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 RESEARCH 

Constraints and Model Predictive control of wheeled mobile 
robot in the presence of obstacles 

Younis A Sabawi

INTRODUCTION 

n numerous researches in the area of formation control of wheeled 
mobile robots have been accomplished in the recent years. 
Cooperative robotics was first proposed to the modern engineering 

research in the early 1980s. There are three main strategies to control 
cooperative robotic systems in the previous studies. In this section, an 
overview of the related works using these three different approaches 
of formation control will be briefly presented [1]. 

Behavior based approach starts by designing simple behaviors or 
motion primitives for each individual robot, such as, formation 
keeping, trajectory tracking, collision evasion, goal seeking, and 
obstacle avoidance. Then, more complex motion patterns can be 
generated by using a weighted sum of the relative importance of these 
primitives and the interaction of several robots [2]. In the behaviors 
of a group of objects that exhibit was studied [3]. It is assumed that a 
folk is the result of the interaction between the behavior of individual 
creatures. Behaviors were represented as rules or programs where a 
data structure held the internal state of each member of the 
formation. The essential features of these behaviors were expressed as 

an object. Each object needs a computational process to apply the 
behavioral programs to the internal data [4]. 
In [5] a new class of potential functions was presented to allow each 
robot to organize itself and take its location in the geometric 
formation while moving to the goal in an obstacle environment. A 
robust formation control algorithm was applied in [6] by keeping the 
distance and angle between each robot and its leader approximately 
constant. The algorithm uses only the relative positions between 
neighboring robots and obstacles. The idea of non-linear attractor 
dynamics and behavior generating are used to design controllers allow 
the team of robots to move considering a predefined formation [7]. A 
new kinematics model for the leader-follower system using Cartesian 
coordinates instead of the generally used polar coordinates was 
presented in [8], where an integrator back stepping based controller 
was obtained. Desai et al. also suggested an algorithm that enables a 
group of robots to change its formation while avoiding obstacles [9]. 
A combination of kinematic and dynamic controllers was presented 
[10]. The reference velocity generated by the kinematic controller was 
the command input to a sliding mode controller based on the 
dynamic system. A distributed formation control algorithm in [11] 
was proposed assuming that the full state of the leader is unknown by 
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ABSTRACT 
This work considers the problem of formation control for a team 
of nonholonomic wheeled mobile robots in an obstacle 
environment. Virtual structure formation approach and APF 
method are obtained to determine the reference trajectories of the 
robots. The virtual structure formation control strategy is obtained 
here to compute each individual robot trajectory whereas the 
reference path of the virtual center of the formation is generated 
by artificial potential fields. Many control strategies are discussed 
here. Next, a new control algorithm based on model predictive 
control and the nonlinear dynamics of the system is presented 

here. The control algorithm is applied to the nonlinear system using 
three different controllers traditional Model Predictive Control 
(MPC), Laguerre based MPC and nonlinear MPC. Using model 
predictive control, the dynamic model of the wheeled mobile robot is 
used to calculate the torques required to track the trajectory. The 
optimal solution of both formation and tracking problems is derived 
using a proposed control law. The control law could use the 
information from other robots to maintain the formation shape 
which can be guaranteed by using a new cost function. Simulations 
were accomplished using Matlab. The results demonstrate that the 
proposed controllers can achieve the trajectory tracking and formation 
keeping objectives also in the present of disturbance. 

Key words:  Wheeled mobile robots; Lagrange multiplier method; Obstacles; 

Feedback linearization; Predictive control 
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follower robots. The control law was designed based on the formation 
distance error and the estimated states of the leader. Moreover, paper 
suggested a bearing-only leaderfollower formation control approach 
where the leader robot is observed by the followers [12]. In addition, 
Kalman filter was obtained to estimate the states of the system. 
Finally, an input-output feedback control was implemented which 
guarantees formation maintaining and stable movement for follower 
robots. Three level hybrid control algorithm to obtain both 
centralized and decentralized cooperative control via leader-follower 
method were proposed [13]. The global-level formation control was 
converted into decentralized control problems between N-1 followers 
and their leader. Two basic controllers were presented in the leader-
follower control level to keep relative distance between the follower 
and the leader and avoid obstacles. In [14] translated the formation 
control problem from the configuration space into the image plan for 
each follower. Also, a nonlinear tracking control was designed to 
compensate the nonlinearity of the robot dynamics. In [15] a robust 
leader-follower formation controller consisting of a feedback 
linearization part and a sliding mode compensator is designed. In [16] 
a control law was designed based on faulttolerant which considered 
certain conditions including sensor limitations, obstacle and 
neighbors’ collision avoidance, and leader-loss situation. This Control 
method is more applicable than other methods because it assumed 
that global states are not measurable and the communications among 
robots are not available. In [17] used a receding-horizon leader-
follower control algorithm to maintain the formation of a group of 
mobile robots. To keep the desired relation between leader and 
followers a Separation–Bearing– Orientation Scheme (SBOS) and 
Separation–Separation–Orientation Scheme (SSOS). Unlike other 
approaches, Chen solved the formation control problem when robots 
move backwards. A modern control algorithm has succeeded in 
formation control is the Model Predictive Control (MPC) because it 
is able to solve the control problem considering constraints on 
control, states and output variables [18]. In [19] a distributed 
nonlinear model predictive control of constrained agents was 
presented. Paper proposed a control law contains a combination of 
linear model predictive control and input-output linearization [20]. 
Using feedback linearization canceled the nonlinearity of the 
dynamic system. Furthermore, MPC was implemented to find the 
optimal solution for the leader-follower formation control problem. 
Kuwata et al.  also proposed a new distributed robust linear MPC to 
control a multivehicle system [21]. In contrast, a distributed receding 
horizon control of a platoon of vehicles with nonlinear discrete-time 
dynamics was presented in [22]. 

Given the above, most of the proposed strategies for formation 
control based on the kinematic equation of the wheeled mobile robot 
without taking into account the dynamic equations. Moreover, many 
of these control strategies ignored the nonlinearity of the system and 
were designed using only the linearized model of the system. 
Nevertheless, it is important to design the controller via the nonlinear 
dynamics to reach a certain level of stability. 

