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 OPINION 

Application of the radical method in solving indeterminate 
equations (groups) 

Liu Lushi 

INTRODUCTION 

f the solution sets of two equations (groups) have the same 
algebraic operation structure based on the equations (groups), the 

two equations (groups) are called isomorphic equations (groups), and 
their solution sets are equivalent. 

Proof 1 of Fermat’s last theorem 

Fermat’s last theorem: Given , , , ,x y z R n N


  when 3,n the 

equation 
n n n
x y z  has no rational solution. 

Proofing: From the equation, it can be obtained: 

    1
n n

x z y z   (1) 

Let /a x z , /b y z , then Equation (1) is transformed into 

1
n n
a b   (2) 

When 3n  , suppose the equation 
n n n
x y z  has rational 

solutions, then Equation (2) must also have rational solutions { , }a b , 

and any equation that is isomorphic to     1
n n
  must also have 

rational solutions. Otherwise, it conflicts with the supposition that 

Equation (2) has rational solutions. Let ab M , it is easy to know 

that when a and b are both rational numbers, 
M must be a rational. Solve Equation (2), and it can be obtained: 

1 1 4

2

1 1 4

2

n
n

n
n

M
a

M
b


  
 



  


    (without loss of generality, always let a b ) 
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ABSTRACT 
Fermat’s last theorem was proposed by the 17th century French 

mathematician Pierre de Fermat. He asserted that when the integer 

n>2, there was no positive solution for the equation.

However, Fermat did not write down his proof, while his other 
conjectures contributed greatly to mathematics. Therefore, it 
inspired many mathematicians’ interest in this conjecture. Their 
corresponding work enriched number theory and promoted its 
development. 
In 1995, Wiles proved that the theorem was valid when n>2. 
However, his process of proof is tediously long. It is said that only 
a few world-class masters can understand it, which is confusing. 
A perfect cuboid, also known as a perfect box, refers to a cuboid 
whose edge lengths, diagonals of faces, and body diagonals are all 
integers. The mathematician Euler once speculated that a perfect 

rectangle might not exist. No one has been able to prove that it does not 
exist. What’s a Hellen triangle? A Hellen triangle is a triangle whose sides 
and areas are rational numbers.
For thousands of years, triangles and their geometric properties have 
been studied intensively and thoroughly. With the understanding of Hellen 
triangles, people have found Hellen triangles with three integer heights 
and with three integer angle bisectors. However, Hellen triangles with 
three integer midlines have yet to be found.
After several years of research, the author discovered that the above 
three problems had commonalities and could be demonstrated using 
the same method. The same algebraic structure is the key to solving these 
three problems, such as: 

algebraically isomorphic. These two equations represent the same curve and 
are essentially indistinguishable. The above three problems can be solved with 
this property easily and concisely. 

Keywords:  Fermat’s last theorem; Perfect rectangles; Hellen triangles; Rational 

number solutions; Algebraic isomorphism 

3 2
yx ax bxc

3 2
y(x3)  a(x3) b(x3)cThe equations  and  are
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If (1 4 ) 0,
n

M  then 1 2 2 ,n na b  which is impossible when 3n  . 

Therefore (1 4 ) 0,
n

M  and (1 4 )
n

M must be the square of a 

rational number. Otherwise, a and b are always irrational numbers, 

which also conflict with the supposition. Then let 1 4 c
nnM           

(Any positive rational number can be written as the nth power of 
a positive number). 
From equation (3), it can be obtained: 

2 2( ) ( 2 ) 1
n nnc M  (4) 

Since equation (4) is isomorphic to ( ) ( ) 1,
n n
  there must be

rational number sets 
2 2{( ) , ( 2 ) } {a , }n

Q Q Q Qc M b
   

 (5) 

To make equation (4) have rational solutions when  3n  . However, 

when 3n  , and a and b are both rational number, the (c2) of 

equation (4) traverses all rational number sets {a },Q then  there 

always exists 2( 2 )n M not belonging to { },Qb 
which means that 

equation (4) does not have rational solution sets isomorphic to 
equation (2). It conflicts with the supposition that equation (2) has 
rational solutions (Figure 1). 

Therefore, when  3n  , the equation 
n n n
x y z  has no rational 

solution. 
QED. 

Figure 1) Graphic Solution 

Proof 2 of Fermat’s last theorem 

Fermat’s last theorem: Given , , , ,x y z R n N


  when 3,n the 

equation 
n n n
x y z  has no rational solution. 

