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INTRODUCTION

Emergence of the concept of chaos and complexities in many real 
systems encouraged researchers to take active interest in applications of 

deterministic principle and to take active interest in studying dynamics of 
evolutions of plants, insects and animals. Regular and chaotic evolutionary 
behavior in nonlinear systems has fascinated scientists of recent times 
and exciting results discovered. The biological systems are complex 
and multicomponent, [1-4]. Such systems spatially structured and their 
individual elements possess individual properties. A sincere study on these 
systems provides results to understand how the deterministic rules capable 
to explain the complex fluctuations in living systems.

Due to non-linear nature, most real systems exhibit chaos and complexity 
character during evolution. Complexity can viewed as its systematic nonlinear 
properties and it is due to the interaction among multiple agents within the 
system. Presence of complexity in a systems havefeatureslikecoexistenceofm
ultipleattractors,bistability,intermittency,fractalproperty,cascading failures, 
often exhibit hysteresis, network of multiplicity, emergent phenomena 
and some more properties, [5-8]. The measure of complexity is provided 
by topological entropy, more topological entropy in a system signifies the 
system is more complex, [9-12]. These articles have also explained complexity 
of different types observed in real systems. Lyapunov exponents,(LCEs), 
stand for measure of chaos; it provides indications of regular and chaotic 
evolution. Positive (LCEs) signifies the presence of chaos and its negative 
value stands for regularity in the system, [13-17].

Insect evolution is metamorphosis since a series of big changes occurring 
during growth and development of insects. Their evolution passes through 
four distinct stages: egg, larva, pupa and adult [18-22]. Among insects going 
through such stages can be listed as butterflies, moths, beetles, flies, bees, 
wasps, and ants. While transforming from one stage to another stage an 
insect has to molt its skin and each time it emerge larger and of different form 
until it reaches the adult stage. Most insects have annual non-overlapping 
generations. 

Adults may lay eggs in spring or summer, and then die. The eggs hatch out 
into larvae, which eat and grow in a pupal stage. The adults emerge from 
pupae. Some recent investigations designed to study evolutionary changes 
in insect populations like flour beetle Tribolium, in LPA model. Considering 
the discreteness of individuals and for demographics to chasticity, modified 
deterministic discrete states as well as stochastic discrete state in LPA models, 
studies carried out and a number of exciting results are drawn.

While studying evolution of insects in the LPA model, it seems reasonable to 
observe bifurcation and other properties by varying also the mortality rate 𝜇𝑙, 
of the larvae population in addition to that of 𝜇𝑎 the adult population. Then, 

non-consideration of mortality rate 𝜇𝑝 or assumption that 𝜇𝑝= 0, for pupa 
population, may not match with real situation. This rate 𝜇

p
 may possibly be 

small but not zero. Presence of complexity and existence of regularity and 
chaos during evolution require investigation in different parameter space.

The objective of this investigation is further exploration of the evolutionary 
properties of LPA system for insect population. Study would include 
visualization of regular and chaotic evolution through bifurcation diagrams 
by varying, in turn, 𝜇𝑙 and 𝜇𝑎 while keeping other parameters constant and, 
assumption of cases 𝜇𝑝 = 0 as well as 𝜇𝑝< 0. Proper numerical simulations 
carried out to calculate and draw the regular and chaotic attractors for 
different sets of parameters of the system. Calculations further extended 
to obtain quantities like Lyapunov exponents, which confirm presence 
of regularity and chaos; topological entropies, which provide presence of 
complexity in the system and correlation dimension, which provides the 
dimensionality of a chaotic attractor.

