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 RESEARCH 

Beauty in motion through the lens of doppler’s formula 
Ramzi Suleiman 

INTRODUCTION 

 eading mathematicians, physicists, philosophers, and other 
scholars have underscored the importance of mathematical 

beauty. Isaac Newton, Paul Dirac, Hermann Weyl, and Bertrand 
Russell, for example, glorified the experience derived from such 
beauty, comparing it with appreciating the greatest works of art [1-4]. 
Semir Zeki, a founding father of neuroesthetics, demonstrated in an 
fMRI study that, when mathematicians’ brains see an equation they 
consider beautiful, it activates the same part of the brain as when they 
perceive a painting or music as beautiful [5, 6]. 

Paul Dirac, an advocate of the importance of mathematical beauty in 
physics, believed that the beauty of a mathematical equation might be 
an indication that it describes a fundamental law of nature. In 
describing his method in theoretical physics, he wrote: “A good deal 
of my research work in physics has consisted in not setting out to 
solve some particular problem but simply examining mathematical 
quantities of a kind that physicists use and trying to fit them together 
in an interesting way regardless of any application that the work may 
have. It is simply a search for pretty mathematics. It may turn out 
later that the work does have an application. Then one has had good 
luck” [7]. Dirac believed that it is a feature of nature that 
“fundamental physical laws are described in terms of great beauty and 

power” [1]. A similar opinion was also expressed by Zelinger, who 
argued that the “mathematical beauty of the theory is a strong 
argument for its robustness.” Zelinger further argued that “we might 
expect that physical and mathematical structures would share the 
characteristics that we call beauty, and from an evolutionary 
perspective, the human sense of beauty could have evolved to find 
natural patterns pleasing” [8]. 

Beauty in motion 
The bulk of research on beauty in motion comes from dance, film 
and video, and kinetic art [9-14]. Although numerous scientific 
papers and books have been written on beauty in nature and in 
mathematical representations of natural phenomena, this author is 
not aware of any study in physics, mathematics, or other science 
devoted to beauty in motion itself [15-20]. This neglect is unjustified, 
given the fact that everything in the universe, at all scales, is in 
continuous motion. In cosmology and astrophysics, all observed 
structures are in continuous motion relative to us; further, 
information about cosmological objects and phenomena is deduced 
from light and other types of emitted waves. At the nanoscale, most 
information on small particle physics and quantum phenomena is 
deduced by information-carrying waves. The same applies to all 
phenomena at all scales. 
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ABSTRACT 
Despite ample research on beauty in nature and in mathematical 
representations of natural phenomena, we are unaware of studies 
in physics and mathematics devoted to the objective beauty 
induced by motion, regardless of the aesthetic qualities of the 
moving body. We undertake this objective by focusing on the 
Doppler formula, which describes the shifts in wave frequencies 
caused by the motion of the wave's source relative to a human 
observer or receiver. We uncover several fascinating golden ratio, 
and silver ratio symmetries, in the base formula and its 
mathematical moments. Furthermore, we allude to existing 

applications of the Doppler Effect in conjunction with the 
golden ratio in computer-generated music, and sonar image-
detection technology. We also propose a similar usage of golden 
ratio symmetries in the rapidly developing applications of Wi-Fi 
and smartphones to sense human motion. In addition, we point to 
appearances of the Doppler formula and its moments in 
quantum physics, and the relativity of information, and conclude 
by contemplating the possibility of a deeper level of physical reality. 

Key Words:  Doppler effect; Doppler formula; Mathematical beauty; Beauty 

in motion; Golden ratio; Silver ratio; Metallic ratios; Continued fractions; Penrose 

tiles; Electronic music; Sonar imaging; Doppler radar.      
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Here, we focus on the following question: Is there an intrinsic beauty 
in motion?  Since the bulk of information about the motion of 
objects, relative to observers and their measurement devices, are 
carried by sound or light waves, we inquire about the aesthetics of 
motion as mirrored by the Doppler formula. Our analysis hereafter is 
theoretical, but all its results are experimentally testable. 