In this work, we will discuss the problem of formation control of 
three wheeled robots using the virtual structure approach. In other 
words, the problem here is a trajectory tracking for a system of three 
wheeled mobile robots while maintaining a desired formation and 
avoiding obstacles. The virtual structure formation control strategy is 
obtained herein to compute each individual robot trajectory where 
the reference path of the virtual center of the formation is generated 
by artificial potential fields. Also, we will present two different linear 
model predictive controllers and a nonlinear model predictive 
controller. Formation keeping is guaranteed by a proposed cost 
function considers the formation error between each two robots. 
These three methods will be compared with a control system based 
on feedback linearization controller proposed in [23]. 

The thesis is organized as follows. Section 2 defines both the 
kinematic and dynamic model for a single differential drive mobile 
robot. Also, the linearized model of the dynamic equations is 
extracted in this chapter. The path planning problem is considered in 
chapter 3. The artificial potential field is used to generate the desired 
trajectory for the virtual center. Later in section 3, the virtual 
structure formation approach is expressed, where the trajectory of 
each single robot is derived. Section 4 discusses the control strategy 
used in reference and presents a new controller consists of afeedback 
linearization [24]. Later in section 4 a stability study of the proposed 
controller is presented followed by the simulation results and 
comparison with the controller in [24]. The design of three different 
Model Predictive Controllers (MPC) is discussed in Section 5, 
nonlinear MPC. This chapter also contains the simulation results of 
the proposed MPC controllers. A comparison between the NMPC 
and feedback linearization in the presence of noise also presented in 
section 5. Finally, the experiments results and the conclusion are 
reported respectively. 

Kinematic model 
Each robot of the team is considered to be a differential drive 
wheeled mobile robot. The team consists of N identical robot. 
Therefore, the static and dynamic model will be derived only for one 
robot. The differential drive wheeled mobile robot consists of two 
driven wheels mounted on a common axis, and each wheel can 
independently be driven forward and backward. To have the robot to 
perform a rolling motion, the velocity of each wheel must be different 
from each other making the robot rotate around the midpoint of the 
common axis. By varying the velocities of the two wheels, the robot 
will be able to follow the desired path. 

Nonholonomic wheeled robot model: Assume that the robot can 
only move along the vehicle longitudinal axis and the wheels roll 
without slipping in the horizontal plane while keeping the sagittal 
plane (i.e. the plane that contain the wheel disk) in the vertical 
direction. By considering these assumptions, the robot will have a 
kinematic constraint called nonholonomic constraint. To illustrate 
this fact, consider single Pfaffian constraints [25]: 

𝑎𝑎𝑇𝑇(𝑞𝑞)𝑞̇𝑞 = 0          (1) 

If the constraint is holonomic, it can be integrated and written as 

ℎ(𝑞𝑞) = 𝑐𝑐              (2) 

Where 
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 𝑎𝑎𝑇𝑇(𝑞𝑞) and c is an integration constant. Therefore, there 

is a loss of accessibility in the configuration space, because the motion 
of the mechanical system in C is confined to a particular level surface 
of the scalar function h. This surface, which depends on the initial 
configuration q0 through the value of ℎ(𝑞𝑞0) = 𝑐𝑐, has dimension n-1.

Instead, if the constraints (2) is nonholonomic, the generalized 
velocities are indeed constrained to belong to a subspace of 
dimension n-1, i.e., the null space of matrix 𝑎𝑎𝑇𝑇(𝑞𝑞). The fact that the 
constraint is non-integrable means that there is no loss of accessibility 
in C for the system. In other words, while the number of DOFs 
decreases to n-1 due to the constraint, the number of generalized 
coordinates cannot be reduced, not even locally.  

Let us get back to our problem, the pure rolling constraint for the ith 
robot is as follows 

𝑥̇𝑥𝐴𝐴
𝑖𝑖 sin 𝜑𝜑𝑖𝑖 − 𝑦̇𝑦𝐴𝐴

𝑖𝑖 cos 𝜑𝜑𝑖𝑖 = 0  (3) 
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in which means 

tan(𝜑𝜑𝑖𝑖) = 𝑦̇𝑦𝐴𝐴
𝑖𝑖

𝑥̇𝑥𝐴𝐴
𝑖𝑖    (4) 

and entails that, in the absence of slipping, the velocity of the contact 
point has zero component in the direction orthogonal to the sagittal 
plane. The angular velocity of the disk around the vertical axis instead 
is unconstrained.  

Position of the center of mass can be written with respect to the 
midpoint of the wheel’s common axis A as follows: 

�
𝑥𝑥𝑐𝑐

𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝐴𝐴
𝑖𝑖 + 𝑑𝑑 cos 𝜑𝜑𝑖𝑖

𝑦𝑦𝑐𝑐
𝑖𝑖(𝑡𝑡) = 𝑦𝑦𝐴𝐴

𝑖𝑖 + 𝑑𝑑 sin 𝜑𝜑𝑖𝑖

𝜑𝜑𝑖𝑖(𝑡𝑡) = 𝜃𝜃𝐴𝐴
𝑖𝑖(𝑡𝑡)

       (5) 

Rewriting the pure rolling and non-slipping constraint in term of q by 
deriving equation (4) and substituting it in (2) yields to: 

�𝑥̇𝑥𝑐𝑐
𝑖𝑖 + 𝑑𝑑𝜑̇𝜑𝑖𝑖 sin 𝜑𝜑𝑖𝑖� sin 𝜑𝜑𝑖𝑖 − �𝑦̇𝑦𝑐𝑐

𝑖𝑖 + 𝜑̇𝜑𝑖𝑖𝑑𝑑 cos 𝜑𝜑𝑖𝑖� cos 𝜑𝜑𝑖𝑖 = 0        (6) 

Simplifying equation (2-5) leads to: 