The Mathematical Model

Discrete formulation of LPA for evolution of insect populations followed by 
equations, [2,3],

Ln+1 = Pn+1=bAn exp(−ceaAn −celLn)

Ln(1−μl) An+1=Pn(1−μp)exp(−cpaAn)+An(1−μa)                   (1)

In (1), L𝑛, Pn, stand, respectively, for larva, pupa and adult populations at 
the 𝑛𝑡ℎ generation. The parameter b stands for the birth rate of the species, 
(the number of new larvae per adult each unit time), and 𝜇𝑙, 𝜇𝑝, 𝜇𝑎 stand for 
the death rates of larva, pupa and adult, respectively. The fractions exp(−Cea 
An) and exp(−Cel Ln), respectively, are the probabilities that an egg is not 
eaten in the presence of adults An and larvae L𝑛. Also, the fraction exp(−
Cpa An) stands for the survival probability of pupa in presence of adults 
An. The parameters, 𝐶𝑒𝑎, 𝐶𝑒𝑙, 𝐶𝑝𝑎 assigned as cannibalism coefficients, [4].

Bifurcation Phenomena and Attractors

Bifurcations in a system show the changes occurring in the qualitatives 
tructure of the system during evolution when a particular parameter of it 
varies while other parameters kept constant.

Below Figure, Figure 1, show bifurcations scenario of system (1) when 
0≤𝜇a≤1.0, a various parameter space of parameters Cea, Cel, Cpa, b, 𝜇l, 
and 𝜇p .

The cannibalism coefficient Cpa play an active role in deciding regular and 
chaotic evolution of the system. Varying 𝜇l, 0 ≤ 𝜇l ≤ 1.0, a complete regular 
and chaotic case of bifurcation are observed for different sets of values of 
other parameters as shown in Figure 2. Regularity indicates the possible 
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Plots of Lyapunov Exponents and Topological Entropies

(a) Lyapunov Exponents(LCE): Lyapunov exponents are perfect measures 
of regular and chaotic motion. LCEs are positive for chaotic evolution and 
negative for regular motion. 

Higher and lower positive LCE values indicate, respectively, strongly and 
weakly chaotic evolutions, [19-22]. 

The Plots of Lyapunov exponents for regular and chaotic evolutions of 

coexistence. In this range of l, interesting cases of chaos observed for three 
different a, shown in Figure 3.

Formation of Chaotic Attractors

System (1) displays chaotic evolution in some parameter space. In the 
following Figures Figure 4, time series curves and phase plots shown for such 
chaotic evolution. A chaotic attractor for the motion and is shown in Figure 
5.

Figure 1a) Bifurcation diagrams when Cea=0.009, Cel=0.012, Cpa=0.012, Cpa=0.004, b =7.48, μl=0.267, μp =0.1, and for 0 ≤μa≤ 1.0

Figure 1b) Bifurcation diagrams when Cea=0.011 Cel=0.012, Cpa=0.004, b =11.68, μl=0.513, μp =0.001 And for 0≤ μa≤1.0.

Figure 1c) Bifurcation diagrams when Cea=0.011, Cel=0.012, Cpa=0.02, b =11.68, μl=0.213, μp =0.001, and for 0≤μa≤1.0. 

Figure 1d) Bifurcation diagrams when Cea=0.011, Cel=0.012, Cpa=0.017, b =11.68, μl=0.213,μp =0.0, and for 0≤μa≤1.0.

Figure 1e) Bifurcation diagrams when Cea=0.011, Cel=0.012, Cpa=0.017, b=11.68, μl=0.213, μp =0.0, and for 0.8≤μa≤1.
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Figure 2a) Bifurcation diagrams when Cea=0.009, Cel=0.012, Cpa=0.004, b =5.55, μa =0.19 μp =0.1, and for 0≤μl≤ 1.

Figure 2b) Bifurcation diagrams when Cea=0.01, Cel=0.03, Cpa=0.009, b =8.5, μa =0.9, μp =0.01, and for 0≤μl≤ 1.0.

Figure 3) Bifurcation diagrams when0≤μl≤1.0 and for values of Cea= 0.015, Cel= 0.0115, Cpa =0.016, b =6.5, μp=0.01 and with cases (a)μa=0.87, (b)μa=0.875, 
(c) μa=0.88.

system (1) for different parameters spaces presented in the sets of Figure, 
Figure 6. 

