THESIS

Bifurcation at higher eigenvalues of a class of potential operators and application

Abdelhak Mokhtari^{*}

Mokhtari A. Bifurcation at higher eigenvalues of a class of potential operators and application. J Pure Appl Math 2023;7(3):140.

ABSTRACT

We study the existence of a bifurcation branch at the second and higher

INTRODUCTION

In E. Tones the author consider a bifurcation at the principal eigenvalue of a class of gradient operators which possesses the Palais-Smale condition. The existence of the bifurcation branch is verified by using the Palais Smale condition [1,2].

Also the author have modified and proved the following basic bifurcation result by Krasnoselskii for gradient mappings by removing the requirement of complete continuity of Φ^{J} and weak continuity of Φ .

Theorem 1.1: Assume that $\Phi: H \rightarrow R$ is weakly continuous and uniformly differentiable in a neighbourhood of 0 and assume that $T=\Phi^J: H \rightarrow H$ is completely continuous. Then, if T is differentiable at 0, every eigenvalue $\mu^* \neq 0$ of the derivative $T^J(0)$ is a bifurcation point for:

T (w)=μw.

We need also the following definition.

Definition 1.2: Let $\Phi \in C^1(H,R)$, and suppose (u_n) is a sequence in H satisfying $\Phi(u_n) \rightarrow c$ and $\Phi j(u_n) \rightarrow 0$ in H^* . Then (u_n) is called a Palais-Smale sequence at level c. If every Palais-Smale sequence at level c contains a strongly convergent subsequence, then Φ is said to satisfy the Palais-Smale condition at level c, and denote by $(PS)_c$.

The main result proved in E. Tones is:

Theorem 1.3: Let Φ^J (u) be a linear operator which is the gradient of a C^1 functional Φ (u). Let Φ^J have a Fre´chet derivative T at the origin in H, where T is a selfadjoint, completely continuous operator [3,4]. Suppose μ_1 is the largest eigenvalue (*i.e.*, $\lambda_1=1/\mu_1$ is the smallest positive characteristic value) of T. Suppose that for some $\xi>0$ the family of functionals:

 $I_{\lambda}(u) = 1/2 \|u\|^2 - \lambda \Phi(u)$

Satisfies the (PS)_c condition for $\lambda_1 \xi < \lambda < \lambda_1 + \xi$ and for $c \in \mathbb{R}$ in a neighbourhood of 0.

Then λ_1 is a bifurcation point for Φ^J .

We need also the following result

Theorem 1.4: (Spectral theorem for compact operators).

Let T be a compact, selfadjoint linear operator on a infinite dimension separable Hilbert space H. Then H admits an orthonormal basis $(e_n)_n$ consisting of eigenvectors for T [5,6].

eigen values of a class of potential operators which possesses the Palais-Smale condition. We will also give an application of our result to a class of semi linear elliptic equations with a critical Sobolev exponent. **Keywords:** Hilbert space; Bifurcation point; Potential operator; Higher eigenvalues; Boundary value problem

The infinite sequence of basis vectors $(e_n)_n$ can be chosen such that the sequence of corresponding eigenvalues (λ_n) decreases numerically,

 $|\lambda_1| \ge |\lambda_2| \ge \dots, |\lambda_n| \ge \dots \text{ and } \lambda_n \rightarrow \infty, \text{ for } n \rightarrow +\infty.$

Main result

Our main result in this paper is:

Theorem 2.1: Let $\Phi^J(u)$ be a linear operator which is the gradient of a C^1 functional $\Phi(u)$. Let Φ^J have a Frechet derivative T at the origin in H, where T is a positive selfadjoint, completely continuous operator. Suppose μ_2 is the second largest eigenvalue (i.e. $\lambda_2=1/\mu_2$ is the second smallest positive characteristic value) of T. suppose that for some $\xi>0$ the family of functionals:

 $I_{\lambda}(u) = 1/2 \|u\|^2 - \lambda \Phi(u)$

Satisfies the $(PS)_c$ condition for λ_2 $\xi{<}\lambda{<}\lambda_2{+}\xi$ and for $c\in R$ in a neighbourhood of 0.

Then λ_2 is a bifurcation point for Φ^J .

Proof. Since T is a positive compact, self-adjoint linear operator, then T admits at least one eigenvalue, namely:

 $\mu_1 = \max\{|(Tu, u)|, u \in H, ||u|| = 1\}$

Choose a corresponding normalized eigenvector $e_1 \in H$.

