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Electrospinning is a very attractive fibers fabrication technique due to the
ability to produce nanoscale materials and structures with outstanding
properties. As drug delivery systems it offers nanofiber meshes with high
surface/volume ratio, high porosity and high surface exposed to the release
media. The biologically active substances/drugs can be encapsulated into
the individual polymeric nanofibers by coaxial or monoaxial

electrospinning or, by another approach by which the biologically active
substances can be entrapped and attached as nanoparticles to the nanofiber
mesh. As antimicrobial/antioxidant materials for biomedical applications,
the electrospun formulations containing silver nanoparticles are presented.
As coating materials for food packaging, electrospun nanofibers
containing chitosan formulations with antibacterial/antioxidant/antifungal
properties are discussed.
KEYWORDS: Electrospinning; drug delivery; coating; antibacterial;
antioxidant; antifungal.

INTRODUCTION

Nowadays, nanomaterials and nanoparticles are used for many
applications with benefits for our current life [1-3]. One method by which
nanostructures can be obtained is electrospinning, a very efficient fibers
fabrication technique due to the ability to produce nanoscale materials and
structures [4,5] with high porosity and high specific surface area [6]. Also,
the three-dimensional nanofibrous network allows the electrospun fibers to
resemble native extracellular matrices [7]. By choosing the base polymer
they can be easily designed to have enhanced mechanical properties,
biocompatibility, and cellular response, making them a good choice to be
used in nanocomposites materials applicable in the medical field [8]. The
biomedical field is one of the most important application areas that utilizes
the technique of electrospinning such as: tissue engineering [9], growth
factors [10,11], cardiovascular tissue engineering [12], bone tissue
regeneration [13], drug release systems [14], wound healing, etc. [15].
Electrospinning can produce a macroporous scaffold comprising randomly
oriented or aligned nanofibers which may incorporate a drug delivery
function into the fibrous scaffold. Such electrospun nanofibrous scaffolds
may provide also an optimal microenvironment for the seeded cells [16].

The basic electrospinning set-up is mainly comprised from four main
parts: a syringe containing a polymer solution, metallic needle, power
supply source, and metallic collector (with a variable design) (Figure 1a)
[17]. The high direct voltage (0 to 30 kV) is applied between the metallic
collector and the syringe needle. The polymer solution is extruded through
the needle tip and at the point of ejection from the needle, a polymer jet is
created and extended as a result of the electric charge repulsion outrunning
the solution surface tension [18]. The polymeric solution jet flows toward
the metallic collector with simultaneous evaporation of the solvent,
followed by the deposition of a mat of nanofibers on the collector surface.
When nanoparticles are deposited instead of nanofibres the process is
usually called electrospraying [19].

In this review, recent drug delivery nanostructures based on electrospun
nanofibers (such as eletrospun meshes containig sulfadiazine modified
chitosan nanoparticles) are presented together with recent applications of
electrospun formulations containing silver nanoparticles as antimicrobial/
antioxidant materials for biomedical applications. Also, recent electrospun
coatings based on chitosan fomulations for antibacterial/antioxidant/
antifungal food packagings are presented.

EXPERIMENT

Drug releasing systems
The requirements of the controlled drug release involve the delivery of

controlled amounts of a drug, over a specified period of time and target,
with a predictable and controllable rate [20-22].

Compared with other dosage forms, several advantages of the use of the
electrospun polymer nanofibers have been recognized. Therapeutic
compounds such as lipophilic and hydrophilic drugs, proteins or
antimicrobial agents [23] can be incorporated into the nanocarrier
polymers using monoaxial or coaxial electrospinning. Electrospun
scaffolds have gained an exponentially increasing popularity because of
their ultrathin fiber diameter, high surface-volume ratio, high porosity and
high surface exposed to the release media [21]. Thus, the electrospun/
electrosprayed nanoporous structures provide very short diffusion length
[24,25] and more rapid substance transfer [26] for drug release in
comparison with drug-loaded films or capsules. The drug release profile
can be tailored by controlling the morphology and the porosity of the
nanofibers and also the composition of the fibers [6]. Additionally,
electrospun nanofibers can be coated [27] onto various substrates and
medical devices [28].

