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RESEARCH ARTICLE 

Bianchi type cosmological models with heat flow in Lyra’s 
geometry 

Santhikumar Rajamahanthi, Satyannarayana Bora, Suryanarayana Pardha saradhi Kornu, Palli Eswara Satyanarayana 

INTRODUCTION  
ince Einstein field equations contains cosmological constant
causes the universe is in static mode. To avoid static nature of the 

universe in these field equations with zero density, general relativity 
requies to modify the description of Riemannian geometry by 
explaining flat space. In 1918 Wely has gave us a wonderful 
generalized Riemannian geometry, it unify both electromagnetism 
and gravitation of the universe. Due to no inerrability of transfer of 
length these theories were not satisfied. In 1970 Follond again gave 
us modification and formulation in Riemannian geometry called as 
modified Wely’s manifold which verifies many basic ideas [1-2]. 

In 1951 Lyra came with new ideology in Riemannian geometry with a 
wonderful toll named as gauge function in the low structure 
manifold. It accepts inerrability and cosmological constant naturally 
occurred in the geometry. Later many authors studied in different 
ways like Sen and Dunn introduced a new scalar-tensor theory and 
developed a clarification of the Einstein’s field equations with the 
help of Lyra’s geometry. Halford predicts theory with observational 
results which are same, as classical solar system tests are considered 

and he introduced the constant displacement vector 
i

 in Lyra’s

geometry [3-6]. It plays a vital role in the realistic treatment. Later 
Soleng came with the constant displacement field in Lyra’s geometry 
[7]. It will either include a creation field and be equal to Hoyle’s 
creation field in cosmology by Authors or contain a special vacuum 
field, it together with gauge vector and a cosmological term [8-10]. 

Several authors like were studied interacting scalar fields for 
different space-times in Lyra geometry [11-27]. 

In 1989 Bianchi developed Bianchi type cosmological models which 
are homogeneous and anisotropic. Bianchi models are less symmetric 
as compared with FRW models. The study of Bianchi type V models 
has considerable role in relativistic cosmology [28]. 

The author has an exact solution of the vacuum Brans-Dicke 
field equations for a spatially homogeneous and anisotropic 
metric. Author got FRW models in f(R) gravity and Authors have 
studied the solutions of Bianchi type–I and V space-times in the 
framework of f(R) gravity [29-33]. Authors proposed Bianchi type–
III models with dark energy, Author has studied Bianchi type-I 
and type-II models, Authors has studied results of Bianchi type–V 
models, which were describing early stages of evolution of the 
universe [34-42]. The study of Bianchi type–V cosmological models 
creats more enthusiasm as these models contain isotropic special 
cases and permit arbitrarily small anisotropic levels at certain 
stages. These properties make the models suitable as models of our 
universe. 

At present, the cosmological models are developed in general 
relativity under the supposition of the matter content of the universe. 
It can be described in a perfect fluid, While the supposition may be a 
better approximation to the original content of the universe, which 
effects such as heat conduction and magnetic fields may be 
considerable at earlier epochs of the evolution of the universe. As the 
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ABSTRACT 
Bianchi type-V cosmological model along with perfect fluid and 
heat conduction have been discussed in the presence of Lyra’s 
geometry. By using the law of variation for the mean Hubble 
parameter the solution contains heat conduction and gauge 
function   for  and , which is related to the average scale 

factor of metric and gives decelerating parameter. We discussed 
heat transmission stages from initial time to the late time of the 
universe. The relation between density and pressure is discussed. 
We obtain a constant decelerating parameter. Physical 
interpretation and thermodynamic laws are discussed.  
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matter is not attempting thermal equilibrium in the early stage of 
evolution of universe, it is evident to that the heat flow during 
transition stages. The effect of heat flow in the structure formation of 
the universe has been studied by several authors like has studied the 
cosmological models with heat conduction and explained the 
properties in the early stage of evaluation of universe [43-51]. 