𝑥̇𝑥𝑐𝑐
𝑖𝑖 sin 𝜑𝜑 − 𝑦̇𝑦𝑐𝑐

𝑖𝑖 cos 𝜑𝜑𝑖𝑖 + 𝜑̇𝜑𝑖𝑖𝑑𝑑 = 0         (7) 

The above equation can be written in matrix form as: 

𝐴𝐴𝑖𝑖(𝑞𝑞𝑖𝑖). 𝑞̇𝑞𝑖𝑖 = 0         (8) 

Where 

𝐴𝐴𝑖𝑖(𝑞𝑞𝑖𝑖) = [sin 𝜑𝜑𝑖𝑖 cos 𝜑𝜑𝑖𝑖 𝑑𝑑]          (9) 

Each robot of the team is considered to be a differential drive 
wheeled mobile robot. The team consists of N identical robot. 
Therefore, the static and dynamic model will be derived only for one 
robot. The differential drive wheeled mobile robot consists of two 
driven wheels mounted on a common axis, and each wheel can 
independently be driven forward and backward, see figure (1). To 
have the robot to perform a rolling motion, the velocity of each wheel 
must be different from each other making the robot rotate around 
the midpoint of the common axis. By varying the velocities of the two 
wheels, the robot will be able to follow the desired path.  

Figure 1) The kinematic model of the differential drive mobile robot. 

Assume that the center of mass of the ith mobile robot is at some 
position (𝑥𝑥𝑐𝑐

𝑖𝑖 , 𝑦𝑦𝑐𝑐
𝑖𝑖) and orientation 𝜑𝜑𝑖𝑖 which can be expressed as a

state vector 𝑞𝑞𝑖𝑖(𝑡𝑡) = [𝑥𝑥𝑐𝑐
𝑖𝑖(𝑡𝑡) 𝑦𝑦𝑐𝑐

𝑖𝑖(𝑡𝑡) 𝜑𝜑𝑖𝑖(𝑡𝑡)]𝑇𝑇 . Point A denotes the
midpoint of the segment joining the two wheel centers.   

where 𝑥̇𝑥𝑐𝑐
𝑖𝑖 , 𝑦̇𝑦𝑐𝑐

𝑖𝑖are the ith robot velocity components in the Cartesian
plane and 𝜑̇𝜑𝑖𝑖 is the angular velocity. Therefore  𝑞̇𝑞𝑖𝑖 = [𝑥̇𝑥𝑐𝑐

𝑖𝑖 , 𝑦̇𝑦𝑐𝑐
𝑖𝑖 , 𝜑̇𝜑𝑖𝑖]𝑇𝑇 is

presented generalized velocities vector.  

Generalized velocities are indeed constrained to belong to a subspace 
of dimension n−1, i.e., the null space of matrix 𝐴𝐴𝑖𝑖�𝑞𝑞𝑖𝑖�. Nevertheless, 
the fact that the constraint is non-integrable means that there is no 
loss of accessibility in configuration of the system. In other words, 
while the number of DOFs decreases to n − 1 due to the constraint, 
the number of generalized coordinates cannot be reduced, not even 
locally. Therefore, kinematic model of the ith robot can be written as 
follows:  

𝑞̇𝑞𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑞𝑞𝑖𝑖)𝑣𝑣𝑖𝑖      (10) 

where 𝑣𝑣𝑖𝑖 = [𝜃̇𝜃𝑟𝑟
𝑖𝑖 , 𝜃̇𝜃𝑙𝑙

𝑖𝑖]𝑇𝑇and 𝜃̇𝜃𝑟𝑟
𝑖𝑖 , 𝜃̇𝜃𝑙𝑙

𝑖𝑖
 are the velocities of the right and

left wheels, respectively.  
To find the matrix 𝑆𝑆𝑖𝑖�𝑞𝑞𝑖𝑖� , Differentiating (1) with respect to time 
yields:  

�
𝑥̇𝑥𝑐𝑐

𝑖𝑖(𝑡𝑡) = 𝑣𝑣𝑖𝑖 cos 𝜑𝜑𝑖𝑖 − 𝑑𝑑𝜔𝜔𝑖𝑖 sin 𝜑𝜑𝑖𝑖

𝑦̇𝑦𝑐𝑐
𝑖𝑖(𝑡𝑡) = 𝑣𝑣𝑖𝑖 sin 𝜑𝜑𝑖𝑖 + 𝑑𝑑𝜔𝜔𝑖𝑖 cos 𝜑𝜑𝑖𝑖

𝜑̇𝜑𝑖𝑖(𝑡𝑡) = 𝜔𝜔𝑖𝑖
       (11) 

Rewriting equations (2) in matrix form yields: 

𝑞̇𝑞𝑐𝑐
𝑖𝑖(𝑡𝑡) = �

cos 𝜑𝜑𝑖𝑖 −𝑑𝑑 sin 𝜑𝜑𝑖𝑖

sin 𝜑𝜑𝑖𝑖 +𝑑𝑑 cos 𝜑𝜑𝑖𝑖

0 1
� �𝑣𝑣𝑖𝑖

𝜔𝜔𝑖𝑖�       (12) 

where 𝑣𝑣𝑖𝑖 and 𝜔𝜔𝑖𝑖 are the linear and the angular velocities of the ith 
vehicle, respectively. Since the linear velocity of each wheel in the ith 

robot frame is 𝑣𝑣𝑟𝑟,𝑙𝑙
𝑖𝑖 = 𝑟𝑟𝜃̇𝜃𝑟𝑟,𝑙𝑙

𝑖𝑖
 , the linear and the angular velocities of

the vehicle in the ith robot frame can be computed as:  

𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑟𝑟
𝑖𝑖+𝑣𝑣𝑙𝑙

𝑖𝑖

2
= 𝑟𝑟 𝜃̇𝜃𝑟𝑟

𝑖𝑖
+𝜃̇𝜃𝑙𝑙

𝑖𝑖

2
   (13) 

𝜔𝜔𝑖𝑖 = 𝑟𝑟 𝜃̇𝜃𝑟𝑟
𝑖𝑖
−𝜃̇𝜃𝑙𝑙

𝑖𝑖

2𝑏𝑏
  (14) 

