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The progression of heart failure is related to cardiac remodelling, which 
represents the sequence of events at the molecular, cellular and interstitial 
levels, leading to changes in the size, mass, geometry and function of the 
heart. Cardiac remodelling involves both adaptive and maladaptive phases 
of development. At the initial stage, it represents an adaptive response to 
maintain cardiac output, whereas in the late stage, it results in the occur-
rence of heart failure. Oxidative stress appears to be the main factor that 
induces transition of cardiac hypertrophy to heart failure as a consequence 
of alterations in signal transduction, dysfunction of the sarcolemma and sar-
coplasmic reticulum, impairment of calcium handling, increases in cardiac 

fibrosis and progressive loss of cardiomyocytes. Elements that play a funda-
mental role at the initial stages of cardiac remodelling and are associated 
with cardiac hypertrophy include neurohormonal activation, represented 
by the elevation of angiotensin II and norepinephrine levels. On the other 
hand, prolonged neurohormonal activation, as well as inflammatory signal-
ling due to increased levels of tumour necrosis factor-α and transforming 
growth factor-β, may be involved in the late stages of cardiac remodelling 
associated with heart failure. In its initial stages, cardiac remodelling 
appears to serve as an adaptive mechanism, whereas in its late stages this 
process is associated with molecular and cellular defects leading to the 
development of heart failure.

Key Words: Cardiac remodelling; Cardiac hypertrophy; Heart failure; 
Neurohormonal activation; Oxidative stress; TNF-α; TGF-β

Cardiac remodelling:  
general aspects and mechanisms

Henrique Budib Dorsa Pontes MS1, Jose Carlos Dorsa Vieira Pontes PhD2, Euler de Azevedo Neto MS1,  
Alexandre Henrique Zangari MD3, Joao Victor Cunha Miranda MS1, Otoni Moreira Gomes PhD4

Heart failure (HF) is a worldwide health problem that affects 
approximately 26 million individuals (1). It is known that heart 

disease progresses to HF, and there is a link between cardiac remodel-
ling and the development of HF. Cardiac remodelling is defined as a 
group of molecular, cellular and interstitial changes that manifest 
clinically as alterations in the size, mass, geometry and function of the 
heart after a stressful stimulus (2). This process is triggered by ischemia 
(myocardial infarction) (3,4), inflammation (myocarditis) (2), hemo-
dynamic overload (workload by volume or pressure) (5) and neurohor-
monal activation (6,7). Cardiac remodelling is considered to be not 
only an adaptive event but also a maladaptive phenomenon. In the 
acute phase of a myocardial stress, cardiac remodelling acts as an adap-
tive response that enables the heart to maintain cardiac output; how-
ever, after the prolonged stressful stimulus, this continuous process 
leads to progressive decompensation (8). As a result of this phenome-
non, the heart develops cellular changes such as myocyte hypertrophy 
(2), necrosis (9), apoptosis (10-12), fibroblast proliferation (13), 
increased fibrillar collagen (14) and fibrosis (15). At the macroscopic 
level, it manifests as alterations in geometry of the heart (the chambers 
turn from an elliptical shape to a spherical shape), which is associated 
with progressive left ventricular dysfunction (2). Furthermore, this 
process involves abnormalities in energy metabolism, altered expres-
sion or function of contractile proteins, abnormalities in the events 
related to excitation-contraction coupling and changes in the extracel-
lular matrix (ECM) (16). The present article aims to describe the 
pathophysiology of cardiac remodelling during the development of HF.

OxIDATIVE STRESS AS A MAJOR EVENT IN 
CARDIAC REMODEllING

Oxidative stress is defined as an excessive production of reactive 
oxygen species (ROS) juxtaposed with the antioxidant defense sys-
tem. Many experimental and clinical studies have demonstrated an 
increased production of ROS in the failing heart (17,18). ROS have 
four main sources: interaction of leukocytes with cytokines; abnor-
malities in mitochondrial respiratory chain; increased NAD(P)H 

oxidase reactivity; and increased xanthine oxidase function (19). 
During stressful events, the arachidonic acid cycle releases proinflam-
matory cytokines that interact with chemotactic leukocytes (neutro-
phils and macrophages) and release ROS in the tissue, leading to 
oxidative stress (20). It may be noted that oxidative stress has been 
shown to induce myocardial hypertrophy, cellular dysfunction, ECM 
remodelling, continuous inflammation and progressive myocyte loss 
by apoptosis (19).