Figure in Figure 6a are for regular and chaotic motion with two different 𝜇𝑎, 
(0.4, 0.95), with same values of other parameters. 

Plots in Figure 6b are drawn for three different sets of values of (𝜇𝑙,) when b, 
𝐶𝑒𝑎, 𝐶𝑒𝑙 and 𝐶𝑝𝑎 are kept constant; plots in Figure 6c are for different values 
of 𝐶𝑒𝑙 while other parameters are same; plots in Figure 6d are to show the 
influence of cannibalism coefficients 𝐶𝑒𝑎, 𝐶𝑒𝑙 and 𝐶𝑝𝑎. The last plots Figure 

6e, correspond to the bifurcation Figure 3a 𝜇𝑎= 0.87 and (b) 𝜇𝑎 = 0.88.

(b)Topological Entries: Topological entropy is an invariant of topological 
conjugacy and an analogue of measure theoretic entropy. It provides a 
numerical measure for the complexity of an endomorphism of a compact 
topological space, [5]. A complex system can viewed as that composed on 
many components, which may interact with each other. During evolution, in 
addition to chaos, the system may show some degree of spontaneous order, 
numerosity and robustness. Complexity in the system measured topological 
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μ on X with total measure μ(X) = 1 defines the probability of a given reading 
as pi = μ (Pi ) , i = 1, 2, . . , N.

Then the entropy of the partition be given by

N H(p)=−∑pi i=0 logpi                      (3)

The topological entropy, H ( p ) is a positive quantity and more topological 

entropy, which is a non-negative number. More increase in topological 
entropy of a system means it is more complex. Actually, it measures the 
exponential growth rate of the number of distinguishable orbits as time 
advances. Topological entropy calculated statistically in the following way:

Consider a finite partition of a state space X denoted by P = {P1, P2, P3, PN}. 
Then a measure

Figure 4a) Chaotic times series and phase attractors of LPA system (1) for values of Cea=0.009, Cel=0.012, Cpa=0.004, b =7.48, μl=0.267, μa =0.98, μp=0.01.

Figure 4b) Chaotic time series and phase attractors of LPA system (1) for values of Cea=0.011, Cel=0.012, Cpa=0.02, μl=0.213, μa=0.8, μp=0.001, b=11.68.

Figure 5) A chaotic attractor in (L, P) plane when Cea=0.009, Cel=0.012, Cpa=0.004, b=7.48, µl = 0.267, µa =0.98, µp=0.01.
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Figure 6a) LCEs plots for values of parameters cea=0.009, cel=0.012, cpa=0.004, b=7.48, μa=0.267, μp=0.1 and then in plot (a) μa=0.4, in plot (b) μa=0.95.

Figure 6b) LCEs plots for c
ea

=0.011,c
el
= 0.012, c

pa
= 0.017, b=11.68 and, in(a) μl=0.513, μp= 0.001 and μa= 0.5;in (b) μl=0.513, μp=0.001 and μa=0.8; in plot 

(c) μl=0.213, μp=0.0 and μa=0.18.

Figure 6c) Plots of LCEs for parameters b=8.5, μl=0.4, μp=0.01, μa=0.9, C
ea
=0.02, C

pa
= 0 .012 and, in (a) Cel=0.04; in (b) Cel=0.045; in (c) Cel=0.05.

Figure 6d) LCEs plots for values b=11.5, μl=0.5, μp=0.01, μa= 0.8, and in (a) C
el
= 0.02 and  Cpa=0.004; in (b) Cea=0.02and Cpa=0.004; in (c) Cea=0.02 and 

Cel=0.04.

Figure 6e) Plots of LCEs for parameters cea=0.015,c
el
= 0.015, c

pa
= 0.016, b= 6.5, μp=0.01, μl=0.35; (a) μa=0.87 and (b) μa= 0.88.
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entropy of a system signifies it is more complex.

