CASE REPORT

Central airway complications following VEGF and chemoradiotherapy in advanced intrathoracic malignancies

Stephanie G. Worrell, Jeffrey A. Hagen, P. Michael McFadden

INTRODUCTION: Lung cancer is the most common cause of cancer death in both men and women worldwide. Most patients will have advanced disease at the time of diagnosis. This results in many patients being referred initially to oncology and radiation oncologists without ever being a surgical candidate. We report on four patients over three years who developed major central airway complications following treatment with chemotherapy and radiation, with two patients receiving anti-angiogenic chemotherapeutic drugs.

CASE REPORT: Four cases are included in this case series of patients that developed post treatment central bronchopleural fistula after treatment for a central airway tumor. There were two men and two females, mean age of 65 years. Different techniques, including stenting and the use of extracorporeal membrane oxygenation were required for treatment and stabilization of the airway. There was a 75% mortality in this series.

DISCUSSION: Airway complications resulting in large airway defects are life threatening and difficult to manage. Treatment of these central airway tumors can result in catastrophic complications.

CONCLUSION: The cases presented report a complication of concurrent chemotheraphy and radiation treatment, with concern for use of vascular endothelial growth factor (VEGF) inhibitors on advanced central and upper airway malignancy.

Key Words: Airway; Lung cancer; Concurrent chemotherapy and radiation; VEGF inhibitors

BACKGROUND

Lung cancer is the most common cause of cancer death in both men and women worldwide. The majority of patients have advanced disease at the time of presentation (1). Combination therapy with chemotherapy and radiation has improved longer term outcomes (2-5).

Bevacizumab and Sorafenib is anti-angiogenic chemotherapeutic drug that specifically inhibit vascular endothelial growth factor (VEGF). Bevacizumab was first introduced for advanced non-small cell lung cancer (NSCLC) in the early 1990s and was found to improve overall survival and patient quality of life (6,7). The addition of radiation therapy has also been associated with improved progression free and overall survival by controlling sites of local disease (2). These therapies while effective may result in catastrophic bronchopleural fistula when administered to patients with central airway tumors. To date, there have been limited case reports of patients with esophagitis who progress to tracheoesophageal fistula formation during therapy with bevacizumab (8).

In our current case series we report on four patients over three years who developed major central airway complications following treatment with chemotherapy and radiation, two of which included a VEGF inhibitor with concurrent radiation.

CASE SERIES

Case 1

A 51-year-old (yo) woman with stage IV NSCLC of the right upper lobe extending in to right main stem bronchus began systemic treatment with Carboplatin, Paclitaxel, and Bevacizumab and concurrent radiation. Three months later she presented to an outside hospital with cough and regurgitation upon drinking liquids. A chest CT scan showed a right upper lobe pleural based lesion and a smaller end bronchial lesion. Bronchoscopy revealed a large defect in the right main bronchial wall. Esophagoscopy showed a large defect in communication with the right main bronchus, 23 cm from the incisors. An 18 mm × 15 cm covered Ultra flex esophageal stent was placed across the defect. A feeding gastrostomy tube was also placed during her hospitalization and she was discharged in good condition.

Case 2

A 58-year-old male with chronic obstructive pulmonary disease (COPD) and recently diagnosed right upper lobe NSCLC, presented to an outside hospital with shortness of breath and was found to have a tension pneumothorax, treated with chest tube. He had just completely 6 weeks of concurrent paclitaxel, carboplatin, and radiation. He continued to have a large air leak after chest tube placement and was transferred to our facility.
Several randomized trials have established the superiority of concurrent cheoradiotherapy compared with chemotherapy alone for advanced lung cancer (2-5). The side effect most commonly reported with combination therapy is esophageal fistula. In previous studies the esophagitis has led to tracheoesophageal fistula in some cases due to severe erosion (8). Radiation pneumonitis is a known pulmonary complication of radiation therapy. Therefore, it is not unreasonable to assume that the radiation induced injury to the surrounding tissue may contribute to the formation of bronchopleural fistula.

VEGF inhibitors are more commonly being used in combination with radiation therapy. The mechanism of synergy between the two treatments involves a transient vessel normalization that occurs with VEGF therapy improving radiosensitization (10). VEGF inhibitor therapy causes a transient angiostatic state prior to vessel regression, this is the time in which radiation therapy is most effective (10). This also enhances the ability of the combination therapy to cause tumor necrosis by enhancing the ability to induce tumor hypoxia and cell death.

The cases presented report a complication of concurrent chemotherapy and radiation therapy, The mechanism of synergy between the two treatments involves a transient vessel normalization that occurs with VEGF therapy improving radiosensitization (10). VEGF inhibitor therapy causes a transient angiostatic state prior to vessel regression, this is the time in which radiation therapy is most effective (10). This also enhances the ability of the combination therapy to cause tumor necrosis by enhancing the ability to induce tumor hypoxia and cell death.

**DISCUSSION**

Lung cancer is the most common cause of cancer death worldwide. In 2014, over 200,000 people in the United States were newly diagnosed with lung cancer and over 150,000 people died from lung cancer (9). Therapy with VEGF inhibitors and radiation therapy in advanced disease have led to improvements in progression free and overall survival (2,6,7). The purpose of VEGF inhibitors is to inhibit angiogenesis to a growing tumor. The known risk factors associated with this treatment include hypertension, bleeding, thromboembolic events, delayed wound healing, infection, and tracheoesophageal fistula (8). These complications can predispose patients with large central airway tumors to progress to bronchopleural fistula. The proposed mechanism by which this occurs is via the tissue necrosis induced by these therapies as the tumor regresses. Additionally, once the tumor necrosis these patients are at a decreased ability to heal these large defects.

Several randomized trials have established the superiority of concurrent chemoradiotherapy compared with chemotherapy alone for advanced lung cancer (2-5). The side effect most commonly reported with combination therapy is esophagitis. In previous studies the esophagitis has led to tracheoesophageal fistula in some cases due to severe erosion (8). Radiation pneumonitis is a known pulmonary complication of radiation therapy. Therefore, it is not unreasonable to assume that the radiation induced injury to the surrounding tissue may contribute to the formation of bronchopleural fistula.

VEGF inhibitors are more commonly being used in combination with radiation therapy. The mechanism of synergy between the two treatments involves a transient vessel normalization that occurs with VEGF therapy improving radiosensitization (10). VEGF inhibitor therapy causes a transient angiostatic state prior to vessel regression, this is the time in which radiation therapy is most effective (10). This also enhances the ability of the combination therapy to cause tumor necrosis by enhancing the ability to induce tumor hypoxia and cell death.

The cases presented report a complication of concurrent chemotherapy and radiation therapy, The mechanism of synergy between the two treatments involves a transient vessel normalization that occurs with VEGF therapy improving radiosensitization (10). VEGF inhibitor therapy causes a transient angiostatic state prior to vessel regression, this is the time in which radiation therapy is most effective (10). This also enhances the ability of the combination therapy to cause tumor necrosis by enhancing the ability to induce tumor hypoxia and cell death.

**CONCLUSION**

Clinicians should consider pre-treatment stenting across centrally located tumors or even avoidance of VEGF inhibitors in specific patients. There is a need for further investigation in to the true incidence of airway complications associated with concurrent VEGF inhibitor treatment.

**REFERENCES**

Complications of VEGF and Chemoradiotherapy in Airways


