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Analytical solution of the steady Navier-stokes equation for a fluid 
entrained by a rotating disk of finite radius using the apparatus of 

tunnel mathematics
O. G. Shvydkyi

only to the volume of the fluid enclosed in a cylinder of approximately unit 
radius of height z1 (whereг z1 is the height at which the fluid moves in the 
horizontal mainly radial direction on Figure 2).

The solution implies obtaining analytical expressions (formulas) for 
three components of velocity and pressure in cylindrical coordinates. 
Numerical methods are not applicable. The formulas for the velocity 
components are derived from the relations of tunnel mathematics since the 
latters are satisfied by all vector fields (including those obeying the Navier-
Stokes equations). In this case unnecessary solutions are inevitably obtained 
and must be cut off by means of a physical analysis of the task at hand. The 
Navier-Stokes equation is then used for verification of obtained solutions 
and calculation the pressure.

Just as for an infinite disk the solution of the problem for a fluid 
entrained by a rotating disk of finite radius will be symmetric with respect to 
the φ coordinate. Figure 2 schematically shows fluid streamlines in one of 
the planes parallel to the z axis. 

Tunnel mathematics equations are applied to the components of the 
vector velocity field in Cartesian coordinate system. They look like this [3]:
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INTRODUCTION

The exact solution of the problem indicated in the title of the article for an 
infinite disk is given in the manual on theoretical physics of Landau and 

Lifshitz (the problem was formulated by Karman) [1]. There this problem 
was reduced to solving a system of second-order ordinary differential 
equations which was obtained by numerical methods using a computer [2]. 
The results of this solution are shown in Figure 1.

The solution of a similar problem for an infinite disk in the manual of 
Landau and Lifshitz.

In Figure 1 the function F corresponds to the radial velocity vr, the 
function G to the circular velocity vφ and the function H to the projection 
of the velocity vz.

In this case, the disk is located in the plane z = 0 of cylindrical coordinates 
and rotates around the z axis with a constant angular velocity Ω. The liquid 
is considered from the side of the disk where z > 0. The boundary conditions 
for the problem are as follows:

In the plane z = 0 vr = 0; vφ = Ωr; vz = 0. (1)

Solution of the problem for a disk of finite radius using the apparatus of 
tunnel mathematics.

This article provides a solution to a more realistic physical problem when a 
rotating disk has a finite radius (relatively equal to one). The solution applies 
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ABSTRACT
As is known, if the nonlinear terms in the Navier-Stokes equations for a 
viscous fluid do not vanish identically then the solution of these equations 
presents great difficulties, and exact solutions can be obtained only in a very 
small number of cases. Concerning unsteady Navier-Stokes equation, T. 

Tao in his article showed that it can have solutions which turn out 
infinite during finite time (blowup solutions). And if even finite 
solutions exist they are presented in view of infinite series, that is 
inconvenient for use in practice. That`s why it is reasonable to seek 
solutions of steady Navier-Stokes equation in view of elementary functions. 
Such possibility the equations of analyticity of functions of the spatial 
complex variable (shortly, the equations of tunnel mathematics) represent 
since all vector fields, including those obeying the Navier-Stokes 
equation, satisfy to them. The Navier-Stokes equations themselves are 
then applied for verification of obtained solutions and calculation the 
pressure. 
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Figure 1) Solution of the problem for an infinite disk using numerical methods. Figure 2) Fluid streamlines in one of the planes parallel to the z axis.
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The components of the velocity field in expressions (2-4) are 
set as follows:

x y zV  u;  V  v;  V  Rew, (5)= = =                (5)

Moreover, the functions u, v, w are components of the function of the 
spatial complex variable:

P(L) = u(x, y, z) + iv(x, y, z) + fw(x, y, z). (6)

As usual the fluid is considered as incompressible:
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Taking into account (7) we obtain from equations (2-4):
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The function w is an analytic function of the variables x and y and, 
therefore, a harmonic function on the xy plane. So, we can impose:
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Any vector fields including those obeying the Navier-Stokes equations 
satisfy relations (2-4).

Taking into account the symmetry in the φ coordinate the Navier-Stokes 
equations in cylindrical coordinates take the following form:
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where g is the gravitational acceleration;

P – pressure in fluid;

µ - coefficient of dynamic viscosity;

ρ - fluid density.