From the motivation of above researchers, we studied Bianchi type –
V cosmological model along with perfect fluid and heat flow in the 
frame work of Lyra’s geometry. The paper contains the following 
contents.  In Section 1: Introduction. In Section 2:  The Basic 
Equations and Quadrature Solution. In Section 3: Solution of filed 
equations. In section 4: The Thermodynamical Relation. In Section 
5: Conclusions. 

THE METRIC AND BASIC EQUATIONS 
We Consider Bianchi Type–V model given by 

2 2 2 2 ( 2 ) 2 2 2 ( 2 ) 2
( ) ( ) ( )

x x
ds dt A t dx e B t dy C e t dz

 
    (1) 

Here the functions A(t), B(t) and C(t) are functions of t and 
anisotropic directions of expansion in the normal 3-D space. 
We define the following parameters to be used to solving Einstein’s 
field equations for the metric (1) 
The Hubble’s parameter H is 

1
( )3 x y

a
H H H H

a
    (2) 

Here the directional Hubble’s parameters ,
x y z

A B c
H H H
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are the in the direction of x, y and z respectively. 
3
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1
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Hence, the Hubbles parameter 
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Now, we can see the most important scalar  i.e., scalar expansion (𝜃), 

the shear   scalar (𝜎2), and the mean anisotropy parameter (𝐴𝑚) 

defined as follows : 

:
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Where 
i i

H H H  

Where ui=the matter four velocity vector=(0,0,0,1), ∆Hi=Hi-H, 

(i=1,2,3) and 
1 1

; j; ,2 3
k k

u p u p Pij i k j k i ij    where 

P g u u
ij ij i j
   (9) 

The field equations and their solutions 
For Lyra’s geometry the field equation in normal gauge, by [4-5] 

1 3 3 8
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kG R g R g GT
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ij ij
    

 
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Here ϕi = the displacement vector = (0,0,0,β(t)) , and  Tij is the energy 
momentum tensor of the matter. 
The energy momentum tensor for fluid with heat flow in presence 
perfect fluid matter is considered by 

( ) ( )
i j ij i j j iij

T p p u u p g h u h u      (11) 

Where ρ energy density, p pressure, ui fluid velocity, hi is the heat 
flow vector, gij is the metric tensor and which satisfies 

1 
i j

g u uij  and 0
i

h ui 

(12) 
Now, we consider that the heat flow is in the x-direction such that h1 
= (h1,0,0,0),  where  h1 is function of time t. 
Using Eqs. (1), (11), and (12), the field equations are 
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2 1
A B C

h
A B C
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The energy conservation equation iT 0j;i  gives

 
23 3 2 1

22 2
hA B C

p
A B C A

   
  

        
  

  (18) 

Equations (13)-(16) gives the following relation in terms of H,ρ,p,β

is 

 

3 32 2 23 2 4
1 32 2 22 1 2 4

H
A

p H q
A

  

 


    



    



    (19) 

Our aim is to solve the field equations (13)-(17) in the frame work 
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

0q 

0q  0q

q

SOLUTION OF FIELD EQUATIONS 
In the evaluation of universe the matter density decelerating 
parameter did an extraordinary role. The universe decelerating 

when and accelerating when . By counting magnitude 

relation for galaxies to determining decelerating parameter  is so 

complicated due to evaluating effect. By the author Schuecker et.al. 

0
q is observed in the range 1.27q 2

0
 , from the redshift survey in

the study of galaxies count the value of 0
q is observed as 0.1 withe 

upper limit 0.75
0

q  . By the authors Riess et al, Permulater at al, they 

 q1 0

( 0)q

concluded that at present the universe is in accelerated expansion 
because they observed the range of decelerating parameter is . 

It was identified that through the present observations of SNe  Ia and 
CMB favour the accelerating model . 
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Lyra geometry with creation matter and heat flow of the fluid. Since 
equation (1) are completely eigenized by average Hubble’s parameter 
H. Let us consider the parameter H is related to average scale factor

 a t .