The rest of this paper is organized as follows: In Section 3, we give a 
brief reminder of the Doppler effect and its formula. In Section 4, we 
uncover hidden harmonious beauties of the Doppler formula, with 
special attention given to symmetry properties and the appearances of 
golden and silver ratios in the Doppler formula and its mathematical 
moments. In Section 5, we uncover another source of beauty by 
showing that Fourier transforms of the base formula and its moments 
are simple sinusoids and remark briefly on practical application of the 
results in the design of linear systems. In Section 6, we present two 
existing applications of the aesthetics embedded in the Doppler 
effect, i.e., in computer-generated music and in sonar image-detection 
technology. We also propose similar usage in the rapidly developing 
applications of the Doppler shift in Wi–Fi and smartphones for 
sensing human motion. In Section 7, we allude briefly to other 
manifestations of the Doppler formula and its moments in other 
fields of physics. In Section 8, we conclude and contemplate the 
possibility of a deeper level of reality, at which the various fields in 
which the same equation appears are connected.   

Doppler Formula 
The Doppler effect is the phenomenon by which the frequency of a 
wave emitted from a source appears to be increased when the source 
and observer approach one another and decreased when they are 
receding from one another (as compared with the frequency of the 
same source when it is at rest with respect to the observer) [21, 22]. 

Herbert Dingle argued, “It is doubtful if there is a serious rival to the 
Doppler effect, as the department of modern science in which the 
experimental basis is slightest in comparison with the structure raised 
on it [23]. Most of our knowledge of stellar motions, including the 
characteristics of binary stars, the evidence for the rotation of the 
galaxies, and the whole phenomenon known as ‘the expansion of the 
universe’ consists of deductions from this one principle. It would be 
fair to say that, without it, cosmology would scarcely exist as a 
scientific subject” [23]. Since the above-cited paragraph was published 
in 1860, the volume of present research on the Doppler effect light, 
sound, seismic waves, and other forms of wave motion and its 
technological applications have soured up exponentially. 
Measurement of the Doppler redshift is now pivotal to cosmology 
and astrophysics. Redshift probes are essential in cosmological 
surveys, in measuring the rate of expansion of the accelerating 
universe, the structure and rotational velocities of galaxies and galaxy 
clusters [24-28]. In technology, the Doppler shift is used in medical 
ultrasonography, radars, sonars, Acoustic Doppler Current Profilers 
(ADCPs), and more [29-37]. 

For a receding source from an observer, the Doppler effect is 
captured by the Doppler formula  

𝑓𝑓𝑟𝑟 = 𝑓𝑓𝑠𝑠  𝑐𝑐−𝑣𝑣
𝑐𝑐+𝑣𝑣

  ,   (1) 

where 𝑓𝑓𝑟𝑟 is the measured frequency at the receiver, 𝑓𝑓𝑠𝑠 is the measured 
frequency at the source, c is the velocity of the signal relative to the 
medium between the source and the receiver, and v is the velocity of 
the source relative to the receiver. For an approaching source, the 
negative and positive signs should be interchangeable.  

Equation (1) could be rewritten as 

𝑓𝑓𝑟𝑟
𝑓𝑓𝑠𝑠

 = 
1−𝛽𝛽
1+ 𝛽𝛽

 ,     (2) 

where β = 
𝑣𝑣
𝑐𝑐
. 

Hidden beauty in the Doppler Formula 
The function in the right side of Eq. (2) has an apparent beauty. 
Interchanging the negative and positive signs in the nominator and 

denominator results in the inverse function 
1

(𝑓𝑓𝑟𝑟𝑓𝑓𝑠𝑠
)
. This apparent 

symmetry is the surfacing tip of more surprising beautiful symmetries. 

