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SHORT COMMUNICATION

Gene therapy is today a promising approach to treat many incurable 
diseases. However the success of such an approach has taken a long time 

to appear. The first clinical assay using gene therapy was launched in 1989, 
whereas the first success of gene therapy occurred in 2000 for children with 
X-linked severe immunodeficiency (1). Based on the principle of using genes 
as medication, gene therapy encountered many difficulties linked to gene 
transfer efficiency, transgene loss and adverse effects resulting from vector 
immunogenicity or proto-oncogene activation by integrated vector. Intensive 
research work was performed to solve these problems, and today several 
clinical assays of gene therapy have been successful for various pathologies, 
including rare diseases, neurodegenerative diseases and cancer (2). Cancer is 
the most frequent pathology targeted by gene therapy, as it represents 65% of 
the world clinical trials (http://abedia.com/wiley/indications.php). However 
there are only few drugs in the market which shows that therapeutic benefits 
need further improvement. Presently, the most promising therapy for cancer 
is immunotherapy. Several approaches exist, among which oncolytic viral 
therapy and genetically modified killer cells approach provide encouraging 
results in clinical trials (3, 4). The last generation oncolytic viruses have been 
engineered by insertion of genes coding for proteins able to stimulate the 
immune system, showing that in all approaches, combination with gene 
therapy brings a therapeutic benefit to treatments. In addition to 
immunotherapy, three other strategies of gene therapy have been developed 
to treat cancer, based on anti-angiogenesis, tumor suppressor and suicide 
therapies respectively. In spite of all these advances in cancer therapeutics, 
the remaining question is how to improve treatment efficiency. An important 
problem with cancer therapy is the development of resistance during the 
treatment by tumor cells. In such a context the concept of combined gene 
therapy brings interesting perspectives (5). Combination of several 
therapeutic molecules allows synergistic effect and/or multiple targeting, 
which is of great interest to improve the treatment of cancer as well as of 
other incurable diseases. In this purpose IRES-based vectors constitute 
powerful tools to co-express several genes of interest (5). Internal Ribosome 
Entry Sites (IRESs) are RNA elements which are naturally present in a few 
mRNAs. The classical mechanism of translation initiation requires ribosome 
recruitment at the mRNA 5’end followed by scanning and translation, 
whereas IRESs allow translation to start by direct ribosome recruitment at 
internal initiation codons. This feature has been used in biotechnology to 
design expression cassettes where several genes separated by IRESs are 
expressed from a single transcription unit. Co-expression from the same 
mRNA prevents competition between promoters and unexpected 
extinguishment of one of the transgenes, which is often observed when 
transgenes are expressed under the control of distinct promoters. 
Furthermore, IRESs are often activated by stress conditions including 
hypoxia, which is an advantage to obtain efficient protein synthesis in 
hypoxic conditions occurring in various pathologies (6–8). Thus the IRES-
based vector-, also called multicistronic vector strategy, is particularly well 
suited for gene therapy of ischemic diseases as well as of cancer where cells 
are submitted to hypoxia. As regards side effects, combined gene therapy is 
advantageous: IRES-based vectors express lower doses of therapeutic 
molecules with superior therapeutic effects due to synergy, compared to 
vectors expressing single molecules (9). This increases safety and decreases 
the side effects. It was demonstrated in an approach of therapeutic 
angiogenesis of lower limb ischemia in mouse, where a monocistronic vector 
expressing Cyr61 increased tumor progression, the bicistronic vector co-
expressing low doses of FGF2 and Cyr61 had no effect on tumor progression 