By law of variation 
  

1
H  

n
a t

i.e.,   nH k a t

(20) 

Since a
H

a
 , Eq. (20) reduces to a nka

a

  and  1 n
a a

a a
 

(21) 

Eq. (21) the deceleration parameter  
2

1
aa

q n
a

    = constant

(22) 

Rewrite Eq. (22) as  1 0
a a

n
a a
   and solve for  a t  

Using Eqs. (20)-(22) the law of the average scale factor is of the forms 

   
1

 a t nkt s n  for 0n  and  
 0

0

k t
a t s e for 0n        

(23) 
Where k, s, s0, k0 are constants of integration. 

Depending on the value of “n”, here the model is two types, if k=0 in 
eq. (20) the model represents static universe and hence we need not 
pay any attention on it. When k>0 in eq. (20) consistently with 
observation for which the universe is expanding mode. The sign of 
decelerating parameter q represents the model is inflates of not. If 

0q  (when (n-1)>0) relates to standard decelerating model whereas 

0q i.e., 1 0q   (when -1<(n-1)<0) relates to inflation . The present 

day universe is Einstein-de Sitter universe with constant deceleration 
0.5q . Hence, we thought that the universe is in accelerated 

expansion form now.  

Subtracting Eq. (14) from Eq. (15) 

We have 
 d AB BAC A AB

C BA AB AB BA

B 
  

 
 by Integrating this 

equation  (24) 

We have    3
1

A
d

AB BA B
ABC a c constant

A A

B B

 
     

 
   
   
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 (25) 

Again Integrating Eq. (25) 

We have
1 3

1

dt
c

A ad e
B

 
  
   (26) 

Similarly subtract eq. (14) from eq. (16) and eq. (15) from eq. (16) 
respectively we have 

2 3

2

dt
c

A ad e
C

 
  
   (27) 

3 3

3

dt
c

B ad e
C

 
  
    (28) 

Where 
1 2 3 1 2

, ,  , , , c c c d d and 
3

d are integration constants and 

In explicit form for the metric functions are 

1 3
. .1

dt
s

a
A k a e

 
  
 

   (29) 

2 3

2. .

dt
s

aB k a e

 
 
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  (30) 

3 3

3. .

dt
s

aC k a e

 
 
 

  (31) 

Where,  
11

331
3 3

1 21 2 3
1 2 3

1
 ,   ,   

d
k d d k k

d d d

  
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   
  (32) 

(32) 

and
 2 33 11 2

1 2 3 ,   , 
3 3 3

c cc cc c
s s s

 
    (33) 

The constants 1 2 3 1 2 3, ,  ,  ,s s s and k k k  satisfying the relations 

3

1
0 

i
si

  and 
3

1 1
1ki

   (34) 

Case (i) when n=0 
Since the universe under gone into a transition from early 
decelerating expansion phase to the current accelerating expansion 
phase, so the cosmological models represents transit cosmological 
model Figure 1. 

From Eq. (23) 
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Where 3 30
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
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.
i
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By Eq. (35)-(38) 

The Spatial Volume  0
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The Hubbles parameter is given by 
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The Scalar Expansion 
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The Shear Scalar  
2
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The mean anisotropy parameter 7
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The required solution for heat conduction is 8 0
1 3 0k t

r k
h

e
 (44)

where 8 1 2 36 3 3r r r r   

Figure 1) Clearly the heat conduction is a decreasing function of t 
and it heat is large at early universe stage of universe and cools down 
in the accelerating universe. 