By substituting (1) and (2) in (4,5), the kinematic model of the ith 
wheeled mobile robot in (15) can be derived by the following 
equation: 

𝑞̇𝑞𝑖𝑖(𝑡𝑡) =

⎣
⎢
⎢
⎡

𝑟𝑟
2𝑏𝑏

(𝑏𝑏 cos 𝜑𝜑𝑖𝑖 − 𝑑𝑑 sin 𝜑𝜑𝑖𝑖) 𝑟𝑟
2𝑏𝑏

(𝑏𝑏 cos 𝜑𝜑𝑖𝑖 + 𝑑𝑑 sin 𝜑𝜑𝑖𝑖)
𝑟𝑟

2𝑏𝑏
(𝑏𝑏 sin 𝜑𝜑𝑖𝑖 + 𝑑𝑑 cos 𝜑𝜑𝑖𝑖) 𝑟𝑟

2𝑏𝑏
(𝑏𝑏 sin 𝜑𝜑𝑖𝑖 − 𝑑𝑑𝑑𝑑 cos 𝜑𝜑𝑖𝑖)

𝑟𝑟
2𝑏𝑏

− 𝑟𝑟
2𝑏𝑏 ⎦

⎥
⎥
⎤

�𝜃̇𝜃𝑟𝑟
𝑖𝑖

𝜃̇𝜃𝑙𝑙
𝑖𝑖 �  (15) 

Dynamic model 
In the following, the Lagrange formulation is used to obtain the 
dynamic model of the wheeled mobile robot system subject to the 
kinematic constraint in the form (16). The Lagrangian ℒ of a 
mechanical system is defined as the difference between its kinetic and 
potential energy:  

ℒ(𝑞𝑞, 𝑞̇𝑞) = 𝑇𝑇(𝑞𝑞, 𝑞̇𝑞) − 𝑈𝑈(𝑞𝑞)       (16) 

where T and U are the kinetic energy and the potential energy of the 
system, respectively. The Lagrange equations in this case are:  

𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝜕𝜕ℒ𝑖𝑖

𝜕𝜕𝑞̇𝑞𝑘𝑘
𝑖𝑖� − 𝜕𝜕ℒ𝑖𝑖

𝜕𝜕𝑞𝑞𝑘𝑘𝑖𝑖 = 𝐵𝐵𝑖𝑖(𝑞𝑞𝑖𝑖)𝜏𝜏𝑖𝑖 + 𝐴𝐴𝑖𝑖(𝑞𝑞𝑖𝑖)𝑇𝑇𝜆𝜆𝑖𝑖    (17) 
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where 𝐵𝐵𝑖𝑖�𝑞𝑞𝑖𝑖� is t he inpu t tran sformation matr ix,  𝛕𝛕𝒊𝒊 =  [𝜏𝜏𝑟𝑟𝑖𝑖  𝜏𝜏𝑙𝑙𝑖𝑖] 
represents the actuating torques of the wheels and 𝜆𝜆𝑖𝑖 is the vector of 
Lagrangian multipliers for the ith robot. The term 𝐀𝐀(𝒒𝒒𝒊𝒊)𝑇𝑇𝜆𝜆𝑖𝑖 represent 
the vector of reaction forces at the generalized coordinate level.  

The kinetic energy of the ith robot: 

𝑇𝑇𝑖𝑖 = 1
2

𝑚𝑚 �𝑥̇𝑥𝐶𝐶
𝑖𝑖 2 + 𝑦̇𝑦𝐶𝐶

𝑖𝑖 2� + 1
2

𝐼𝐼𝜑̇𝜑𝑖𝑖2        (18) 

∴ 𝑚𝑚 = �𝑚𝑚𝑝𝑝 + 2𝑚𝑚𝑤𝑤�, 𝐼𝐼 = 𝐼𝐼𝑧𝑧𝑧𝑧 + 2𝐼𝐼𝑧𝑧𝑧𝑧 + 2𝑚𝑚𝑤𝑤(𝑑𝑑2 + 𝑏𝑏2)

where 𝑚𝑚𝑝𝑝 is the mass of each platform without the mass of driven 
wheels and actuators, 𝑚𝑚𝑤𝑤 is the mass of the wheels and their 
actuators and 𝐼𝐼𝑧𝑧𝑧𝑧 , 𝐼𝐼𝑧𝑧𝑧𝑧 are the moment of inertia of the wheels and 
the platform, respectively.  

Since the potential energy of the system is equal to zero, the 
Lagrangian function is equal to the kinetic energy i.e. ℒ𝑖𝑖�𝑞𝑞𝑖𝑖 , 𝑞̇𝑞𝑖𝑖� =
𝑇𝑇𝑖𝑖�𝑞𝑞𝑖𝑖 , 𝑞̇𝑞𝑖𝑖�.  

Obtaining equation (17) with the derived Lagrangian function gives 

⎩
⎪
⎨

⎪
⎧

𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝜕𝜕ℒ𝑖𝑖

𝜕𝜕𝑥̇𝑥𝐶𝐶
𝑖𝑖� = 𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑚𝑚𝑥̇𝑥𝐶𝐶

𝑖𝑖� = 𝑚𝑚𝑥̈𝑥𝐶𝐶
𝑖𝑖  , 𝜕𝜕ℒ𝑖𝑖

𝜕𝜕𝑥𝑥𝐶𝐶𝑖𝑖 = 0
𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝜕𝜕ℒ𝑖𝑖

𝜕𝜕𝑦̇𝑦𝐶𝐶
𝑖𝑖� = 𝑑𝑑

𝑑𝑑𝑑𝑑
�𝑚𝑚𝑦̇𝑦𝐶𝐶

𝑖𝑖� = 𝑚𝑚𝑦̈𝑦𝐶𝐶
𝑖𝑖  , 𝜕𝜕ℒ𝑖𝑖

𝜕𝜕𝑦𝑦𝐶𝐶𝑖𝑖 = 0
𝑑𝑑
𝑑𝑑𝑑𝑑

�𝜕𝜕ℒ𝑖𝑖

𝜕𝜕𝜑̇𝜑𝑖𝑖� = 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐼𝐼𝜑̇𝜑𝑖𝑖) = 𝐼𝐼𝜑̈𝜑𝑖𝑖  , 𝜕𝜕ℒ𝑖𝑖