while generating a higher therapeutic benefit (9).  A successful application of 
the multicistronic vector strategy has been recently published in Molecular 
Therapy by Renaud-Gabardos et al. (10). Here lentivectors have been 
designed for gene therapy of ischemic heart disease in a murine model of 
heart failure. This pathology is mainly characterized by coronary artery 
occlusion resulting from atherosclerosis. This generates several dysfunctions 
including decline in perfusion, cardiac fibrosis and cardiomyocyte death, 
which results in impaired contractile function. A previous study has suggested 
that angiogenic therapy could restore perfusion in myocardial tissue while 
transfer of genes able to restore cardiomyocyte function, could correct 
defaults of contractile function. Several clinical trials have been performed 
using angiogenic genes with a moderate success regarding therapeutic 
benefits (11). The most encouraging results have been observed in a 2a  phase 
clinical trial (CUPID1) based on the use of the sarcoplasmic reticulum Ca2+-
ATPase SERCA2a gene, involved in calcium handling and able to restore 
contractile function (12). However the 2b phase (CUPID2) was really 
deceiving as it did not confirm the promising data of CUPID1, sending the 
researchers back to the bench to design new approaches for heart failure 
treatment (13, 14).  The proposition of Renaud-Gabardos et al. was to 
combine SERCA2a with a strong angiogenic molecule, fibroblast growth 
factor 2 (FGF2), and a bioactive peptide, apelin, described for its features of 
fibrosis and cardiomyocyte apoptosis prevention (10). These authors designed 
a multicistronic lentivector co-expressing apelin, FGF2 and SERCA2a in the 
purpose of restoring several parameters of ischemic heart disease 
simultaneously. In the lentivector, the three genes of interest are separated by 
two copies of the FGF1 IRES, rather than the classically used 
Encephalomyocarditis Virus (EMCV) IRES. Indeed the FGF1 IRES is 
particularly suitable here as it is activated by hypoxia in vivo in ischemic heart. 
The lentivector was directly injected into infarcted myocardium. Results 
reveal a synergistical effect of FGF2 and apelin to stimulate angiogenesis, 
while the triplet apelin-FGF2-SERCA2a shows the best therapeutic effect to 
prevent fibrosis, heart hypertrophy and restore heart function. The authors 
looked at the impact of the treatment on the regulation of gene expression: 
they showed that combination of the three therapeutic genes is more 
efficient than treatment with the single genes, in restoring angiogenic 
balance as well as regulation of genes involved in heart remodeling and 
contractile function. Combining several therapeutic genes thus appears as a 
promising approach to restore the regulation of gene networks. A clinical 
assay is being elaborated to assess the apelin-FGF2-SERCA2a combined gene 
therapy on patients. The concept of combined gene therapy is applicable to 
many diseases, and in particular to cancer which is a very complex pathology. 
The first attempt of combined gene therapy of cancer was immunotherapy 
based on interleukin 12 (IL-12) and showed effective eradication of murine 
tumors using fibroblasts transduced by an IRES-based retroviral vector co-
expressing the two IL-12 subunits with the neomycin resistance gene (15).  
Phase I clinical assay was launched in 1995 and provided encouraging results 
on patients with melanoma or head and neck cancer, without significant side 
effects (16). However the strong anti-tumoral effect observed in animals was 
not reproduced in cancer patients, due to an adaptative response 
downregulating IL-12 activity, as high doses of the cytokine expressed are 
toxic (17). IL-12 was also shown to cooperate with CD80 co-stimulation 
molecule in induction of effective antitumor immunity (18). In addition, 
association of molecules of co-stimulation has been assessed (19). These 
combination therapies remain clinically interesting as they can lower the 
threshold for IL-12 efficacy (20). Presently, IL-12 gene therapy is combined 
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with suicide gene therapy using oncolytic adenovirus (21). Other interleukins 
are also assessed for cancer vaccine strategy, such as IL-18 combined to HSV-
TK gene in colorectal cancer (22). In addition to immunotherapy, attempts 
have been performed to combine anti-angiogenic factors in the purpose of 
reducing the development of resistance to a single anti-angiogenic factor. 
These approaches were moderately successful. The study of Renaud-Gabardos 
et al. provides a new perspective with regards to cancer gene therapy, for 
example by combining a gene of immune stimulation with an anti-angiogenic 
factor and a tumor suppressor. Such a perspective is illustrated by a very 
recent study combining DESI2 and endostatin to induce apoptosis and it 
inhibit angiogenesis, showing improved antitumor efficacy in mouse colon 
and lung cancer models (23). Targeting several parameters of this pathology 
in which many genes are deregulated appears, nowadays, as a promising way 
in the field of cancer therapeutics.
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