First, denote the ratio 
𝑓𝑓𝑟𝑟
𝑓𝑓𝑠𝑠

 by F(β), and allow 𝛽𝛽 to exceed unity, then 

for number α the function F(β) satisfies 

F(𝛽𝛽𝛼𝛼) = - F(𝛽𝛽− 𝛼𝛼).  (3) 

Proof: 

- F(𝛽𝛽− 𝛼𝛼) = - 1−𝛽𝛽
− 𝛼𝛼

1+ 𝛽𝛽− 𝛼𝛼 = - 𝛽𝛽
𝛼𝛼−1

𝛽𝛽𝛼𝛼+1
= 1− 𝛽𝛽𝛼𝛼

1+ 𝛽𝛽𝛼𝛼
 = F(𝛽𝛽𝛼𝛼) .   (4) 

As examples, for 𝛼𝛼 =1: 

F(1
2
) = 

1−12
1+ 12

= 
1−12
1+ 12

 = 1
3
 = - 1−2

1+ 2
 = - F(2),  (5) 

F( 1
√2

) = 
1− 1

√2

1+ 1
√2

 = √2−1
√2+1

 = - 1−√2
1+ √2

 = - F(√2).  (6) 

Second, it is easy to show that for any two real values a, and b of β: 

If F(a) = b, then F(b) = a  (7) 

Examples, F(0) = 1, and F(1) =0; F(
1
3
) =

1
2
, and F(

1
2
) =

1
3
; F(

2
3
) = 

2
10

, F(
2
10

) =
2
3

; and for a randomly picked number 0.214632, we have 

F(0.2146320) ≈  0.646589255, and F(0.646589255) ≈ 0.2146320. 

Third, define ₮𝑛𝑛(β) ≜ F(F(F(F(…F(β)))))), where n is the number of 
embeddedness; then, it could be easily shown by induction that 

₮𝑛𝑛(β) =   �
𝛽𝛽,    for  𝑛𝑛 = 2𝑚𝑚 

1−𝛽𝛽
1+ 𝛽𝛽

,    for 𝑛𝑛 = 2𝑚𝑚 + 1 
 (8) 

m = 0, 1, 2, 3,… 
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Fourth, more surprising symmetries pop up when we look at the 
moments of the function F(β), defined as 

𝐹𝐹𝑛𝑛(β)  =  𝛽𝛽𝑛𝑛F(β)  = 𝛽𝛽𝑛𝑛 1−𝛽𝛽
1+ 𝛽𝛽

,       β ≤ 1, n integer n, n ≥ 1.  (9)     

Figure (1) depicts the moments 𝐹𝐹𝑛𝑛(β) for selected n values (n ≥ 1). As 
the figure shows, for all n ≥ 1, the functions {𝐹𝐹𝑛𝑛(𝛽𝛽)} are positively 
skewed with unique maxima acheived at points 𝛽𝛽∗𝑛𝑛.  Also, as n
increases, the points of maxima shift right-wise, with corresponding 
decrease in the maxima, such that for n→∞, 𝛽𝛽∗∞ → 1,  𝐹𝐹𝑛𝑛(𝛽𝛽∗) →0.

Figure 1) 𝐹𝐹𝑛𝑛(β) for selected integers (n ≥ 1) 

To calculate the points of maxima and their corresponding maximum 
values, we derive  𝐹𝐹𝑛𝑛(β) with respect to β and equate the derivative to 
zero, yielding 

 n 𝛽𝛽2 + 2 β  – n =0 ,  (10) 

which solves for 

𝛽𝛽∗𝑛𝑛 = √𝑛𝑛
2+1−1
𝑛𝑛

 .   (11) 

With corresponding maxima points equaling 

𝐹𝐹𝑛𝑛(𝛽𝛽∗𝑛𝑛) = �√𝑛𝑛
2+1−1
𝑛𝑛

�
𝑛𝑛
 (
1−

�𝑛𝑛2+1−1 
𝑛𝑛

1+
�𝑛𝑛2+1−1 

𝑛𝑛

) = �√𝑛𝑛
2+1−1
𝑛𝑛

�
𝑛𝑛

 �√𝑛𝑛2 + 1 − 𝑛𝑛�    

= 1
𝑛𝑛𝑛𝑛

  (√𝑛𝑛2 + 1 − 1)𝑛𝑛 (√𝑛𝑛2 + 1 − 𝑛𝑛) = (𝛽𝛽∗𝑛𝑛)𝑛𝑛 (√𝑛𝑛2 + 1 − 𝑛𝑛) .       (12) 

Equations (11) and (12) reveal beautiful symmetries. For n = 1 𝛽𝛽∗1 =

√2− 1 = 𝛿𝛿𝑠𝑠(≈ 0.414213562373095), where 𝛿𝛿𝑠𝑠 is the silver ratio [38,
39]. 

