3 we start out (from t = 0, x = 
0) with a constant velocity, w > 0; see the line OA. After a certain
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time, the object is brought to rest; that is, the velocity is abruptly 

changed to w = 0 (and 𝜑𝜑w = 0). At this instant the local clock reads a 
value equal to the length of OA. So, BC - representing the time vector 
of the local clock - has the same length as OA. By this change of 
velocity, we restart the process; not from A; but rather from the 
‘equivalent’ event of the local clock; i.e. with the same (t, x) – value, 
which in Figure. 3 equals event C. We refer to this change from A to 
C as an ‘update’ 

Figure 3) An event graph illustrating an object’s movement, when the 

velocity, w is piecewise constant. The total length of the (red) graph equals the 
elapsed (calendar) time, 𝒕𝒕 on the RF. 

Following Figure. 3, the object thereafter remains at rest (w =0) for a 
period, giving the line CD, parallel to the abscissa, τ. No update is 
required at event D, as w = 0 in the period, CD. 
Next, the object approaches the origin; i.e. have a negative w; see line 
DE. And ‘arriving’ at E, a new update is required; imposing a new 
start at event G; (so FG has the same length/duration as DE). 

Thereafter the ‘object’, (or now rather ‘event’), has velocity, w=c,(𝜑𝜑w = 
𝜋𝜋/2), and the line GH is orthogonal to the τ-axis. A new update 
occurs at H; restarting at I, with HI having the same length as GH; 
etc. The total graph is given by the red vectors. 

Also in this generalized diagram, the length of the red graph for 
events (𝑡𝑡, 𝑥𝑥)τ≥0 up to a certain τ-value will equal the calendar time, 𝑡𝑡 of 
the end event. In the given example of Figure. 3 the total time equals 

OA CD DE GH IJt t t t t t
→ → → → →

= + + + +  (8) 

or t = OA + CD + DE + GH + IJ; which is also equal to BC + CD + 
FG +HI + KL. Regarding τ, we will in Figure. 3 find the current τ - 
value by adding the abscissas of the red arrows up to the relevant 
position. Now, indicating a generic notation, we write this as 

21 ( / ) cos
ii i i i i wt w c t ϕ− =∑ ∑ , (Eq. (5)). For x/c we have

to distinguish between the final ‘spatial positions’,

sin /i i wi i i it t w cϕ =∑ ∑  (Eq. (6)), and the total distance

travelled, | | /i i it w c∑
As seen, we restart the process at any instant with change of velocity. 
The new origin will be defined as the time vector of the clock, being 
permanently located at the relevant position. Unless also the previous 
process had w = 0, this requires an update; creating a ‘gap’ in the 
graph. Giving a more logical approach, this also better illustrates 
simultaneity of events at different locations; cf. Sec. 4 below. 

After a restart, the future process will depend on the new w-value, 
plus the (t, x) parameters at the update; but not on x, t and τ of the 
past. This corresponds to the so-called Markov property (‘lack of 

memory’) in stochastic processes; e.g. [6]. Thus, we may see this event 
chain as a kind of a Markov process, with the current w-value 
corresponding to its state. 

3.2 Extension to three space coordinates: In the approach, described 
so far, there is a single space coordinate, 𝑥𝑥, only. We could, however, 
introduce three space coordinates (𝑥𝑥,y,z) with corresponding velocity 
coordinates ( , , )x y zw w w .

Now consider the case of having a constant velocity; having a velocity 

vector ( , , )T
x y zw w w w

→

= Starting out from the origin at time 0, it 

follows that calendar time, 𝑡𝑡 at the position (𝑥𝑥, y , 𝑧𝑧) equals 

( , , )Tx y z t= . ( , , )T
x y zw w w . At this instant the spatial distance

from the origin of K equals 

2 2 2 2 2 2. x y zl x y z t w w w= + + = + +  (9) 

The absolute value of the velocity vector, ( , , )T
x y zw w w w

→

= equals 

2 2 2
x y zw w w w= + + Thus, w=l/t. We now apply the results of

Sec. 2.1, by just replacing 𝑥𝑥 by 𝑙𝑙. Further, 𝜑𝜑w is now given by sin 𝜑𝜑w = 
𝑤𝑤/𝑐𝑐 = 𝑙𝑙/(𝑐𝑐𝑡𝑡), cf. Eq. (4). However, if we allow the velocity to change, 
we must require that the direction of the movement does not alter, in 
order to maintain a two-dimensional graph. 

Observe that there is a kind of analogy between the graphical 
approach of the present work and Minkowski’s spacetime diagram 
with three space coordinates, x,y,z, and an imaginary time coordinate, 
t. The coordinates of his space are (x,y,z,i∙ct).
As opposed to this, we have transformed the spatial parameters to
time, and apply 𝜏𝜏 rather than t as the time coordinate. Minkowski
also introduced the spacetime distance, given as

2 2 2 2 2c t x y z− − − in his four-dimensional space, whilst we refer

to 2 2( / )t l cτ= + as the total ‘distance in time’ (from an initiating

event) [2]. 

4. Example: The Twin Paradox
We use the generalized graph of Sec. 3.1 to illustrate variations of the 
travelling twin case; now considering the entire travel, but applying 
the same numerical values as an Example 1 of Sec. 2.2. 