Proofing: From the equation, it can be obtained: 

    1
n n

x z y z  (1) 

Let /a x z , /b y z , then Equation (1) is transformed into 

1
n n
a b  (2) 

 When 3n  , suppose the equation 
n n n
x y z  has rational 

solutions, then Equation (2) must also have rational solutions { , }a b , 

and any equation that is isomorphic to     1
n n
  must also have 

rational solutions. Otherwise, it conflicts with the supposition that 
Equation (2) has rational solutions. Let ab M , it is easy to know 

that when a and b are both rational numbers, 
M must be a rational number. Square the two sides of equation (2), 
and it can be obtained: 

2 2

2 2 2

2 2

2 1

2 1 2

( ) 1 2

n n n n

n n n n n n

n n n n

a a b b

a a b b a b

a b a b

  

   

  

 (3) 

Extract roots of the two sides of equation (3) simultaneously, and it 
can be obtained: 

21 2 ( )
n n n na b a b a b   

That is, 21 2 ( )
n n n na b a b a b     (4) 

21 2 ( )
n n n nb a a b a b   

21 2 ( )
n n n nb a a b a b     (5) 

 If 
2

(1 2 ) 0,
n n
a b  then 1 2 2n na b  , which is impossible when 3n   

Therfore 
2

(1 2 ) 0,
n n
a b  and 

2
(1 2 )

n n
a b must be the square of a 

rational number. Otherwise, a and b are always irrational numbers, 
which also conflict with the supposition. Then let 

21 2 n n na b c  (6) 

(Any positive rational number can be written as the n-th power of a 
positive number). 
From Equation (6), it can be obtained: 

2( ) ( 2 ) 1
n n nnc ab   (7) 

Since Equation (7) is isomorphic to there must be rational number 
sets     

2 2( ) ( 2 ) ,, nc ab a bQ Q Q Q
   
   

     

To make Equation (7) have rational solutions when 3n  . However, 

when 3n  , and a and b are both rational numbers, the 
2

( )C of 

Equation (7)  traverses all rational number sets  Qa  ,then there

always exists  22n ab not belonging to { },Qb 
which means that 

equation (7) does not have rational solution sets isomorphic to 
equation (2). It conflicts with the supposition that equation (2) has 
rational solutions (Figure 2). 

Therefore, whenever 3n  , the equation 
n n n
x y z  has no rational 

solution. 
QED. 

Figure 2) Graphic Solution 

Proof 3 of Fermat’s last theorem 

Fermat’s last theorem: Given , , , ,x y z R n N


  when 3,n the 

equation 
n n n
x y z  has no rational solution. 

(3)
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Proofing: From the equation, it can be obtained: 

    1
n n

x z y z   (1) 

Let /a x z , /b y z , then Equation (1) is transformed into 

1
n n
a b   (2) 

 When 3n  , suppose the equation 
n n n
x y z  has rational 

solutions, then Equation (2) must also have rational solutions { , }a b , 

and any equation that is isomorphic to      1
n n
  must also have

rational solutions. Otherwise, it conflicts with the supposition that 
Equation (2) has rational solutions. 
Suppose the following equation group 1 is tenable. 

1. 
1n n

n n n

a b

a b c


  

  

(3-4)                               

 (Any positive rational number can be written as the n th power of a 
positive number) 

From equation group 1, it can be obtained: 

2. 
2 1

2 1

n n

n n

a c

b c


  

  

 (5-6) 

Multiply equation (5) and (6), it can be obtained: 
2 2
2 1

n n n
a b c 

That is, 
2 22( ) ( 2 ) 1
n nc ab  (7) 

Since equation (7) is isomorphic to, there must be rational number 
set 

2 2{( ) , ( 2 ) } {a },{ }n
Q Q Q Qc ab b
   

 (8) 

To make equation (7) have rational solution when 3n  . However, 

when 3n  , a and b are both rational numbers, the 
2

( )c of equation 

(7) traverses all rational number sets {a },Q then there always exists

2( 2 )n ab not belonging to { },Qb 
which means that equation (7) does 

not have rational solution sets isomorphic to equation (2). It conflicts 
with the supposition that equation (2) has rational solutions (Figure 3). 

Therefore, when 3n  , the equation n n n
x y z  has no rational 

solution. 
QED.  

Figure 3) Graphic Solution 

There is no Perfect cuboid 
Euler great theorem: Given that Equation Group 1 is tenable, where 

1 2 3, , , , , ,a b c d l l l R


 , When 1 2,l l and 3l are all rational numbers,

Equation (4) has no rational solution. 

1 

2 2 2
1

2 2 2
2

2 2 2
3

2 2 2 2

a b l

b c l

c a l

a b c d


 

  

  

   

 (1-4) 

Proofing: Suppose that Equation (4) has rational solutions when 

1 2,l l and 3l are all rational numbers. From Equation Group 1, it can

be obtained: 

2

1

2 2 2
( 2 )2 3l l l d     (5) 

Multiply the two of Equation (5) by (abc)2, it can be obtained: 
2 2 2 2

1 2 3( ) (l ) ( ) ( 2 )l abc abc l abc abcd    (6) 

Multiply the two sides of Equation (4) by 
2

1 2 3( )l l l ,it can be obtained: 

2 2 2 2

1 2 3 1 2 3 1 2 3 1 2 3( a) ( b) ( c) ( d)l l l l l l l l l l l l    (7) 

Since Equation (4) has rational solutions when 1 2,l l and 3l are all

rational numbers, Equation (7) must also have rational solutions. 