Under normal conditions, a small amount of ROS are produced in 
the mitochondrial respiratory chain; this small quantity of O2

− is 
detoxified by the antioxidant system. However, in HF, mitochondria 
release O2

− in significant quantities in the presence of NADH (21). 
Particularly in conditions in which oxygen availability is decreased, 
mitochondrial production of ROS is enhanced (22). During the 
development of HF, the levels of different hormones, such as angio-
tensin II and endothelin-1, are elevated in additon to tumour growth 
factor-α, which increase NAD(P)H oxidase activity (23-25) and lead 
to ROS production (26). Xanthine oxidase enzyme expression and 
function are also elevated in HF, representing an additional source of 
ROS. Experimental studies have demonstrated the benefits of treat-
ment with allopurinol, a xanthine oxidase inhibitor, in some animal 
models of HF (27-29).  

ROS AND CARDIAC HYPERTROPHY SIGNAllING
‘Redox signalling’ is the term that defines ROS modulation of the 
activity of several subcellular pathways that can induce specific regula-
tion in myocyte phenotype (30). ROS and neurohormonal stimulation 
can activate several protein kinases and transcription factors and, 
depending on the stimuli, can lead to different patterns of cardiac 
hypertrophy. Some subcellular pathways have already been described 
(30-32). Low levels of H2O2 are associated with an increase in the 
activity of mitogen-activated protein kinases (MAPK). MAPK cas-
cades are complex multiple levels of kinases that include a phosphoryl-
ation-based amplification network normally activated by a membrane 
G protein. MAPK cascades are classified into three major categories: 
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 p38 kinases; c-Jun N-terminal kinases; and extracellular regulated 
kinases (ERK) (31). Experimental studies have shown that transgenic 
mice overexpressing MEK-1 and ERK ½ activation developed a con-
centric hypertrophy pattern,  showing increased myocytes width (sar-
comeres assembled in parallels) similar to the pattern of hypertrophy 
due to pressure overload, but without fibrosis (33). Other studies 
involving mice overexpressing activated mutant ERK5, related to the 
MEK5-ERK5 category of MAPK, have reported eccentric hyper-
trophy, exhibiting ventricular dilation and internal radius increasing 
(sarcomeres assembled in series), similar to the pattern of volume 
overload-induced hypertrophy, but again with no sign of fibrosis (34).

There are signal transduction pathways that are associated with the 
development of pathological fibrosis. The calcium/calmodulin acti-
vated protein phosphatase (calcineurin) pathway, which is activated 
during a sustained period of intracellular calcium elevation, facilitates 
attachment to the nuclear factor of activated T (NAFT) cells. Mice 
overexpressing an activated mutant calcineurin showed an increase in 
heart size, geometrical disorganization and extensive collagen depos-
ition (35). Another kinase pathway involves Ca2+/calmodulin-
dependent kinase II (CaMKII), reflected by its expression and activity 
are enhanced in HF (36). Rats overexpressing CaMKII showed cham-
ber dilation, myocyte enlargement and high levels of fibrosis (37). It is 
noted that an important change in the phenotype of the hypertroph-
ied heart is the transition of the expression of myosin heavy chain 
(MHC) gene expression. Under physiological conditions, α-MHC, 
which promotes faster shortening velocity of cardiac myofibres due to 
high ATPase activity, is predominant (38,42). On the other hand, in 
HF, there is a downregulation of α-MHC and upregulation of β-MHC, 
which is expressed in fetal genes, with less ATPase activity 
(39,40,41,42). It has been shown that there is a correlation between 
the expression of β-MHC and the degree of cardiac hypertrophy (43). 
Thus, cardiac remodelling is invariably associated with a switch of 
myosin isozymes.

OxIDATIVE STRESS AND NEuROHORMONAl 
ACTIVATION CAuSE CA2+ TRANSPORT 

DYSFuNCTION
The two major structures that modulate the intracellular concentra-
tion of Ca2+, the sarcolemma (SL) and the sarcoplasmic reticulum 
(SR), also exhibit alterations in cardiac remodelling (44). In physio-
logical conditions, the excitation-contraction process is activated after 
a small quantity of Ca2+ influx through SL, which in turn stimulates a 
release of Ca2+ from the SR. In the relaxation phase, it is estimated 
that approximately 80% of the free cytoplasmic Ca2+ is accumulated 
in the SR (45). In cardiac remodelling, modifications in the expres-
sion of the saarcolemmal Na+Ca2+ exchanger (which uses the influx of 
Na+ to remove the intracellular Ca2+) and the SR Ca2+-ATPase 
(SERCA) (which is responsible for Ca2+ sequestration during diastolic 
phase) have been reported (46). In this condition, messenger RNA 
and proteins levels of SERCA are reduced, whereas that of the 
Na+Ca2+ exchanger are elevated or unaltered (46,47). Decreased lev-
els of SERCA reduce Ca2+ diastolic sequestration, leading to an 
abnormal force-frequency relationship and a decreased developed ten-
sion (48). The elevated expression and function of the Na+Ca2+ 
exchanger can lead to a large amount of Na+ influx, which is further 
associated with potential membrane depolarization that can generate 
amplified arrythmogenesis (49). The expression of SR phospholamban 
protein (a SERCA inhibitor and decreases Ca2+ sequestration) is 
depressed, representing an adaptive mechanism to compensate for 
SERCA dysfunction in HF (50,51).