The corresponding maximum is equal to 

𝐹𝐹1(𝛽𝛽∗1) = (√2− 1)2  ≈  𝛿𝛿𝑠𝑠
2 (≈ 0.1715728752538099).       (13)

For n =2, Eq. (11) yields 

𝛽𝛽∗2 = 
√22+1−1

2
=  √

5−1
2

 = φ ≈ 0.618033988749895,  (14) 

where φ is the famous golden ratio [40-41]. The golden and silver 
ratios are two famous irrational numbers. Their simple continued 
fractions are, respectively,  

𝜑𝜑 = √5−1
2

 = 
1

1+ 1
1+ 1

1+⋯.

  (15) 

𝛿𝛿𝑠𝑠 = √2− 1 = 1
2+ 1

2+ 1
2+⋯.

 (16) 

The golden ratio is intimately related to the Fibonacci sequence of 
numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, … , defined by the 
linear recurrence equation 

𝑓𝑓𝑛𝑛+1   = 𝑓𝑓𝑛𝑛 + 𝑓𝑓𝑛𝑛−1.   (17) 

The golden ratio is the limit of the ratio 
𝑓𝑓𝑛𝑛−1
𝑓𝑓𝑛𝑛

 when n→ ∞, or 

𝜑𝜑 = lim
𝑛𝑛→∞

𝑓𝑓𝑛𝑛−1
𝑓𝑓𝑛𝑛

 = √5−1
2

  (18) 

We prefer to use the symbol 𝛿𝛿𝑠𝑠 for the ratio √2 − 1 instead of the 

common use of this notation for its conjugate √2 + 1. 

More fascinating mathematical properties of the two ratios and other 
metallic ratios are detailed in many sources [42-43]. 

Interestingly, the corresponding maximum of the second 
moment 𝐹𝐹2(𝛽𝛽) is equal to 𝜑𝜑5. To demonstrate, we substitute β = 𝜑𝜑 in
Eq. (9): 

𝐹𝐹2(𝜑𝜑) =  𝜑𝜑2 
1−𝜑𝜑
1+ 𝜑𝜑

.   (19) 

Using the property 
1

1+ 𝜑𝜑
 = 𝜑𝜑, we can write 1 −  𝜑𝜑 =  𝜑𝜑2. Substitutions 

in Eq. (19) give  

𝐹𝐹2(𝜑𝜑)  = 𝜑𝜑5 ≈ 0.09016994 .   (20) 

Other notable nice properties of the Doppler equation, corresponding 
to the golden and silver ratios, are 

F(√2 − 1 ) =  1−(√2−1 )
1+ (√2−1 ) 

  =  2−√2 )
 (√2 ) 

 = √2− 1    (21) 

F(φ) =  1−𝜑𝜑
1+ 𝜑𝜑

 = 
(1− 1

1+ 𝜑𝜑) 

1+ 𝜑𝜑
 = 𝜑𝜑

(1+𝜑𝜑)2
 = 𝜑𝜑3 ≈ 0.236068…    (22) 

F(𝜑𝜑3) =  1−𝜑𝜑
3

1+ 𝜑𝜑3 
= 
1−1−𝜑𝜑1+ 𝜑𝜑 

1+ 1−𝜑𝜑1+ 𝜑𝜑
 = 2 𝜑𝜑

2
 = 𝜑𝜑 ≈ 0.618033…  (23) 