𝜕𝜕𝜑𝜑𝑖𝑖 = 0  

      (19) 

This results in the following equations of motion: 

�
𝑚𝑚𝑥̈𝑥𝐶𝐶

𝑖𝑖 = 𝐹𝐹𝑥𝑥
𝑖𝑖 + 𝐶𝐶1

𝑖𝑖

𝑚𝑚𝑦̈𝑦𝐶𝐶
𝑖𝑖 = 𝐹𝐹𝑦𝑦

𝑖𝑖 + 𝐶𝐶2
𝑖𝑖

𝐼𝐼𝜑̈𝜑𝑖𝑖 = 𝜏𝜏𝑖𝑖 + 𝐶𝐶3
𝑖𝑖

        (20) 

where 𝐶𝐶1𝑖𝑖 , 𝐶𝐶2𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶3𝑖𝑖 are coefficients related to the kinetic 
constraints and 𝐹𝐹𝑥𝑥

𝑖𝑖 , 𝐹𝐹𝑦𝑦
𝑖𝑖 , 𝜏𝜏𝑖𝑖  are the actuator forces acting in x and y

directions and actuator torque, respectively.  

𝐹𝐹𝑥𝑥
𝑖𝑖 = �𝐹𝐹𝑅𝑅

𝑖𝑖 + 𝐹𝐹𝐿𝐿
𝑖𝑖� cos 𝜑𝜑𝑖𝑖      (21) 

𝐹𝐹𝑦𝑦
𝑖𝑖 = �𝐹𝐹𝑅𝑅

𝑖𝑖 + 𝐹𝐹𝐿𝐿
𝑖𝑖� sin 𝜑𝜑𝑖𝑖      (22) 

𝜏𝜏𝑖𝑖 = �𝐹𝐹𝑅𝑅
𝑖𝑖 − 𝐹𝐹𝐿𝐿

𝑖𝑖�𝑏𝑏          (23) 

Figure 2) Forces acted on one robot. 

where 𝐹𝐹𝑅𝑅𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐿𝐿𝑖𝑖 are the forces exerted by the right and left wheels 
of the ith robot, respectively, see figure 2, 

𝐹𝐹𝑅𝑅
𝑖𝑖 = 𝜏𝜏𝑅𝑅

𝑖𝑖

𝑟𝑟
   (24) 

𝐹𝐹𝐿𝐿
𝑖𝑖 = 𝜏𝜏𝐿𝐿

𝑖𝑖

𝑟𝑟
  (25) 

Substituting (24, 25) in equations (21) to (23), 

�
𝐹𝐹𝑥𝑥

𝑖𝑖

𝐹𝐹𝑦𝑦
𝑖𝑖

𝜏𝜏𝑖𝑖

� = 1
𝑟𝑟

�
cos 𝜑𝜑𝑖𝑖 cos 𝜑𝜑𝑖𝑖

sin 𝜑𝜑𝑖𝑖 sin 𝜑𝜑𝑖𝑖

𝑏𝑏 −𝑏𝑏
� �𝜏𝜏𝑅𝑅

𝑖𝑖

𝜏𝜏𝐿𝐿
𝑖𝑖 �      (26) 

Equation (20) can be written in matrix form as:  

𝑀𝑀𝑖𝑖(𝑞𝑞𝑖𝑖)𝑞̈𝑞𝑖𝑖 + 𝐶𝐶𝑖𝑖(𝑞𝑞𝑖𝑖, 𝑞̇𝑞𝑖𝑖) + 𝐺𝐺𝑖𝑖(𝑞𝑞𝑖𝑖) = 𝐵𝐵𝑖𝑖(𝑞𝑞𝑖𝑖)𝜏𝜏𝑖𝑖 + 𝐴𝐴𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝜆𝜆𝑖𝑖       (27) 

Where: 

𝑀𝑀𝑖𝑖(𝑞𝑞𝑖𝑖) = �
𝑚𝑚 0 0
0 𝑚𝑚 0
0 0 𝐼𝐼

�    

𝐶𝐶𝑖𝑖(𝑞𝑞𝑖𝑖, 𝑞̇𝑞𝑖𝑖) = �
0
0
0

� 

𝐵𝐵𝑖𝑖(𝑞𝑞𝑖𝑖) = �
cos 𝜑𝜑𝑖𝑖 cos 𝜑𝜑𝑖𝑖

sin 𝜑𝜑𝑖𝑖 sin 𝜑𝜑𝑖𝑖

𝑏𝑏 −𝑏𝑏
� 

𝐴𝐴𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝜆𝜆𝑖𝑖 = �
𝐶𝐶1

𝑖𝑖

𝐶𝐶2
𝑖𝑖

𝐶𝐶3
𝑖𝑖
� 

It can be proved that the columns of  𝑆𝑆𝑖𝑖�𝑞𝑞𝑖𝑖� are a basis for the null 
space of  𝐴𝐴𝑖𝑖�𝑞𝑞𝑖𝑖�, so that: 

𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝐴𝐴𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖) = 0    (28) 

Moreover, the Lagrange multiplier can be eliminated by pre-

multiplying both sides of equation (27) by 𝑆𝑆𝑖𝑖𝑇𝑇�𝑞𝑞𝑖𝑖�. 

𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝑀𝑀𝑖𝑖(𝑞𝑞𝑖𝑖)𝑞̈𝑞𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝐶𝐶𝑖𝑖(𝑞𝑞𝑖𝑖, 𝑞̇𝑞𝑖𝑖) + 𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝐺𝐺𝑖𝑖(𝑞𝑞𝑖𝑖) = 𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝐵𝐵𝑖𝑖𝜏𝜏𝑖𝑖 +
𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝐴𝐴𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝜆𝜆𝑖𝑖                                                                                  (29) 

Differentiating the kinematic equation (8) results in: 

𝑞̈𝑞𝑖𝑖 = 𝑆̇𝑆𝑖𝑖(𝑞𝑞𝑖𝑖)𝑣𝑣𝑖𝑖 + 𝑆𝑆𝑖𝑖(𝑞𝑞𝑖𝑖)𝑣̇𝑣𝑖𝑖         (30) 

Substituting (28) and (30) in (29) yields to: 

𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞)𝑀𝑀𝑖𝑖𝑆̇𝑆𝑖𝑖�𝑞𝑞𝑖𝑖�𝑣𝑣𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑇𝑇�𝑞𝑞𝑖𝑖�𝑀𝑀𝑖𝑖𝑆𝑆𝑖𝑖�𝑞𝑞𝑖𝑖�𝑣̇𝑣𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑇𝑇�𝑞𝑞𝑖𝑖�𝐶𝐶𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑇𝑇�𝑞𝑞𝑖𝑖�𝐵𝐵𝑖𝑖   (31) 

Finally, the reduced dynamic model is expressed as: 

𝑀𝑀�𝑖𝑖(𝑞𝑞𝑖𝑖)𝑣̇𝑣𝑖𝑖 + 𝐶𝐶̅𝑖𝑖(𝑞𝑞𝑖𝑖 , 𝑞̇𝑞𝑖𝑖) = 𝐵𝐵�𝑖𝑖(𝑞𝑞𝑖𝑖)𝜏𝜏𝑖𝑖       (32) 

where:  

𝑀𝑀�𝑖𝑖(𝑞𝑞𝑖𝑖) = 𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝑀𝑀𝑖𝑖𝑆𝑆𝑖𝑖(𝑞𝑞𝑖𝑖) 

𝐶𝐶̅𝑖𝑖(𝑞𝑞𝑖𝑖, 𝑞̇𝑞𝑖𝑖) = 𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝑀𝑀𝑖𝑖𝑆̇𝑆𝑖𝑖(𝑞𝑞𝑖𝑖)𝑣𝑣𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑇𝑇(𝑞𝑞𝑖𝑖)𝐶𝐶𝑖𝑖

𝐵𝐵�𝑖𝑖(𝑞𝑞𝑖𝑖) = 𝑆𝑆𝑖𝑖 𝑇𝑇(𝑞𝑞𝑖𝑖)𝐵𝐵𝑖𝑖

Retr
ac

ted
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Now consider a new state vector for the system as: 

𝑥𝑥𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥𝑖𝑖

𝑦𝑦𝑖𝑖

𝜑𝜑𝑖𝑖

𝜃̇𝜃𝑅𝑅
𝑖𝑖

𝜃̇𝜃𝐿𝐿
𝑖𝑖 ⎦
⎥
⎥
⎥
⎥
⎤

= �𝑞𝑞𝑖𝑖

𝑣𝑣𝑖𝑖�  , 𝑢𝑢𝑖𝑖 = 𝜏𝜏𝑖𝑖       (33) 

Therefore, the equation of motion in the state space form can be 
represented as 

𝑥̇𝑥𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) + 𝐺𝐺𝑖𝑖(𝑥𝑥𝑖𝑖)𝑢𝑢𝑖𝑖 = 𝑓𝑓𝑥𝑥
𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑢𝑢𝑖𝑖)       (34) 

where: 

𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) = � 𝑆𝑆𝑖𝑖𝑣𝑣𝑖𝑖

−𝑀𝑀�𝑖𝑖(𝑞𝑞𝑖𝑖)−1𝐶𝐶̅𝑖𝑖(𝑞𝑞𝑖𝑖, 𝑞̇𝑞𝑖𝑖)� , 𝐺𝐺𝑖𝑖(𝑥𝑥𝑖𝑖) = � 0
𝑀𝑀�𝑖𝑖(𝑞𝑞𝑖𝑖)−1𝐵𝐵�𝑖𝑖(𝑞𝑞𝑖𝑖)� 

The more detailed equations are expressed as follows: 

𝑓𝑓𝑖𝑖�𝑥𝑥𝑖𝑖� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑟𝑟
2

𝜃̇𝜃𝑅𝑅
𝑖𝑖 �cos 𝜑𝜑𝑖𝑖 − 𝑑𝑑

𝑏𝑏
sin 𝜑𝜑𝑖𝑖� + 𝑟𝑟

2
𝜃̇𝜃𝐿𝐿

𝑖𝑖 �cos 𝜑𝜑𝑖𝑖 + 𝑑𝑑
𝑏𝑏

sin 𝜑𝜑𝑖𝑖�
𝑟𝑟
2

𝜃̇𝜃𝑅𝑅
𝑖𝑖 �sin 𝜑𝜑𝑖𝑖 + 𝑑𝑑

𝑏𝑏
cos 𝜑𝜑𝑖𝑖� + 𝑟𝑟

2
𝜃̇𝜃𝐿𝐿

𝑖𝑖 �sin 𝜑𝜑𝑖𝑖 − 𝑑𝑑
𝑏𝑏

cos 𝜑𝜑𝑖𝑖�
𝑟𝑟

2𝑏𝑏
𝜃̇𝜃𝑅𝑅

𝑖𝑖 − 𝑟𝑟
2𝑏𝑏

𝜃̇𝜃𝐿𝐿
𝑖𝑖

− 𝑑𝑑
𝑐𝑐

(𝐼𝐼𝜃̇𝜃𝐿𝐿
𝑖𝑖 − 𝐼𝐼𝜃̇𝜃𝑅𝑅

𝑖𝑖 + 𝑏𝑏2𝑚𝑚𝜃̇𝜃𝑅𝑅
𝑖𝑖 + 𝑏𝑏2𝑚𝑚𝜃̇𝜃𝐿𝐿

𝑖𝑖 − 𝑑𝑑2𝑚𝑚𝜃̇𝜃𝑅𝑅
𝑖𝑖 + 𝑑𝑑2𝑚𝑚𝜃̇𝜃𝐿𝐿

𝑖𝑖)𝜑̇𝜑𝑖𝑖

𝑑𝑑
𝑐𝑐

(−𝐼𝐼𝜃̇𝜃𝐿𝐿
𝑖𝑖 + 𝐼𝐼𝜃̇𝜃𝑅𝑅

𝑖𝑖 + 𝑏𝑏2𝑚𝑚𝜃̇𝜃𝑅𝑅
𝑖𝑖 + 𝑏𝑏2𝑚𝑚𝜃̇𝜃𝐿𝐿

𝑖𝑖 + 𝑑𝑑2𝑚𝑚𝜃̇𝜃𝑅𝑅
𝑖𝑖 − 𝑑𝑑2𝑚𝑚𝜃̇𝜃𝐿𝐿

𝑖𝑖)𝜑̇𝜑𝑖𝑖
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (35) 