Nanofibers offer an option for the treatment of skin damages as tissue-
engineered skin substitutes which can help skin reconstruction [29]. In this
case, the drug enclosed into the nanofibers mesh will be released by
different mechanisms when the nanofibrous mesh is swollen, biodegraded
[30] and/or absorbed by the human body. An effective wound dressing
system will give a large initial burst release of the drug [31] which is
important to stop the growth of the bacteria especially in the early stage of
the wound healing process [32]. The burst must be followed by a long
term release at inhibitory level [31]. The continued low release rate should
keep the wound free from infections for days or weeks [33].

According to literature data, the biologically active substances/drugs can
be encapsulated into the individual polymeric nanofibers by (a) coaxially
[34] or (b) monoaxially [35] electrospinning of the active substance and
the polymer [36] (Figure 1c). In another approach the biologically active
substances can be (c) entrapped and attached as nanoparticles to the
nanofiber mesh.
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(a) Coaxial electrospinning – (Figure 1b) can be used to encapsulate drugs
or biologically active substances inside the individual polymer nanofibers
[37]. In a common process, two (or more) polymer solutions are
electrospun through different coaxial capillary channels (needles) (Figure
1b), resulting in a core–shell-structured composite nanofiber. The shell
polymer, after the electrospinning, acts as a barrier to control the release
of the loaded molecules [38]. If the shell fluid is able to be processed by
electrospinning, the core fluid can either be or not be electrospinnable. An

advantage of this method is the possibility to enclose almost any drugs
(especially hydrophobic ones) in the core regardless of drug–polymer
interactions. Hence, drugs [39], proteins [38] and growth factors [24] and
even genes [40] can be incorporated into nanofibers simply by dissolving
them in the core solutions. A drawback of the coaxial electrospinning
comes from the differences in the physical properties of the core and shell
solutions conductivities and viscosities of the two solutions.

Figure 1 Experimental set-up of the basic electrospining set-up (a), coaxial (b) electrospinning and the working scheme (c).

(b) Monoaxial electrospinning – (Figure 1a) simply encapsulates the
biologically active substances/drugs within the individual nanofibers by
dispersing/mixing them into the polymer solution. The obtained mixture is
further electrospun through a single needle system [41]. Using this
method, electrospun nanofibers of chitosan/polyethylene oxide [42] and
chitosan/polyurethane [43] were obtained, containing silver sulfadiazine
with good antibacterial activity against both Gram-negative and Gram-
positive bacteria. In acidic medium the release of silver sulfadiazine from

chitosan beads is governed by chitosan erosion [44] or even disintegration
[45]. The release of silver sulfadiazine from chitosan/chondroitin sulfate
films at neutral pH occurred by a sustained release (over a period of days)
[46].

Dimensions of the electrospun fibres are comparable with those of natural
collagen and vary with type of electrospun material and parameters of
electrospinning – Table 1 [23].

Table 1 Dimensions of some morphological units identified in SEM images (some comparable with those of natural collagen
[14,18,30,34,42,43].

Sample Average nanofibres diameter (nm) Reference

Chitosan

Sulfadiazine modified chitosan inner needle 32 ± 10 nm [42]

Sulfadiazine modified chitosan outer needle 30 ± 10 nm [42]

Sulfadiazine modified chitosan/chitosan mixture uniaxial 35 ± 10 nm [42]

PLA/Vitamin E/silver 140 ± 60 nm [43]

PCL/ THF:DMF (1:1) 500-900 nm [18]

PU /DMF, 3.8-12.8wt% 60-800nm

pHEMA/Monomer 315 ± 140nm

Vancomycin-Loaded Electrospun Rana chensinensis Skin Collagen/Poly(L-
lactide) Nanofibers

500 ± 800 nm [30]
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Poly(lactic acid-co-glycolic acid) (PLGA) 1000-1800 nm [14]