As it appears from plots Figure 7, case (a), when 𝐶𝑒𝑎=0.009, 𝐶𝑒𝑙=0.012, 
𝐶𝑝𝑎=0.004, b=7.48, 𝜇𝑝=0.1 and 𝜇𝑙=0.267, there is no increase of entropy 
for 0 ≤ 𝜇𝑎 ≤ 1.0. Significant increase in topological entropies occur in cases 
(b) and (c) for variation of 𝜇𝑙. These cases describe the complex nature of 
evolution in the system in these parameter spaces

(C) Correlation Dimension: Correlation dimension provides the measure of 
dimensionality of the chaotic attractor. This is calculated statistically with the 
application of Heaviside function. Using the steps of Mathematica suggested 
in, first data for correlation integral C(r) calculated for certain r. Then, 
plotted the curve log C(r) / log r against r shown in Figure 8.

After this, we have applied a linear fit criterion to the correlation data and 
obtained the equation of the straight line

y = 2.77931 x + 0.692407                  (2)

The y-intercept of this straight line is 0.692407 and so, [40], the correlation 
dimension of the chaotic attractor Figure 2a is, approximately, Dc ~ 
0.692. Following this procedure, one can obtain correlation dimension 
for any other attractor.

DISCUSSIONS

Different sets of bifurcation diagrams obtained by varying death rate 
parameter μa of adult population and that of μl, the larvae population, 
(Figure. 1 – Figure. 3). As in a variety of nonlinear systems, one observes 
appearance of periodic windows within chaotic region during bifurcations 
of the system shown in Figure 1 and in Figure 2. Such periodic windows 
become gradually shorter and appearances become more frequent while 
moving forward in parameter space. This signifies an intermittency character. 
Bifurcation diagrams shown in Figure 3, are of strange type; it may be because 
of overlapping of values. The LCEs plots for such cases shown in Figure 6(e).

Figure 7) Topological entropy plots for parameters: (a) Cea=0.009, cel=0.012, cpa= 0.004, b=7.48, μp= 0.1, μl=0.267 (b) Ce= 0.01, c
el
=0.03, c

pa
=0.009, b=8.5, 

μp=0.001, μa=0.9, (c) Cea=0.02.

Figure 8) Plot of correlation integral data; when Cea=0.009, Cel=0.012, Cpa=0.004, b =7.48, μl=0.267,μa=0.98,μp=0.01.



22

Complex Evolution Dynamics of Insect Population

J Pur Appl Math Vol 5 No 2 March 2021

Regular as well as chaotic evolution observed for different sets of parameter 
values and measured by LCEs shown through Figure 6(a) – 6(e). Here, 
Figure. 6(b) shows the influence of parameters 𝜇l, 𝜇p and 𝜇a for regular and 
chaotic motions. Figure, Figure. 6(c) and Figure. 6(d) are drawn to show 
the role of cannibalism coefficients cea, cel, cpa in changing the dynamic 
evolution of system (1). One notice that in the parameter space shown in 
Figure 6(d), for 0.005 ≤ cea≤ 0.02, the regular motion changes to chaos and 
then, again, return to regularity. Similar is the case for 0.02 ≤ cel≤ 0.031. 
But cpa at a value 0.01 show regularity and then with increasing its value 
evolution becomes chaotic.

Presence of complexity in the system implies significant increase in 
topological entropy. From the plots of topological entropies, Figure 7, one 
observes: in plot (a) nil increase of topological entropy; in plot (b) topological 
entropy increases significantly in 0.9 ≤ 𝜇l ≤ 1.15; in plot (c) fluctuating type 
of its increase in 0.8≤ 𝜇l ≤ 0.95 and the increase in 1.0 ≤ 𝜇l ≤ 1.2; in plot 
(d) significant increase of topological entropy in 0.875 ≤ 𝜇l ≤ 1.15. Similar 
results can be obtained by varying other parameters, (e. g. 𝜇a, 𝜇p). It has also 
been observed that even if the system is regular complexity may exists and, 
also, during a chaotic evolution complexity may or may not be exhibited. 
Correlation dimension of the chaotic attractor shown in Figure 5, is obtained 
through data of plot, Figure 8, as Dc~0.692.
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