The areas under the functions 𝐹𝐹𝑛𝑛(𝛽𝛽) (n ≥ 0) are given by 

𝐴𝐴𝑛𝑛 = ∫ 𝐹𝐹𝑛𝑛(𝛽𝛽)  1
0  dβ = ∫ 𝛽𝛽𝑛𝑛 1

0
1−𝛽𝛽
1+ 𝛽𝛽

 dβ .  (24) 

For n = 0, 1, 2, 3, we get, respectively, 2 ln (2) -1 (≈0.386294),  
3
2

– 2

ln(2) (≈ 0.113706), 2 ln(2) - 
4
3

(≈ 0.052961), and 
17
12

-2 ln(2) (≈

0.030372). Table 1 depicts exact values and eight-digit decimal 
approximations for the points of maxima 𝛽𝛽∗𝑛𝑛 ,  the corresponding

maxima  of 𝐹𝐹𝑛𝑛(β), and the integral ∫ 𝐹𝐹𝑛𝑛(𝛽𝛽) 1
0  dβ for integer n values in 

the range 0 ≤ n ≤ 8. Note that all the maxima points and the 
corresponding maxima values are irrational numbers, with the first and 
second (for n=1, 2) equaling the silver and golden ratio, respectively. 
The emergence of the golden and silver ratios in the above analysis is 
quite striking given the fact that this ratio plays a key role in aesthetics, 
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including in architecture and design, music, quantum physics, 
neutrino mixing physics, astronomy crystallography, the structure of 

plants, functioning of the human brain, the social sciences, and much 
more  (Table 1) [44-69]. 

TABLE 1 

Points of maxima 𝒙𝒙∗𝒏𝒏 , maxima,𝑮𝑮(𝒙𝒙∗𝒏𝒏), and the integral ∫ 𝑮𝑮𝒏𝒏(𝜷𝜷)𝟏𝟏
𝟎𝟎  

dβ for 1 ≤n ≤8 

n 

Point of maximum 

𝜷𝜷∗𝒏𝒏 

𝑴𝑴𝑴𝑴𝒙𝒙𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝒗𝒗𝑴𝑴𝑴𝑴𝒗𝒗𝒗𝒗 

𝑭𝑭𝒏𝒏(𝜷𝜷∗𝒏𝒏) 

Area 

𝑨𝑨𝒏𝒏 = ∫ 𝑭𝑭𝒏𝒏(𝜷𝜷)𝟏𝟏
𝟎𝟎  dβ 

Exact value Approximation Exact value Approximation Exact value Approximation 

0 0 0 1 1 2 ln(2) -1 0.386294 

1 √2− 1 = 𝜹𝜹𝒔𝒔 0.414214   (√2− 1)2 = 𝜹𝜹𝒔𝒔
𝟐𝟐 0.171573 3

2
– 2ln(2) 0.113706 

2 φ 0.618034 φ5 0.090170 2ln(2) - 4
3
 0.052961 

3 1
3
 (√10 − 1) 0.720759 1

27
 (√10− 1)3 (√10 − 3) 0.060762 17

12
-2ln(2) 0.030372 

4 1
4
 (√17 − 1) 0.780776 1

256
  (√17− 1)4 (√17− 4) 0.045749 2ln(2) - 41

30
 0.019628 

5 1
5
 (√26 − 1) 0.819804 1

3125
 (√26− 1)5 (√26− 5) 0.036667 -2ln(2) + 7

5
0.013706 

6 1
6
 (√37 − 1) 0.847127 1

46656
 (√37 − 1)6 (√37− 6) 0.030586 2ln(2) - 289

210
 0.010104 

7 1
7
 (√50 − 1) 0.867295 1

823543
 (√50 − 1)7 (√50− 7) 0.026233 -2ln(2) + 1171

840
0.006136 

8 1
8
 (√65 − 1)  0.882783 1

16777216
 (√65 − 1)8 (√65 − 8) 0.022963 2ln(2) - 1739

1260
 0.006136 

As examples in quantum physics, Hardy’s nonlocality test shows a 
maximum nonlocality (in terms of a joint probability) of (−11 + 
5√5)/2 = 5 φ -3 = 𝜑𝜑5 ≈ 0.09017, over all possible states of two spin-