Due to the fact that the Laplacian of the analytic function w is equal to 
zero the equations of tunnel mathematics describe a fluid that moves along 
the z axis without internal friction, i.e., as an ideal fluid (this is a feature of 
this method). Taking this into account we can obtain the following form of 
the function w from equations (5), (9) and (12):
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To comply with the dimension expression (13) must be written in the 
following form:
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where [С0] = m/s, [r0] = m; we can impose r0 = 1 m.
We find after differentiating (14):
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Expression (16) uses the following relations of tunnel mathematics for 
the operator f and its conjugate operator f* [3]:
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Special attention should be paid to the operator f since the factor at it 

will be used to reconstruct the spatial coordinate z in the equations on the 
plane (that corresponds to the relation (6)). We can see from equation (16) 

that this factor is 1/r (we omit term depending on φ).

Generally speaking, the complex function w must be selected in such a 
way that its real part meets to the picture of occurring physical phenomena 
(i. e. to the projection Vz of the velocity field in Figure 2), and the integrating 
of relations (2) and (3) does not generate integrals that could not be solved 
in quadratures.

The form of the real part of the function w according to expression (14) 
is shown in Figure 3.

It can be seen from the graph shown in Figure 3 that the radius of the 
rotating disk should be equal to one (relatively). For r > 1 the fluid streamlines 
are already rising.

This form of the real part of the function w is inapplicable in the vicinity 
of the point r = 0 since the graph goes to infinity.

Transforming relations (2) and (3) to cylindrical coordinates and taking 
into account expressions (8) and (9) we obtain:
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When deriving equations (20) and (21) the well-known formulas were 
used for the transition from Cartesian velocity projections to cylindrical 
ones:

cos sin ; (22)
sin cos . (23)

r

r

u v v
v v v

ϕ

ϕ

ϕ ϕ

ϕ ϕ

= −

= +
Since in the region under consideration (Figure 2) the liquid moves 

horizontally (mainly radially) when solving equations (20) and (21) we can 

put w = 0. In equation (21) we work with the real part of the derivative v
z
∂
∂
. By

integrating these equations under such conditions we obtain two solutions 
for each of the projections of the velocity v

r
  и vφ. The solutions that meet

to the physical picture of the phenomena of this problem (particularly the 
boundary conditions (1)) are as follows:

; (24)
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v r

v
r

ϕ

σ
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Where σ is a constant of integration.

Expression (25) holds since the solution hasn`t have a dependence on 
φ, and we work with the assumption (9). Expression (25) is true for r > 1, 
however, it doesn`t work for r → 0 (it tends to infinity). That`s why it need 
a correction.

Extension of solutions on a plane into space

To extend solutions (24) and (25) into space we use the factor at the operator 

Figure 3) The graph of the real part of the function w (C0 = 0.05 m/s).
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f in equation (21):

( ) 1, , (26)r z
r

Φ =

Where Ф(r, z) is a function of coordinates r and z.

The specific form of the function Ф(r, z) for the projections of the 
velocity vr and vφ is determined from the integral relations representing 
the corresponding mass fluxes of fluid through the surfaces of the cylinder 
covering the region in question (Figure 2).

For radial velocity

So, for the projection 
rv  the following integral relation is used:

, (27)z rv rdr v dz=∫ ∫
Where the integral on the left-hand side represents the mass flux 

entering through the upper end of the cylinder and the integral on the right-
hand side represents the mass flux that is scattered through the side surface 
of the cylinder.

Taking into account equalities (5), (13) and (25), we can write the integral 
relation (27) in following manner:

1 , (28)rlogrdr dz
r

=∫ ∫
Where constants omitted.

Accordingly (26), the presence of the factor 1
r

in the right-hand side of 

(28) is sufficient for building of spatial formula. In order to the integral in the 
right-hand side of (28) doesn’t depend of changing the variable of integration 
z by r, both variables r and z should enter in the expression for radial velocity 

rv  symmetrically. Then formula (25) can be extended into space as follows:

1

; (29)r
rz rzv log
C C

= −

Where the range of r is (0; 1]; the range of z is (0; z1].

Constants С and С1 are introduced into formula (29) for dimensional 
compliance. Moreover [С] = m×s, this constant is related to the viscosity of 
the liquid. And [С1] = m2, this constant has the dimension of area; it can be 
used to adjust the height z1. For simplicity we can put 

С = 1 m×s, С1 = 1 m2.

Spatial and plane graphs for the functions 
rv  from formulas (29) and

(25) are shown in Figure 4 and 5 respectively.

These graphs meet to the picture of physical phenomena arising during
the rotation of a disk in a liquid for the following reasons. Let us consider 
from above the motion of a liquid over a disk at rest in a non-inertial frame 
of reference for a small value of the z coordinate, when the cohesion forces of 
liquid molecules with the disk surface still have a noticeable value (Figure 6).