Core/sheath structured composite nanofibers with a core of blended salicylic
acid (SA) and poly(ethylene glycol) (PEG) and a sheath of poly(lactic acid)
PLA)

300-3000 nm [34]

(c) Besides encapsulating the biologically active substances/drugs into the
individual polymeric nanofibers by coaxially or monoaxially
electrospinning, there is another approach by which the active substances
can be entrapped and attached as nanoparticles to the polymeric nanofiber
mesh. This can be achieved by simultaneous electrospinning the polymer
and electrospraying the active substance [49,50], spraying the active
substance into the electrospinning jet so that the particles containing the
active substance are attached to the fiber surface prior to deposition on the
mat [51], electrospraying the suspension containing the active substance
nanoparticles onto the previously electrospun nanofiber scaffold [30]. By
monoaxial electrospinning of the mixture of polymer and active substance
suspension through a single nozzle [52] or by coaxial electrospinning with
the nanofiber polymer solution flowing through the central nozzle and of
the colloidal suspension of the active substance through the outer nozzle
which generates a nanofibers mesh covered with active nanoparticles, co-
deposited from colloidal suspension during the process of electrospinning
[53] can be obtained.

An advantage of the nanostructures with active substances entrapped and
attached as nanoparticles to a polymeric nanofiber mesh is the improved
availability of the active substances to the targeted medium, in comparison
with the corresponding systems with fibers containing inside the active
nanoparticles [54,55]. As was previously shown, the required burst release
can be easily achieved when a major part of the active nanoparticles
entrapped into the nanofibrous mesh is exposed at the fiber surface [56].

It is known that the chitosan enhances the wound healing [57] favoring
fibroblast attachment [58] and re-epithelialization [59] of the wound.
Thus, a chitosan nanofiber mesh is a good candidate for wound healing
systems also due to chitosan biocompatibility, antibacterial, and antifungal
[60] activities. Considering these excellent properties of the chitosan, high
molecular weight chitosan nanofibrous structures having attached active
nanoparticles of sulfadiazine (a well-known antibacterial agent [61] used
in the treatment of wound infections [62]) or sulfadiazine modified
chitosan (which was found to have enhanced antibacterial properties
[63-65]) were obtained [47] by mono-axial and coaxial electrospinning.
The sulfadiazine or sulfadiazine modified chitosan nanoparticles loosely
attached at the surface of the nanofibers, could provide a burst release in
the first 20 min (in phosphate buffer solution of pH 6 at 37°C ) which is
important to stop the possible initial infection in a wound, while the
sulfadiazine or sulfadiazine modified chitosan from the nanoparticles
which are better stuck (or even encapsulated) into the chitosan nanofibers
were slowly released with releasing mechanism governed by the erosion/
disruption of the chitosan nanofiber mesh. Thus, the fiber forming high
molecular weight chitosan [66] assured the formation of the nanofibrous
mesh while the sulfadiazine or sulfadiazine modified chitosan both in the
form of a relatively stable suspension assured the formation of the active
nanoparticles attached to the chitosan nanofiber mesh.

Electrospun formulation containing silver
nanoparticles as antimicrobial coatings for biomedical
applications
Silver nanoparticles (AgNPs) can be used as a broad-spectrum
antibacterial agent for both Gram positive and Gram negative bacteria in
biomedical and food packaging applications. Because of their high
reactivity originating from the large surface to volume ratio, the AgNPs
can effectively eliminate bacteria and yeasts even at rather low
concentrations [67]. Furthermore, antibacterial activity of silver
nanoparticles was found to be dependent on the size of silver particles,
since the only nanoparticles that present a direct interaction with the

bacteria preferentially have a diameter of approximately 1-10 nm [68].
The smaller particle size provides improved antibacterial activity [69].