1
2

particles, for all possible choices of observables [49]. More recently, 
Coldea et al.  Demonstrated that applying a magnetic field at right 
angles to an aligned Ising chain of cobalt niobate atoms makes the 
cobalt enter a quantum critical state in which the ratio between the 
first two resonances equals the golden ratio [50]. In plants from vastly 
different origins, the golden ratio plays a key role in the arrangements 
of leaves, seeds, and spirals [62]. In a recent study on locomotion, it 
was reported that the Golden ratio plays a pivotal role in giving 
harmony to locomotion [70]. In the social sciences, Suleiman showed 
that in ultimatum games, and in sequential bargaining games, 
agreements are reached when proposers offer a Golden Ratio division 
of the goods [68, 69]. The Golden Ratio fairness division of goods 
suggests that human's sense for fairness, and of visual and auditory 
beauty, are strongly correlated.  

The silver ratio also has many manifestations in aesthetics and 
science, including in architecture, quantum mechanics, 
crystallography, and more [71-76]. The beauty of the golden and silver 
ratio is manifest, respectively, in Penrose fivefold golden ratio tiles, 
and the Ammann–Beenker aperiodic tiles [77-80]. Two examples of 
tiles for each symmetry are depicted in Figures 2 and 3.  

Figure 2) Two Penrose tiles with fivefold golden ratio symmetries 
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Figure 3) Two silver ratio patterns 

The Fourier transform of 𝑭𝑭𝒏𝒏(β)   
The Fourier transform of a function f(x) is defined as 

F(ω) = ∫ f(x)e−iωx∞
−∞  dx  .  (25) 

Calculation of the Fourier transform of  𝐹𝐹𝑛𝑛(β)  (n ≥ 0) yields 

F {𝐹𝐹𝑛𝑛(𝛽𝛽)} = F {𝛽𝛽𝑛𝑛 1−𝛽𝛽
1+𝛽𝛽

 } = (−1)𝑛𝑛𝑖𝑖 √2𝜋𝜋 𝑒𝑒−𝑖𝑖𝜔𝜔 

= (−1)𝑛𝑛√2𝜋𝜋 [cos(𝜔𝜔) - i sin (𝜔𝜔)]  .  (26) 

Thus, the Fourier transforms of the Doppler formula, and all its 
moments F𝑛𝑛 (β), (n ≥ 1), turn out to be simple sinusoids. 

This result hints at possible applications of the Doppler family of 
moments in mathematics and engineering, particularly in linear 
dynamical systems, in which the output y(t) is the mathematical 
convolution between the input function, x(t) and the system response 
function h(t) defined or  

y(t) =  ∫ 𝑥𝑥(𝑡𝑡 − 𝜏𝜏) ) ℎ(𝜏𝜏)∞
−∞  dτ .  (27) 

For such systems, the Fourier transform of the output Y(ω) is the 
algebraic product of the Fourier transforms of  𝑥𝑥(𝑡𝑡) and ℎ(𝑡𝑡):  

Y(ω) = X(ω) . H(ω)  (28) 

Thus, modeling the input wave packet (or the response function) by 
an appropriate moment of the Doppler formula could simplify the 
systems analysis, since the Fourier transforms of all moments of 
Doppler formulae are simple sinusoids. 

Existing and future applications 
Modulating frequencies in accordance with golden ratio symmetries 
have been used in music and electronic music systems for the last 40 
years. Composer, scientist, and inventor John Chowning was a 
pioneer in these two applications [81]. He is best known as the 
developer of the Frequency Modulation (FM) synthesis algorithm [82, 
83]. As a musician, in Stria and in other electronic compositions, he 
used the golden ratio as a strict theme that determines all aspects of 
the composition; further, in his music and audio systems, he utilized 
the Doppler formula to simulate sound received from moving sources 
[84-87].   