Let $Q_1 = \{e_1\}^{\perp}$ be the orthogonal complement to the 1-dimensional subspace spanned by the vector e_1 . Being an orthogonal complement, Q_1 is a closed subspace of the Hilbert space. For $u \in Q_1$, we have the following computation:

 $(Tu,e_1)=(u,Te_1)=\mu 1(u,e_1)=0,$

Showing that Q_1 is invariant under T in the sense that $T_u \in Q_1$ if $u \in Q_1$. Hence T can be considered as a compact, selfadjoint linear operator on the Hilbert space Q_1 . Working inside Q_1 , we then get a second eigenvalue for T,

 $\mu_2 \text{=} \max\{|(Tu,u)|, u \in Q_1, \|u\| \text{=} 1\}$

and a normalized eigenvector $e_2 \in Q_1$ for μ_2 . Clearly, $\mu_1 \ge \mu_2$ and $e_1 \perp e_2$.

Now, we consider the operator $T_{|Q1}\!\!:Q_1\!\!\to\!\!Q_1$ and we apply theorem 1.3 for this operator.

We remark that the first eigenvalue of the operator $T_{|Q1}$ correspond to the second eigenvalue of the operator T defined on H.

Remark 2.2: One can generalize the above result to eigenvalues of higher orders.

Department of Mathematics, University of M'sila, Algiers, Algeria

Correspondence: Abdelhak Mokhtari, Department of Mathematics, University of M'sila, Algiers, Algeria; E-mail: abdelhak.mokhtari@univ-msila.dz

Received: 21-Dec-2022, Manuscript No. PULJPAM-22-5960; Editor assigned: 23-Dec-2022, PreQC No. PULJPAM-22-5960 (PQ); Reviewed: 06-Jan-2023, QC No. PULJPAM-22-5960; Revised: 22-Mar-2023, Manuscript No. PULJPAM-22-5960 (R); Published: 30-Mar-2023, DOI: 10.37532/PULJPAM.23.7(3).140.

 This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http:// creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

Application

We consider the problem presented by E. Tonkes.

Let $\Omega{\subset}R^N$ a smooth bounded domain and solutions are sought in the Sobolev

Space $H^1_0(\Omega)$, endowed with norm $\|u\| = (\int_{\Omega} |\nabla_u|^2)^{1/2}$,

 $-au = \lambda(u + |u|^{2 + -2}u)$, on Ω ;

 $u(x)=0, x \in \partial \Omega.$

Solutions to problem (3.1) correspond to critical points of the functional

 $J_{\lambda}(u) = 1/2 ||u||^2 - \lambda (1/2 \int u^2 - 1/2^* \int ||u||2^*)$

In Tonkes say the functional J_{λ} satisfies the (PS)_c for some condition on the level c by the same steps as in namely obtained the following lemma.

Lemma 3.1: For $\lambda>0$, J_{λ} satisfies the (PS)_c condition for c<c $_{\lambda}^{*}=1/N$ S $^{N/2}/\lambda^{(N-2)/2}$.

The following result states that the principal characteristic value of the linear problem $-au=\lambda u$, $u\in H^1$, is a bifurcation point.

Theorem 3.2: For sufficiently small r>0, there exists a solution (λ_r, u_r) to (3.1) with $||u_r|=r$. One has $\lambda_r \rightarrow \lambda_0$ as $r \rightarrow 0$.

Consider the linear eigenvalue problem

 $-au(x)=\lambda u(x), x \in \Omega;$

 $u(x)=0, x \in \partial \Omega.$ (3.2)

Theorem 3.3: Equation (3.2) has a sequence of eigenvalues λ_n such that

 $0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \dots \le \lambda_n \uparrow +\infty.$

Here we use the convention that multiple eigenvalues are repeated according to their multiplicity. The first eigenvalues λ_1 is simple and the

corresponding Eigen functions do not change sign in $\Omega.$ Moreover, λ_1 is the only eigenvalue with this property.

We will denote by $\phi 1$ the Eigen function corresponding Eigen function corresponding to λ_1 , such that $\phi 1(x)>0$ and $|\phi 1|=1$.

From the above result, we can see that each characteristic value λ_n of the Dirichlet problem associated to (3.2) forms a bifurcation point for the problem (3.1). By theorem 2.1 and remark 2.2, one can generalize theorem 3.2 to the following.

Theorem 3.4: For sufficiently small r>0, there exists a solution (λ^r , u^r) to (3.1)

with $\|u^r\|=r$. One has $\lambda^r \rightarrow \lambda_n$ as $r \rightarrow 0$.

REFERENCES

- Ambrosetti A, MalchIodI A. Nonlinear analysis and semi linear elliptic problems. Cambridge Stud Adv Math Cambridge Univ press. 2007.
- Tonkes E. Bifurcation of gradient mappings possessing the palais smale condition, Hindawi Publishing Corporation International. Int J Math Sci. 2011.
- BRezIs H. Functional analysis, sobolev spaces and partial differential Equations, Springer, New York, Dordrecht Heidelberg, London. 2011.
- Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pure Appl Math. 1983;36(4):437-77.
- 5. Krasnoselskii MA. topological methods in the theory of nonlinear integral equations. The Macmillan, New York, NY, USA. 1964.
- Chow SN, Hale JK. Methods of bifurcation theory. Springer, New York, USA. 1982.