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ABSTRACT 

A probabilistic approach is applied to assess the required brake power to 
avoid obstruction with a suddenly detected steadfast obstacle in front of the 

moving vehicle. The obtained results can be used to select, on the design 
stage, the level of this power for extraordinary situations of the type in 
question. 

The estimated results are presented in tables and charts and conclusions have 
been drawn for future precautionary measures. 
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INTRODUCTION 

he brake system, weather electromagnetic, frictional or hydraulic, is 

supposed to absorb energy from a moving vehicle and is therefore a must 

as t  
2S 

, 
V0 

MV 2 

 
and therefore 

 
MV 3 

on all types of vehicles [1,2]. The characteristics of a brake system include, P  0    0 . (1) 

as is known, peak force, continuous power dissipation, fade, smoothness, 
power, pedal feel, drag, durability, weight, and even the level of noise. This 
analysis, however, is limited to the role and the required power. As is known, 
two major phases of the stopping process are being distinguished [1-4]: the 
first one, the pre-braking phase, includes the perception (decision making) 
time and the reaction time and is characterized by the more or less constant 
speed; the second one, when actual braking takes place, is characterized by a 
more or less constant deceleration, and it is at this phase, when an adequate 
brake power is important. In the analysis that follows a probabilistic approach 
is applied to assess the required brake power to avoid vehicle’s obstruction 
with a suddenly detected steadfast obstacle. A situation, when the only way 

2t         4S 

No wonder that the existing safety regulations require that in hazardous 
situations of the type in question the initial driving speed V0 should be kept 
as low as possible. 

The mass of the car and its initial velocity are usually known reasonably well 

compared to the available braking distance S, even if radars (“radio detection 
and ranging”) and/or lidars (optical radars: “laser imaging, detection, and 
ranging”) are employed. In our analysis this distance is treated therefore as 
a random variable. We assume that it is distributed in accordance with the 
Rayleigh law (Figure 2): 

to avoid an accident is by using brakes (see, e,g., Figure 1), is addressed. 
The objective of the analysis is to establish the never-zero probability of the 
possible obstruction depending on the level of the brake system’s power. The 
obtained results can be used to select this level, considering extraordinary, 
but always possible, situations of the type in question. 

ANALYSIS 
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The vehicle’s kinetic energy 

2 

K  0   
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at the beginning of the braking 
is used. Here  is the mode (the most likely value) of the distance S and s 
is its mean value. The variance D* of the distribution (2) is related to the D 

time of the duration is expected to be absorbed during this time by the 
braking system to assure safe outcome of the situation. This means that the 

MV 2 

value as D*  
4   

D. The rationale behind such an assumption is that the 
2 

probabilities are zero for both zero and very large braking distances S, that 

system should possess the power of P  0  
to do the job. Here M is the 

2t 
vehicle’s mass and V0 is its speed at the beginning of the braking time. This 
time can be found for the given braking distance and the initial speed V0 

 

 

Figure 1. Steadfast obstacle on the road suddenly detected in front of the moving 
vehicle. 

Figure 2. Rayleigh distribution (here  is the mode, i.e., the most likely value of the 
random variable S). 
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0 exp  0   1 exp 
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TABLE 1 

 
Data for different braking distances 

 

 , m 50 75 100 150 200 250 300 350 

Q1 0.7169 0.4293 0.2706 0.1308 0.0758 0.0492 0.0344 0.0254 

Q2 0.2816 0.1367 0.0794 0.0361 0.0205 0.0131 0.00914 0.00673 

 

relatively low distances S are much more likely and, as far as this analysis  1387.2
2 

x22.351
6    56.1669 

2 
is concerned, are of a greater interest than large distances, and because of Q1  1 exp

 
  

2   2      
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that the physically meaningful probability density distribution function f
s
(s)  8x97500      

for the distance S should be heavily skewed towards low S values. Rayleigh 
distribution is the simplest one that possesses these physically meaningful 
properties. 

Treating the random braking power Pas a nonrandom function of the 
random variable (see, e.g., [5]), we obtain the following expression for the 
probability density function of the braking power: 

If the initial velocity is only then 

The calculated data for different braking distances are shown below in Table 1. 

As evident from these data, by slowing down the car in anticipation of a 
hazardous situation, one could reduce dramatically the likelihood of the 
accident. 

ds M 2V 6 
 

 

 M 2V 6  CONCLUSION 

fP ( p)  fs (s)  0 exp  0 . (4) dp 4Dp3    8Dp2 
 

This power should be above a certain non-random level (threshold) to avoid 
obstruction. The probability 

p p 

A probabilistic approach is applied to assess the required brake power to 
avoid vehicle’s obstruction with a suddenly detected steadfast obstacle in 
front of the moving car. The obtained results can be used to establish the 
power of the brake system to possibly avoid obstruction in extraordinary 
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(5) situations of the type in question. 

  4Dp3    8Dp2   8Dp2   8 2 p2 
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could be viewed as the probability of the inability of the braking system to 
do its job, i.e., as the probability of the obstruction. As evident from this 
formula, the probability of hitting the obstacle is lower for a lower mass M 

of the vehicle, for a lower initial speed V0, for a higher most likely available 

distance  and for a higher power of the braking system. The formula (5) 
indicates also that the level of the speed V0 is particularly critical. We would 
like to emphasize that it is a simplified treatment of the problem and is aimed 
at the demonstration of the usefulness of the probabilistic approach. Many 
important factors are not taken into account: the road and tire conditions, 
the role of the human factor, the friction between the tires and the road (as 
is known, for rubber tires, the coefficient of friction decreases as the mass 
of the car increases), rubber temperature, weather conditions, vehicle’s air 
drag, etc. 

Let, e.g., the speed at the beginning of the braking distance for a heavy truck 

that weighs 30,000 lb =13,608kg (its mass is M  1387.2kgxs
2 

xm
1 

) and 

whose braking system’s horse-power is p  1300hp  97500kgm / s, is 
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V0  50mph  22.351m / s . Then the formula (5) yields: 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
52 J Pur Appl Math Vol 5 No 4 July 2021 

0 0 dp  1 exp Q  Q(P  p*)  1 f p ( p)dp  1