Another application utilizing the golden ratio symmetry in acoustic 
systems is in sonar image-detection technology, which is used 
extensively in marine exploration, research, and investigation. A 
serious problem in underwater sonar radars is environmental noise, 
where an inappropriate filtering parameter hampers the sonar’s 
denoising performance. An efficient method for denoising and 
detecting underwater sonar images based on the golden ratio has 
been recently proposed by, who developed an adaptive nonlocal 
spatial information denoising method based on the golden ratio [88]. 
It was shown that the proposed method was successful in removing 
underwater sonar image noise more effectively than other methods. 

Future applications, based on the beautiful properties of the Doppler 
formula, might be feasible in various applications involving radars, 
sonars, and other localization and motion detection technologies. A 

rapidly developing technology is the use of the Doppler shift in Wi–
Fi and smartphones for sensing human motion [89-91]. In principle, 
user gestures affect signal propagation and changes the sound signal 
waveform, thus rendering the echo signal different from the original 
signal. Hand gestures also alter the frequency of the received signal in 
a manner depicted by the Doppler effect. This effect, in addition to 
Time of Flight (ToF) and other detectable wave changes, is then used 
for the user’s localization and recognition of his or her hand gestures. 
It is proposed here that designing the filtering system’s impulse 
response function in a manner that incorporates the golden ratio and 
its moments might be effective in enhancing a system’s fidelity. 

Other physical manifestations of the Doppler formula and its 
moments 

The function F(x) = 
1−𝑥𝑥
1+ 𝑥𝑥

 shows much similarity with the exponential

function, E(x) = (1-x) 𝑒𝑒−𝑥𝑥 (see Fig. 4a). The maximum difference, F(x) 
- E(x), is ≈ 0.030720, achieved at x ≈ 0.56210, and the mean square
difference (MSD), over the support (0, 1), is equal to

MSD = ∫  �1−𝑥𝑥
1+ 𝑥𝑥

− (1 − x) 𝑒𝑒−𝑥𝑥�
2

 𝑑𝑑𝑥𝑥   1
0 ≈ 0.0004.  (29) 

This similarity is maintained for the two families of moments, 𝑥𝑥𝑛𝑛F(x), 
and 𝑥𝑥𝑛𝑛F(x), as shown in Fig. 4b for the first two moments (n = 1, 2). 
Wide application of the family of exponential functions for modeling 
processes in many fields of science and technology gives promise that 
similar applications might be undertaken using the family 𝑥𝑥𝑛𝑛F(x). 
Moreover, the beauty of F(x) and its moments described in Section 3 
(see also Table 1 and Figures 4a and 4b) justify preferring the 
Doppler-type formulae over the exponential ones.      

Figure 4a) Functions F(x) and E(x) in the range (0, 1)

Figure 4b) First and second moments of F(x) and E(x) in the range (0, 1) 

Notably, the first and second moments of F(x), 𝐹𝐹1(x) =  x
1−𝑥𝑥
1+ 𝑥𝑥

, and 

𝐹𝐹2(x) =  𝑥𝑥2 
1−𝑥𝑥
1+ 𝑥𝑥

 emerge in other fields of physics. In Information 
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Relativity Theory (IRT) [92-94], for example, for a uniform body 
receding from the observer with constant rectilinear velocity v, IRT 
predicts that the observed length of a receding uniform rod of length 
𝑙𝑙0,aligned in the direction of motion equals  

l = 𝑙𝑙0,  
1−𝛽𝛽
1+ 𝛽𝛽

,      β<1   (30) 

where β = 
𝑣𝑣
𝑉𝑉𝑐𝑐

, where v is the recession velocity relative to the observer, 

and 𝑉𝑉𝑐𝑐  is the velocity of the information carrier, emitted from the 
receding body to the observer (measured relative to its source).  The 
observed matter density of the rod, relative to its rest-frame density 
𝜌𝜌0, is given by  