Antibacterial property of electrospun nanofibers containing AgNPs was
reported by numerous studies such as polylactic acid/AgNPs fibers against
Staphylococcus aureus and Escherichia coli [70], poly(ethylene oxide)/
AgNPs fibers intermixed with polyurethane fibers against Escherichia coli
[71], polyacrylonitrile/ AgNPs fibers against Gram positive Bacillus
cereus and Gram negative Escherichia coli micro-organisms [72], and
Nylon-6/AgNPs nanofibers against both Gram negative Escherichia coli
and Gram positive Staphylococcus aureus [73].

Antioxidant activity of vitamin E, a fat soluble antioxidant [74] was
combined with antibacterial property of AgNPs in electrospun polylactic
nanofibers in order to obtain multifunctional biomaterials. The polylactic
acid/ AgNPs /vitamin E nanofibers inhibited growth of Escherichia coli,
Listeria monocytogenes and Salmonella typhymurium up to 100%. The
release rate of silver ions from the nanofibers immersed in aqueous
solution was kept approximately constant even after 10 days of
immersion. The polylactic acid/ AgNPs /vitamin E nanofibers had
antioxidant activity and the results of the tests on fresh apple and apple
juice indicated that the polylactic acid/ AgNPs /vitamin E nanofiber
membrane actively reduced the polyphenol oxidase activity. These
materials could find application in food industry as a potential
preservative packaging for fruits and juices [48].

As was previously shown due to their intrinsic flexibilty, the electrospun
nanofibers can be coated onto various medical devices [28] which require
the flexibility of the coated layer. Bioactive formulations containing
polyurethane and small amounts of biocompatible polymers (hydrolyzed
collagen, elastin, hyaluronic acid or chondroitin sulfate, and silver
nanoparticles) were coated by electrospinning onto pure polyurethane
membrane in order to study the possibility of improving the antibacterial
properties of the polyurethane urinary catheters. The obtained coated
polyurethane membranes had good antimicrobial activity against
Escherichia coli, Salmonella typhymurium, and Listeria monocytogenes
[75]. The same authors have shown that the AgNPs improved the
electrospinability of the polyurethane bioactive formulations. At low
content of AgNPs (less than 0.3%) the coated formulations had high cell
proliferation and good biocompatibility having the advantage of adding
low amounts of bioactive and biocidal components [76].

Antibacterial/antioxidant/antifungal electrospun
coatings for food packaging
Efforts are being made to increase the storage and shell life of food by
using active antimicrobial packagings. The antibacterial agents may be
coated onto the packaging material [77,78]. Due to its known antibacterial
activity chitosan was also used to obtain antibacterial coatings [79] or
used to encapsulate/incorporate another antibacterial agent [80] in order to
improve the antimicrobial activity of the coating [81]. Various procedures
have been proposed for coating the antimicrobial agent: spraying
(nebulisation) [82], lamination [79], immersion, etc. [83,84].

One way to perform the coating of the active agent is the electrospinning
method due to several advantages: besides the high specific surface area,
the very thin thickness of the coated (deposited) layer which can be easily
control by the changing of the deposition time or of the flow rate with the
possibility to obtain very thin coatings which in some cases are enough to
obtain the desired antibacterial effect [27,85].

Plasticizers are added to the coatings to overcome the brittleness exhibited
during packaging formation [80] and to improve the flexibility and
processability. It is known that polymer nanofibers and have higher yield
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strength and especially higher ductility than the corresponding bulk
material [86,87] due to low nanofiber crystallinity resulting from rapid
solidification of the ultrafine electrospun jets [88,87]. Thus it is expected
that the nanofibrous electrospun coating layers will have the needed
flexibility during the package formation/life time without the plasticizer
addition.

Polyethylene films chitosan-coated by electrospinning had good
antimicrobial activity against food pathogen microorganisms as Gram-
positive (Listeria monocytogenes) or Gram-negative (Escherichia coli,
Salmonella) [26]. The addition of vitamin E to the coatings improved the
aspect, smell, pH, reaction with H2S and total number of germs for
minced poultry meat packaging [85]. Polylactic acid films coated by
electrospnning with formulation containing chitosan had excellent
antifungal activities against Aspergillus brasiliensis, Fusarium
graminearum, Penicillium corylophilum [89].
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