By Eq. (22) for n=0 

The decelerating parameter   1q t   constant.                             (45) 

Clearly  0q  i.e., 1 0q    (when n=0), the cosmological model 

represents to the universe is inflation in this case. 
Since the fluid is formed from particles, it satisfies an equation of 
state of the form 
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Using Eq. (19) and Eq.(40) the perfect pressure and density is given 
by 
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2 0, λ for 2 0 λ Using Eqs. (19), (41), (42), (46), and (47) the 

expression for gauge function is obtained by
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Physical interpretation of the model for (n=0) 
By above observations here are three physical interpretations are 

required to discuss for 4
0,   2,  

3
  of the equation of state given by the 

equation. 

False vaccum model 
If 0 in this model then the equation of state  1p   , it represents 

the ‘false or degenerate vaccum’ and the explicit form of pressure and 
density are obtained in this model are 
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Radiating model 

If 4

3
 in this model then the equation of state is 

3
p


 , it represents

the matter distribution with radiation not ordered and a universe in 
which most of the energy density in the form of radiation and hence 
the model is called ‘Radiating model’. Here the explicit form of 
pressure and density are obtained in this model are 
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Zel’dovich fluid Model 

Since  

 
  2

2

1 4
2 4

2
p q H

A






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
does not obtained when 2 , so there is 

no discussion about this case. 

By the above results , at early stage of universe (t = 0) the metric 
functions A(t), B(t), C(t) and spatial volume V(t), the physical 

parameters  2
1, , , , ,   mA p and heat low h     all becomes constant at 
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initial epoch, so it indicates that the universe starts with the constant 
parameters physically and geometrically.  By observing at late time 
universe i.e., t , A(t), B(t), C(t) tends to infinity and 0p    causes 

the universe is accelerating because of negative pressure. The men 
anisotropic parameter and shear scalar vanish. The heat flow becomes 
negligible means that the universe is cooling down. The spatial 
volume and scale factor exponentially expanded for late time. 

Case (ii) when 0n  

Since the universe undergone into a transition from early 
decelerating expansion phase to the current accelerating expansion 
phase, so the cosmological models represents transit cosmological 
model Figure 2. 

From Eq. (23) 

The average scale factor    
1
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By Eq. (35)-(38) 
The spatial volume 
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The Hubbles parameter is given by
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The Scalar Expansion 
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The Shear Scalar
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The mean anisotropy parameter
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Where, 

1 2 3
,  ,k k k and 1 2 3 7 1 2 3

,  ,   ,    s s s s s s s are constant and 
4 5 6

, ,s s s are 

int.constants, 

The required solution of heat conduction is 
3

1 8
nh s nkt s



   

(62) 

Where, 1 2 3 2s s s s  

Figure 2) Clearly the heat conduction is a decreasing function of t 
and it heat is large at early universe stage of universe and cools down 
in the accelerating universe. 

By Eq. (22) The decelerating parameter 
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If    
2 2

0 1 , . .,  1 1 0nk i e nk      it means that 1 0 q 

Clearly, 0q , so that the cosmological model represents to the 

universe is  inflation in this case .Since the fluid is formed from 
particles, it satisfies an equation of state of the form 

 1 ,  0 2p for       and Using Eq. (19) and Eq. (58) the perfect 

pressure and density is given by, 
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Using Eq. (19), (32), (33) and (56) the expression for gauge function 
is obtained by 
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Physical interpretation of the model for  0n
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By above observations here are three physical interpretations are 

required to discuss for 40,  2,  
3

  of the equation of state given by the 

equation. 

False vaccum model 
If 0 in this model then the equation of state is p  , it represents 

the ‘false or degenerate vaccum’ and the explicit form of pressure and 
density are obtained in this model are 
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Radiating model 

If 4
3

 in this model then the equation of state is 
3

p


 , it represents

the matter distribution with radiation not ordered and a universe in 
which most of the energy density in the form of radiation and hence 
the model is called ‘Radiating model’. Here the explicit form of 
pressure and density are obtained in this model are 
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Zel’dovich fluid Model 
If 2 in this model then p  , But pressure and density are not 

obtained for this case so there is no discussion about this case. 