In cardiac remodelling, both the sympathetic nervous system and 
the renin-angiotensin system (RAS) are activated, and different stud-
ies have demonstrated their relationship with dysfunction of intra-
cellular Ca2+ handling (52,53). ROS also modifies the proteins 
involved in excitation-contraction coupling, and there is evidence 
that ROS can suppress L-type Ca2+ channels, causing oxidative inter-
action with Ca2+ ATPase in the SR to inhibit Ca2+ uptake and 

enhance the probability of opening ryanodine receptors (54). 
Accordingly, both oxidative stress and neurohormonal activation can 
be regarded to play a critical role in the adjustment of Ca2+ handling 
during the development of cardiac remodelling. 

CARDIAC INJuRY lEADS TO FIBROSIS 
Cardiac fibroblasts (CFBs) represent a large cell population, corres-
ponding to approximately two-thirds of the cells in the heart. On the 
other hand, cardiomyocytes constitute approximately two-thirds of 
the volume of the myocardial tissue (55). Aside from playing a key 
role in maintaining cardiac geometry, structure, biochemical pro-
cesses and function, CFBs are essential for optimal electrical conduc-
tion in the myocardium (56,57). CFBs play a fundamental role in 
ECM homeostasis and remodelling. In normal conditions, ECM is 
composed of fibrillar collagen types I and III, fibronectin, laminin, 
fibrillin, elastin, glycoproteins and proteoglycans; CFBs are the pri-
mary source of these ECM proteins (58). CFBs also produce matrix 
metalloproteinases (MMPs) as well as tissue inhibitors of MMPs 
(TIMPs), which are ECM-regulatory proteins. MMPs are proteases 
that degrade ECM proteins and TIMPs can inhibit MMP function; 
their balanced equilibrium is critical for ECM homeostasis (59). 
Fibrosis is a response of hyperactivity of CFBs that proliferates in 
response to certain stressful stimuli, and recruitment and proliferation 
of circulating bone marrow-derived cells that infiltrate the myocar-
dium and transform into CFBs (60). It has been reported in some 
studies that increased levels of collagen synthesis biomarkers (PICP, 
PINP, PIIINCP, PIIINP) and reduced serum levels of collagen type I 
degradation biomarker (CITP), result in collagen deposition and 
fibrosis in cardiac remodelling (61,62).

Transforming growth factor-beta (TGF-β) plays a critical role in 
fibroblast phenotype modulation and gene expression, inducing inter-
stitial fibrosis (63). TGF-β suppresses ECM degradation by inhibiting 
MMP expression and inducing TIMPs synthesis. In addition, TGF-β 
also induces conversion of different fibroblasts into CFBs, and enhances 
ECM proteins synthesis (64, 65). Several studies have provided evi-
dence indicating a direct link between the RAS and TGF-β pathway, 
suggesting TGF-β acts downstream of angiotensin II (66,67,68). ECM 
remodelling may be the key in cardiac remodelling disease. Impairment 
of the ECM network structure disorganizes and interrupts myocardial 
cells and blood vessel connections, leading to a decrease in heart func-
tion and destruction of structural integrity. Fibrosis and overproduction 
of ECM proteins lead to enhanced stiffness of the myocardium wall, 
systolic and diastolic dysfunction and distorted architecture (60,62).

CONCluSIONS
Cardiac remodelling is both an adaptive and maladaptive response to 
various stressful stimuli. After cardiac stress, many changes at the 
macroscopic and microscopic level occur, leading to the development 
of cardiomyocyte hypertrophy, intracellular Ca2+ overload, fibrosis and 
apoptosis. The major events that result in cardiac remodelling include 
the production of ROS, neurohormonal activation of the sympathetic 
nervous system and RAS, and increase in the levels of inflammatory 
cytokines such as TGF-β and TNF-α. Despite great progress in this 
area during more than 40 years of research, cardiac remodelling 
remains an important topic that warrants more investigation, perhaps 
because it is the key step in preventing the progress of HF. 
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