Then any equation that is isomorphic to        
2 2 2 2
  

must also have rational solutions. Otherwise, it conflicts with the 
supposition that Equation (7) has rational solutions. 
Because Equation (6) is isomorphic to Equation (7), there must exist 
rational sets: 

( ) ,( ) ,( ) ( 2 )1 2 3l abc l abc l abc abcdQ Q Q Q
 
 

    

( a) ,( ) ,( c) ,( d)1 2 3 1 2 3 1 2 3 1 2 3l l l l l l b l l l l l lQ Q Q Q
 
 

    

However, the  ( ),( ),( )1 2 3l abc l abc l abc of Equation (6) traverse all

rational number set ( a) ,( ) ,( c)1 2 3 1 2 3 1 2 3l l l l l l b l l lQ Q Q
 
 

   
, then there 

always exists  ( 2 abcd) not belonging to  1 2 3( d)Ql l l  , which means 

that Equation (6) does not have rational solutions. 

Therefore, Equation (4) has no rational solutions when 1 2,l l and 3l

are all rational numbers.
It can be deduced form above that there is no Perfect cuboid 
(Figure 4). 

Figure 4) Graphic Solution 
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There is no such thing as a Hellen triangle with all three midlines 
being integers 
Hellen great theorem: Given that equation group 1. Is tenable, where 

, , , , , , .
a b c

a b c m m m S R


 When ,
a b

m m and
c

m are rational numbers 

simultaneously, Equation (4) has no rational solution. 

1. 

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

4 2 2 2 2 2 2 2 2

2 2 2
2 2 2
2 2 2
2 (a ) 2 a

a

b

c

m a b c

m b a c

m c a b

S c b c


  

   


  
    

 (1-4) 

Proofing: Suppose that equation (4) has rational solution when 
,

a b
m m

and 
c

m

are rational numbers simultaneously. It can be 

obtained from equation group 1. 
2 2 2 2 2 2 2 2 2
3 ( ) 2

a c b a c
S m m m m m     (5) 

Multiply the two sides of equation (4) by 
2 4 4 4

,
a b c

S m m m then it can be 

obtained: 
4 2 2 2 2 2 2 2 2 2 2 2

(2 S ) [(a ) ] (2 )
a b c a b c a b c

m m m c b Sm m m acSm m m     (6) 

Multiply the two sides of equation (5) by 
2 4 4 4

,S a b c then it can be 
obtained: 

4 2 2 2 2 2 2 2 2 2 2 2
( 3 ) [( ) ] (2 )

a c b a c
Sabc m m m Sa b c m m Sa b c     (7) 

Because equation (4) has rational solution when 
,

a b
m m

and 

c
m

are rational numbers simultaneously, there must exist rational 

solution sets
2 2 2 2 2 2 2 2 2

{(2 ),[( ) ],(2 )}
a b c a b c a b c

Sm m m a c b Sm m m acSm m m  to make 

equation (6) have rational solutions. Otherwise, it conflicts with the 
supposition that equation (6) has rational solutions. 

Since equation (7)is isomorphic to 
4 2 2

( ) ( ) ( )  must also have 
rational solutions. Then any equation that is isomorphic to

4 2 2
( ) ( ) ( )  , there must exist rational solution sets

2 2 2 2 2 2 2 2 2
{( 3 ) , [( ) S ] , (2 ) }

Q a c b Q a c Q
Sabc m m m a b c m m Sa b c

  
 

2 2 2 2 2 2 2 2 2
{(2 ) , [( ) ] , (2 ) }

a b c Q a b c Q a b c Q
Sm m m a c b Sm m m acSm m m

  
 

To make Equation (7) have rational solutions. However, the 

2 2 2 2 2 2 2 2 2( ) , (2 )m m m Sa b c m m Sa b c
a c b a c

    
   

of Equation (7) traverse 

all rational number set

2 2 2 2 2 2 2 2 2(a ) , (2 ) .a b c a b c Q
Q

c b Sm m m acSm m m 


 
   
  

 then there always 

exist   3 Sabc not belonging to {(2 ) },
a b c Q

Sm m m


 which means 

that equation (7) does not have rational solution sets isomorphic to 
equation (6). It comflicts with the supposition that equation (6) has 
rational solutions (Figure 5). 

Therefore, equation (4) has no rational solution when ,
a b

m m and 

c
m are rational numbers simultaneously. 

As can be seen from the above, there is no Hellen triangle with all 
three midlines being integers. 

Figure 5) Graphic Solution 