𝜌𝜌𝑚𝑚
𝜌𝜌0

 = 
1−𝛽𝛽
1+ 𝛽𝛽

 ,   (31) 

which is identical to the Doppler Formula. The relativistic 
momentum and energy densities in the theory are given, respectively, 
by the two moments 𝐹𝐹1(𝛽𝛽) and 𝐹𝐹2(𝛽𝛽), with maxima points equaling, 

respectively, the silver ratio (𝜹𝜹𝒔𝒔 = √2− 1  ≈ 0.414213…) and the 

golden ratio (𝜑𝜑 = √5−1
2

 ≈ 0.618033…) and corresponding maximal

values of 𝜹𝜹𝒔𝒔
2  ≈ 0.171573 and  𝜑𝜑5  ≈  0.090170, respectively.

Interestingly, the function 𝐹𝐹2(x) =  𝑥𝑥2 
1−𝑥𝑥
1+ 𝑥𝑥

 also appears in quantum 

mechanics [49, 53, 95, 96]. In Hardy’s model of entanglement, the 
probability distribution function, with 𝑝𝑝𝜏𝜏   e n tanglement va riable, 

running from not entangled states to completely entangled ones, is 
given by 

P (𝑝𝑝𝜏𝜏) = 𝑝𝑝𝜏𝜏2  1−𝑝𝑝𝜏𝜏
1+ 𝑝𝑝𝜏𝜏

.  (32) 

Maximized at 𝑝𝑝𝜏𝜏  = φ ≈ 0.618033…, with corresponding maximum 
equaling 𝜑𝜑5 ≈ 0.09016994…. 

CONCLUDING REMARKS 
Friedrich von Schiller, the German poet, playwright, writer, historian, 
and philosopher, defined “grace” (Anmut) as “beauty in motion”. The 
theoretical investigation of the Doppler shift, as depicted in the 
Doppler formula, lends strong support to Schiller’s definition. The 
“graceful” golden and silver ratios, embedded in the formula, 
prescribes that, irrespective of the beauty of an object’s wave source, 
the frequency modulation of waves emitted from a moving object has 
beauty in itself. Our analysis revealed that the silver and golden ratios, 
two extremely irrational numbers, with enormous appearances in 
aesthetics, mathematics, and the sciences, emerge more than once in 
the Doppler formula and its moments. Strikingly, the silver ratio is 
invariant under the Doppler frequency shift transformation, such 
that F(𝜹𝜹𝒔𝒔) = 𝜹𝜹𝒔𝒔 = √2− 1 [Eq.  (22)]. The golden ratio also exhibits a
special symmetry in F(β) as well [see Eqs. (23), (24)]. Further, more 
silver and golden ratio symmetries appear in the first three moments 
of the Doppler formula (see Table 1 and Fig. 4b).  

Paul Dirac posited, “As time goes on, it becomes increasingly evident 
that the rules that the mathematician finds interesting are the same as 
those that nature has chosen”. We cannot think of better support for 
Dirac’s opinion than the results of the investigation undertaken here. 
After all, the simple and beautiful Doppler formula was dictated to 
Christian Doppler by nature itself. In the same line of reasoning, the 
fact that the base formula and its first and second moment (𝐹𝐹𝑛𝑛(x) = 
𝑥𝑥𝑛𝑛 

1−𝑥𝑥
1+ 𝑥𝑥

, n = 0, 1, 2) emerge in more than one field of physics suggests

the existence of a deeper level of reality, in which the same equation 
appears in various fields, are connected has yet to be discovered. 

In his keynote address at the ICMC | SMC (2014) conference, John 
Chowning reflected about how he came to use the Golden Ratio in 
his music and inventions. He said, "The golden ratio fell into my ‘ear 
lap’ simply because it was ‘in the air’". The results of this study 
confirms Chowning's intuition literally.
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	As examples in quantum physics, Hardy’s nonlocality test shows a maximum nonlocality (in terms of a joint probability) of (−11 + 5√5)/2 = 5 φ -3 = ,𝜑-5. ≈ 0.09017, over all possible states of two spin-,1-2.  particles, for all possible choices of obs...