Coriolis forces kF ϕ


due to the circular velocity 'vϕ


 (the prime means 

movement in a non-inertial frame of reference) will be directed to the origin 

of frame of reference and thus will prevent the increase in radial velocity '
rv


under the action of centrifugal forces öáF


. At the same time the Coriolis

forces krF


 due to the radial velocity '
rv


 will contribute to an increase in 

absolute value of the circular velocity 'vϕ


. As a result of such a dynamic 

picture the radial velocity '
rv


having reached its maximum will gradually 
decrease to zero which corresponds to the graphs shown in Figure 4 and 5.

A similar picture for the same reasons will be observed as the z coordinate 
increases while the r coordinate remains constant. In this case the radial 

velocity '
rv


 begins to increase due to the weakening of the cohesion forces 
between the liquid molecules and the disk surface.

This dependence of the radial velocity component vr on the coordinates 
r and z can also be explained by energy considerations. If we return to the 
inertial reference system, then the appearance of a new component of 
velocity (radial) in it requires certain energy expenditures. Since the energy 
supplied to the disk for its rotation remains unchanged, an increase in the 
radial component of the velocity vr is possible only due to a decrease in the 
circular component vφ which in the inertial frame of reference will tend to 
retain its value. Therefore, the process of extinguishing the radial component 
vr in both directions, r and z, will inevitably occur in the liquid.

In this regard a natural question arises as to why in the manual of Landau 
and Lifshitz the radial velocity depends on the coordinate r according to the 
linear law [2]:

( ). (30)rv r F z= Ω

The point is that formula (30) really takes place for small values of 
the coordinate r. And since for an infinite disk (namely such a model is 
considered in the manual of Landau and Lifshitz) any value of r in principle 
can be considered small, then formula (30) has a full right to life. It is of 
course inapplicable for a disk of finite radius.

Since in the region under consideration in Figure 2 the liquid moves 
horizontally (mainly radially), then the projection of the particle velocity on 
the z axis is zero (vz = 0), and therefore Liouville’s theorem on the invariability 
of the phase volume of a system of particles is satisfied automatically [4]. The 
fivefold integral r zdrdzdv dv dvϕ∫  is identically equal to zero.

It should also be noted that in accordance with the graphs in Figure 4 
and 5 for r > 1 the fluid streamlines must abruptly change the direction of 
motion so that the vector of the total velocity makes an obtuse angle with the 
r axis as shown in Figure 2.Figure 4) Spatial graph for formula (29).

Figure 5) Plane graph for formula (25).

Figure 6) Motion of a liquid over a disk at rest in a non-inertial frame of reference for a 
small value of the z coordinate.
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For circular velocity

Now let us extend into space the formula (24) for the circular velocity vϕ . In 
this case the following integral relationship applies:

. (31)v zdr constϕ =∫
Relation (31) reflects the fact that the mass flux of liquid in the direction 

of the φ axis through any rectangular section one of the sides of which 
being the axis of the cylinder in question (Figure 2) remains constant (this 
impulse never leaves the side surface of the cylinder). Applying formula (24) 
to expression (31) it is easy to obtain the following relation for reconstructing 
the z coordinate:

. (32)constr
z

=

Using relation (32) formula (24) can be extended into space as follows:

0

, (33)
1

rv
z
z

ϕ
Ω

=
+

Where 
0z  is a normalization factor that is introduced to comply with

the dimension.

Figure 7 shows a graph of the dependence of the circular velocity vϕ
on the z coordinate. It is in principle similar to the corresponding graph in 
Figure 1 presented in the manual of Landau and Lifshitz.

Verification of the obtained solutions and finding the auxiliary relations

We can at once verify using the true Navier-Stokes equations the solutions 
(29) and (33) that have been expanded into space by means apparatus of
tunnel mathematics. Simplest way to do this is to use equation (11) since it
doesn’t contain the pressure P. Substituting solutions (29) and (33), and real
part of relation (14), and their corresponding derivative into equation (11) we 
conclude following important auxiliary relation for z coordinate:

0
0

3 3 . (34)
2 2z

z rv C log
r

µ µ
ρ ρ

= − = −

Obtaining relation (34) we imply that magnitude 
0z  are small enough

(this assumption will be proved below at calculation the friction force acting 
in a fluid per unit disk surface in a direction perpendicular to its radius). 
Relation (34) connects the important quantities for fluid, such as coefficient 
of dynamic viscosity µ, fluid density ρ, and vz which we set manually in this 
method.