4.1 The perspective of the earth-based RF, K: The blue graphs of 
Figure. 4 illustrate the total journey of the travelling twin, in the 
perspective of the earth’s RF, K. As also seen in Figure. 2a) the 

travelling twin’s travel to the star is described by OB, at an angle 𝜑𝜑w, 

where sin 𝜑𝜑w = 𝑤𝑤/𝑐𝑐 = 0.6. 
At event, B, having 𝜏𝜏 = 4, 𝑥𝑥/c = 3, 𝑡𝑡 = 5, there is an abrupt change in 
velocity; and a rocket of speed -w starts the return to the earth. We 
perform an update, and the return starts from the ‘local event’, D. (As 
previously pointed out, event B, is ‘equivalent’ to the event D; in the 
sense that both represent t = 5 and x/c = 3.)  
The return travel is given by DE and the blue graphs illustrate the 
result that by the return to the earth, the returning clock has ‘aged’ a 
value τ = 4 + 4 = 8 years; while it has elapsed a time t = 5 + 5 = 10 
years on K. 
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Figure 4) Event graphs of the twins in the perspective of the earth-based RF, 

K. The blue graphs describe the travelling twin’s journey. The red line, OA
follows the earthbound twin, having 𝑥𝑥/c ≡ 0.

The red line, OA illustrates the very simple ‘chain of events’ related 
to the twin remaining on the earth. He is permanently stationed at 

the origin of K. So, in his case we have w ≡ 0, and thus, 𝜑𝜑w ≡ 0, 
giving 𝑥𝑥 /c ≡ 0 and 𝑡𝑡 ≡ 𝜏𝜏, (all 𝜏𝜏). As just found in the blue graph; by 
the return to the earth, it has elapsed a time 𝑡𝑡 = 10 years on K, and so 
the red event graph ends at A where 𝑡𝑡 = 𝜏𝜏 = 10 years. We have also 
inserted the event D*, as the mid-point of OA. So, this occurs on the 
earth after 5 years, and for symmetry reasons is simultaneous (relative 
to K) to the start of his brother’s return. By letting this return start at 
D (rather than B), the diagram well illustrates the simultaneity of 
these two events, [7]. 

4.2 The perspective of the travelling twin KT: Now consider the same 
two chains of events, but viewed in the perspective of another RF. 
This new RF is denoted KT, with time, tT and position, xT, and it is 
moving away from the earth at velocity, w. Therefore, we let the 
travelling twin and his rocket be located at the origin of this RF on its 
way to the star. At the arrival to the star, this KT continues its journey 
away from the earth at the same speed; as we do not allow RFs to 
change velocity. 

Figure. 5 provides an illustration. Again, the red line refers to the 
travel of the earthbound twin. He is actually moving along the 

negative 𝑥𝑥T axis of KT at velocity -w. The corresponding graph has an 
angle

wϕ−
relative to the 𝜏𝜏-axis, where sin / 0.6

w
w cϕ−

= − = − . So, at

the end of the process, when his internal clock reads 𝜏𝜏 = 10 years, (as 
known from Sec. 4.1), it follows that the parameters on KT for this 
event equals xT /c = -7.5 years and tT = 12.5 years. Thus, the red line 
fully describes the total journey of the earthbound twin relative to KT 

To follow the travelling twin, we look at the blue lines in Figure. 5. 
For the first four years he remains at the origin of KT. When 𝜏𝜏 = 4, 
(and xT = 0, tT = 4) there is an abrupt change in his velocity, and the 
blue line for 𝜏𝜏 ≥ 4 illustrates his return. Then he has a velocity w 
relative to the earth’s RF, K. Further, the speed between K and KT 
also equals w. Now applying the rule for adding velocities in special 
relativity (e.g. Eq. (4.15 of [5]), the returning twin will have the 
following velocity relative to KT: 

2 2

2
1 ( / ) 1 ( / )

w w wu
w c w c

− −
= = −

+ − +
 (10) 

Inserting w/c = 0.6 here, gives u/c = −15/17. So, for the return travel 

(𝜏𝜏 ≥ 4) the blue graph has an angle, 𝜑𝜑u given by sin 𝜑𝜑u= 𝑢𝑢/𝑐𝑐 = 
−15/17. This fully describes the direction of the blue graph for 𝜏𝜏 ≥ 4.

Further, his journey ends when 𝜏𝜏 = 8 years, (as also known from Sec. 
4.1). 
We observe that the location on KT where the two twins are reunited 
is given by xT /c = -7.5 years, and the clock reading on KT equals tT = 
12.5 years; which also equals the total length of the blue graph. 

Figure 5) Event graphs in the perspective of the travelling twin’s RF on his 

travel to the star. 

4.3 A symmetric approach: Finally, we consider an alternative 
journey, providing symmetry between the two twins. We apply the 
same RF, K as in Sec. 4.1, and start out exactly as in that example; 
Figure. 3 giving an illustration. The travelling twin (blue graph) 
travels to the star and according to his own clock arrives there after “4 
years”. In the present example he remains there until the brother 
arrives; see DE Figure 6. 

Figure 6) Event graphs for the two twins; now reunited at the star. 

The other twin (red graph) remains on the earth in 5 years, (OD* ). 
Then he starts out to the star, with the same velocity as the brother; 
thus, according to his own clock, arriving there 4 years later. So, 
according to the stationary clocks on K it has passed 5 years since he 
left, (DE and D*F). By the reunion, the time on K equals t = 10 years. 
According to their own clocks, however, the twins agree that it has 
passed 𝜏𝜏 = 9 years. 

CONCLUSION 

The suggested graphical approach provides a useful tool to illustrate 
the movement of an object with piecewise constant velocity. It gives 
all relevant time/space parameters, and in particular, this event graph 
demonstrates how calendar time, t is decomposed into its two 
components, proper time, τ, and spatial distance (in time units), x/c. 
Also, the object’s current velocity, w is visualized. The graphs are, for 
instance, useful for investigating ‘parallel processes’; here exemplified 
by applying variants of the twin paradox. These examples illustrate 
both the effect of different ‘perspectives’, (i.e. choices of reference 
frame), and also different strategies for the reunion of the twins. It 
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thereby supports the comprehension of the phenomenon under 
investigation 
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