By the above results, at early stage of universe (t = 0) the metric 
functions A(t), B(t), C(t), and spatial volume V(t), physical parameters 

2
, , , , , 

m
A p    and heat low  1h tends to infinity. By observing at 

late time i.e., t , the metric functions are A(t),B(t),C(t) 

intermediate and  , p  becomes zero .The physical parameters 
2, , ,mA   also tends to zero as t It represents that the universe is 

expanding with cosmic time and the rate of expansion is decreasing 
,hence the model becomes isotropic for late time. 

THE THERMODYNAMICAL RELATION 
Baryon conservation law 

Let N u  be the particle flux and  is the particle density  

We know that the standard cosmology, conservation of total particle 
number is 

0;
d

N
dt
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Where ;u
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  is the expansion of the fluid 

d
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Integrate this equation and use Eqs. (39),(43) (56) and (60) which 
gives particle number density as 
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For 0n  the solution is  
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For 0n   the solution is
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k t
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Here b1 and b2 are constants 

Clearly 1 h   (78) 

In case of 0n  , at t=0 the particle density is constant, it indicates 

that heat conduction is constant or disappear and hence it is uniform 
in the  early stage of  evolution universe. 

In case of  0n  , at t = 0 the particle density has play more influence 

during early stage of evolution of universe. 

Temperature gradient law 
The heat conduction expression if given by 
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Where 0   is the coefficient of heat conduction (thermal 

conductivity), T is the temperature of the universe and 0u

 zero

acceleration flow vector. Since the heat flux is retained as x- 
component, we have 

 1 ;1h T  (80) 

For case 0n  the x-component of temperature gradient is 
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For  0n  case the x-component of temperature gradient is 
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On simplifications of Eq. (73) and (74) we get temperature 
distributions as 
For  0n  case the temperature distribution is 
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Where 1 and 2 are integration constants, these are arbitrary

functions of t or constants. At early stage of universe (t = 0) the 
temperature distribution T is diverges and hence  becomes finite. As 

time t tends to infinity T tends to 1 and 2 in both the cases of n

0 0n and n 

0n 

respectively. Hence the universe is at equilibrium stage at late 
time state of universe. 

CONCLUSION 
In this paper, we studied Bianchi type-V cosmological model along 
with perfect fluid and heat conduction in presence of Lyra’s 
geometry. By using the law of variation for the mean Hubble 
parameter the solution contains heat conduction and gauge function 
for , which is related to the average scale factor of 
metric and gives decelerating parameter. For , we observed at 
early stage of universe (t = 0) the metric functions A(t), B(t), C(t) and 

spatial volume V(t), the physical parameter

 2
1, , , , ,     

m
A p and heat low h    all becomes constant , so it indicates 

that the universe starts with constant parameters physically and 
geometrically.  By observing at late time universe i.e., t  , A(t), 

B(t), C(t) tends to infinity. The men anisotropic parameter and shear 
scalar vanish. The heat flow becomes negligible means that the 
universe is cooling down. The spatial volume and scale factor 
exponentially expanded for late time. By the case 0n  , we observed 

at early stage of universe (t = 0) the metric functions A(t), B(t), C(t),  
and spatial volume V(t), physical parameters 

 2
1, , , , ,     

m
A p and heat low h    tends to infinity. By observing at late 

time i.e., t  , the metric functions are A(t), B(t), C(t)

intermediate , , p  becomes zero and the physical parameters
2

, , ,
m

A   also tends to zero. It represents that the universe is 

expanding with cosmic time and the rate of expansion is decreasing, 
hence the model becomes isotropic for late time.  We discussed 
transition states of heat flow from evaluation time to the late time of 
the universe. We obtain gauge function in both cases and discussed 
different stages of the universe using the relation between pand  . 

We obtained a constant decelerating parameter. Physical 
interpretation of thermodynamic laws was discussed. 
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