Observing auxiliary relation (34), we see that selecting proper value for 

0C  one can regulate magnitude of z coordinate on which the Navier-Stokes
equations work. We can conclude that for water (ρ = 1000 kg/m3, µ = 0.001 
Pa×s) working coordinate z must be significantly less than 1 meter (z << 1 m).

Also one can verify solutions (29) and (33) using equations (10) and (12). 
But firstly we must eliminate the pressure P from them. For this purpose, 
we integrate equations (10) by r, and equations (12) by z. After we subtract
equations (12) from equations (10) and, imposing 0

0

0,z
rv C log
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Where H is a depth on which the rotating disc is found; C and C1 are 
taken from (29); 0 z  is taken from (33); ( )2C z  is a constant of integration.

If coordinate z has small values (as for water, for example) and constant 
( )2C z  is appropriately selected, then we can significantly simplify auxiliary

relation (35):
2
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Where Ω is a disc angular velocity.

Calculation of pressure using the Navier-Stokes equations

Using this method, it is still quite difficult to obtain an exact analytical 
expression for pressure since, for example, equation (12) for projections of 
velocity on the z axis works only for an ideal fluid.

The approximate formula for the area under consideration in Figure 2 
looks like this:
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2 2
2 2
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2 2 2
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Formula (37) is obtained by integrating equation (10). In this case the 
corresponding derivatives were calculated using formulas (14), (29) and (33). 
Generally speaking, we must yet add to right-hand side of formula (37) the 
hydrostatic pressure ρg(H-z). In Figure 8 and 9 (in Figure 9 the previous 
graph is slightly rotated around the pressure axis for convenience) graphs 
corresponding to formula (37) are presented with using the following values 
of the constants:

2
1

0

0

0

 1 ;
 1 ;
 1 ;
 1 / ;
 0.05 / ;
 0.0001 .

Ñ m s
Ñ m
r m

rad s
Ñ m s
z m

= ×

=
=

Ω =
=
=

The graphs are calculated for water with a density ρ = 1000 кг/м3 and a 
dynamic viscosity coefficient µ = 0.001 Па×с.

As you can see the graphs shown in Figure 8 and 9 meet to the picture of 

Figure 7) Graph of the dependence of the circular velocity vϕ  on the z coordinate. Figure 8) Graph corresponding to formula (37)

Uzoagulu, et al.
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Figure 9) Previous graph slightly rotated around the pressure axis for convenience.

physical phenomena occurring in the analyzed area in Figure 2. We remind 
that the radius of the rotating disk is r = 1 m (relatively). Within this area 
at a fixed coordinate z a diminishing of pressure in the radial direction is 
observed what corresponds to the movement of the liquid in the horizontal, 
predominantly radial direction when the disk rotates. As the z coordinate 
progressively increases the pressure begins to increase what corresponds to 
the downward fluid flows shown in Figure 2.

In the thin boundary layer (very small z) the pressure slightly arises 
what corresponds the presence of a large tangential-velocity gradient in the 
boundary layer of fluid, resulting in a large viscous dissipation of energy [2].

Formula (11) where the pressure is absent due to symmetry along the 
φ coordinate can be used to calculate the friction force acting in a fluid 
including per unit disk surface in a direction perpendicular to its radius. 
Having performed the appropriate calculations, we obtain the following 
formula for the friction force:

0

0 0

. (38)
3 4ò ð z

v zz
F rv

z z zz z
ϕµ ρ

∂
= = Ω

∂ + +

Directing the z coordinate to zero in expression (35) we obtain an 
expression for the friction force acting on a unit surface of the disk in the 
direction perpendicular to its radius. To prevent this force from being equal 
to zero the normalization factor 

0z  must be sufficiently small. Therefore,
when plotting the graphs in Figure 8 and 9 its value was chosen 

0z  = 0.0001 
m. The small value of 

0z  corresponds to the feature of this method in which 
the movement of the fluid along the z axis occurs without internal friction.

CONCLUSION

The solution of the Navier-Stokes equations using the tunnel 
mathematics apparatus is simple and elegant, and also requires a good 
mathematical training and a deep physical analysis of the problem. This 
method does not require a writing of computer programs and can be used 
for the primary analysis of hydrodynamic problems. The results obtained 
using this method for a fluid entrained by a disk of finite radius meet to 
the results of a similar problem in the manual of Landau and Lifshitz solved 
using numerical methods.
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