Nonholonomic Wheeled Robot Model 

𝐺𝐺𝑖𝑖(𝑥𝑥𝑖𝑖) =

⎣
⎢
⎢
⎢
⎡

0 0
0 0
0 0
𝑐𝑐1 𝑐𝑐2
𝑐𝑐2 𝑐𝑐1⎦

⎥
⎥
⎥
⎤
       (36) 

where c, c1 and c2 are constants defined by: 

𝑐𝑐 = 2𝑏𝑏(𝑚𝑚𝑑𝑑2 + 𝐼𝐼) 

𝑐𝑐1 =
𝑚𝑚𝑏𝑏2 + 𝑚𝑚𝑑𝑑2 + 𝐼𝐼
𝑚𝑚𝑟𝑟2(𝑚𝑚𝑑𝑑2 + 𝐼𝐼)

𝑐𝑐2 =
−𝑚𝑚𝑏𝑏2 + 𝑚𝑚𝑑𝑑2 + 𝐼𝐼

𝑚𝑚𝑟𝑟2(𝑚𝑚𝑑𝑑2 + 𝐼𝐼)

Linearized model 
A linear model can be derived from the nonlinear model (34) by 
linearizing around a reference trajectory. The reference trajectory can 
be applied from the desired path (𝑥𝑥𝑟𝑟

𝑖𝑖(𝑡𝑡), 𝑢𝑢𝑟𝑟
𝑖𝑖(𝑡𝑡))  the ith robot

should follow. To this end, the Taylor series expansion [37] of the 
system (34) is obtained around the trajectory and as a result:  

𝑥̇𝑥𝑖𝑖 = 𝑓𝑓𝑥𝑥
𝑖𝑖(𝑥𝑥𝑟𝑟

𝑖𝑖 , 𝑢𝑢𝑟𝑟
𝑖𝑖) + 𝜕𝜕𝑓𝑓𝑥𝑥

𝑖𝑖�𝑥𝑥𝑖𝑖,𝑢𝑢𝑖𝑖�

𝜕𝜕𝑥𝑥𝑖𝑖 �𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑟𝑟
𝑖𝑖

𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑟𝑟
𝑖𝑖

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑟𝑟
𝑖𝑖) + 𝜕𝜕𝑓𝑓𝑥𝑥

𝑖𝑖(𝑥𝑥,𝑢𝑢)

𝜕𝜕𝑢𝑢𝑖𝑖 �𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑟𝑟
𝑖𝑖

𝑢𝑢𝑖𝑖 = 𝑢𝑢𝑟𝑟
𝑖𝑖

(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑟𝑟
𝑖𝑖) + ℱ𝑖𝑖       (37) 

where ℱ𝑖𝑖 contains the high order terms of the expansion which can 
be ignored in linear approximations. Therefore, system (34) after the 
linearization around the nominal trajectory 𝑥𝑥𝑟𝑟

𝑖𝑖(𝑡𝑡) is expressed as: 

𝑒̇𝑒𝑖𝑖 = 𝐴𝐴𝑖𝑖(𝑡𝑡)𝑒𝑒𝑖𝑖 + 𝐵𝐵𝑖𝑖(𝑡𝑡)𝑒𝑒𝑢𝑢
𝑖𝑖      (38) 

where ei is the error vector of state variables, 𝑒𝑒𝑢𝑢
𝑖𝑖 is the error vector of

control variables respect to the reference trajectory(𝑥𝑥𝑟𝑟
𝑖𝑖(𝑡𝑡), 𝑢𝑢𝑟𝑟

𝑖𝑖(𝑡𝑡))
and the matrices Ai(t) and Bi(t) are defined as:  

𝐴𝐴𝑖𝑖(𝑡𝑡) = 𝜕𝜕𝑓𝑓𝑥𝑥
𝑖𝑖�𝑥𝑥𝑖𝑖,𝑢𝑢𝑖𝑖�
𝜕𝜕𝑥𝑥𝑖𝑖 �𝑥𝑥𝑖𝑖=𝑥𝑥𝑟𝑟

𝑖𝑖

𝑢𝑢𝑖𝑖=𝑢𝑢𝑟𝑟𝑖𝑖  , 𝐵𝐵(𝑡𝑡) = 𝜕𝜕𝑓𝑓𝑥𝑥
𝑖𝑖(𝑥𝑥,𝑢𝑢)

𝜕𝜕𝑢𝑢𝑖𝑖 �𝑥𝑥𝑖𝑖=𝑥𝑥𝑟𝑟
𝑖𝑖

𝑢𝑢𝑖𝑖=𝑢𝑢𝑟𝑟𝑖𝑖    (39) 

As a result, we have: 

𝐴𝐴𝑖𝑖(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 0 −

𝑟𝑟
2 𝜃̇𝜃𝑅𝑅

𝑖𝑖 �𝜑𝜑𝑖𝑖 +
𝑑𝑑
𝑏𝑏� −

𝑟𝑟
2 𝜃̇𝜃𝐿𝐿

𝑖𝑖 �𝜑𝜑𝑖𝑖 −
𝑑𝑑
𝑏𝑏�

𝑟𝑟
2 �1 −

𝑑𝑑
𝑏𝑏 𝜑𝜑𝑖𝑖�

𝑟𝑟
2 �1 +

𝑑𝑑
𝑏𝑏 𝜑𝜑𝑖𝑖�

0 0
𝑟𝑟
2 𝜃̇𝜃𝑅𝑅

𝑖𝑖 �1 −
𝑑𝑑
𝑏𝑏 𝜑𝜑𝑖𝑖� +

𝑟𝑟
2 𝜃̇𝜃𝐿𝐿

𝑖𝑖 �1 +
𝑑𝑑
𝑏𝑏 𝜑𝜑𝑖𝑖�

𝑟𝑟
2 �𝜑𝜑𝑖𝑖 +

𝑑𝑑
𝑏𝑏�

𝑟𝑟
2 ∗ �𝜑𝜑𝑖𝑖 −

𝑑𝑑
𝑏𝑏�

0 0 0
𝑟𝑟

2𝑏𝑏 −
𝑟𝑟

2𝑏𝑏
0 0 0 0 0
0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵𝐵𝑖𝑖(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎡

0 0
0 0
0 0
𝑐𝑐1 𝑐𝑐2
𝑐𝑐2 𝑐𝑐1⎦

⎥
⎥
⎥
⎤
 

Rewriting state space equations in discrete-time format might be 
needed in the design of the controller. To convert the continuous-
time dynamic model to discrete-time formulation, Euler’s method can 
give an approximate solution using the following equations : 

𝐴𝐴𝑑𝑑
𝑖𝑖(𝑘𝑘) = 𝐼𝐼𝑛𝑛×𝑛𝑛 + 𝑇𝑇𝑠𝑠𝐴𝐴𝑐𝑐

𝑖𝑖(𝑡𝑡) 

𝐵𝐵𝑑𝑑
𝑖𝑖(𝑘𝑘) = 𝑇𝑇𝑠𝑠𝐵𝐵𝑐𝑐

𝑖𝑖(𝑡𝑡)

which is a good approximation for a short sampling time Ts. Matrices 
Ac

i and Bc
i are the continuous-time state space matrices, and for the 

system (38) are equal to matrices Ai and Bi, respectively. 

Formation problem via virtual structure 
Assume that the formation contains 𝑛𝑛 identical nonholonomic 
wheeled mobile robots, and there is a virtual center for the group 
with configuration vector 𝑞𝑞𝑣𝑣𝑣𝑣 = [𝑥𝑥𝑣𝑣𝑣𝑣 , 𝑦𝑦𝑣𝑣𝑣𝑣 , 𝜑𝜑𝑣𝑣𝑣𝑣]𝑇𝑇, which represents the
desired position of the virtual center of the formation. The idea 
behind virtual center approach is that each robot has to keep 
specified distance from the virtual center of the formation. By the 
assumption that the virtual center acts like a real robot, that its center 
of mass is at the midpoint of the wheels’ common axis, its kinematic 
model is presented in equation (41).  

�
𝑥̇𝑥𝑣𝑣𝑣𝑣(𝑡𝑡) = 𝑣𝑣𝑣𝑣𝑣𝑣 cos 𝜑𝜑𝑣𝑣𝑣𝑣
𝑦̇𝑦𝑣𝑣𝑣𝑣(𝑡𝑡) = 𝑣𝑣𝑣𝑣𝑣𝑣 sin 𝜑𝜑𝑣𝑣𝑣𝑣
𝜑̇𝜑𝑣𝑣𝑣𝑣(𝑡𝑡) = 𝜔𝜔𝑣𝑣𝑣𝑣

       (40) 

where 𝑣𝑣𝑣𝑣𝑣𝑣, 𝜔𝜔𝑣𝑣𝑣𝑣 are linear and angular velocities of the virtual center, 
respectively. By using the APF path generating method we can define 
the linear velocities and the orientation of the virtual center in fixed 
coordinate frame. Then, by integrating these velocities with respect 
to time we get the 𝑥𝑥𝑣𝑣𝑣𝑣  𝑎𝑎𝑎𝑎 𝑦𝑦𝑣𝑣𝑣𝑣 . By using these information, the 
desired position for each robot can easily be derived as: 

�
𝑥𝑥𝑑𝑑𝑑𝑑
𝑦𝑦𝑑𝑑𝑑𝑑

� = �
𝑥𝑥𝑣𝑣𝑣𝑣
𝑦𝑦𝑣𝑣𝑣𝑣

� + �cos 𝜑𝜑𝑣𝑣𝑣𝑣 − sin 𝜑𝜑𝑣𝑣𝑣𝑣
sin 𝜑𝜑𝑣𝑣𝑣𝑣 cos 𝜑𝜑𝑣𝑣𝑣𝑣

� �
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

�   (41) 

Artificial potential fields 
The main idea of artificial potential field approaches is that an 
artificial field U is constructed in the work space based on the goal 
and obstacles configuration. The field is obtained by an attractive 
potential to the goal and repulsive potentials from the obstacles [15]. 
Moreover, the point that represents the robot moves in configuration 
space under the influence of the total potential U. To this end, at 
each robot configuration the potential creates an artificial force 
equals to the negative gradient of the total potential which is 
obtained as a velocity input to the dynamic system of the virtual 
center.  Therefore, the artificial force specifies the direction and the 
velocity of the virtual center planned motion.  
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As mentioned earlier, the total potential field U is a combination of 
the attractive and the repulsive fields as follows: 

𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑞𝑞𝑣𝑣𝑣𝑣) = 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞𝑣𝑣𝑣𝑣) + 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞𝑣𝑣𝑣𝑣)        (42) 

where 𝑼𝑼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒒𝒒𝑣𝑣𝑣𝑣) is the total potential field, 𝑼𝑼𝑎𝑎𝑎𝑎𝑎𝑎(𝒒𝒒𝑣𝑣𝑣𝑣) is the attractive 
field and 𝑼𝑼𝑟𝑟𝑟𝑟𝑟𝑟(𝒒𝒒𝑣𝑣𝑣𝑣) is the repulsive field. Different functions have 
been discussed in related researches.  

The method of path planning and obstacles avoidance was first 
proposed by [26]. In this reference, the attraction potential field is 
obtained as follows 

𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 = 1
2

𝜉𝜉𝜌𝜌𝑔𝑔
2        (43) 

where 𝜉𝜉 is a positive scaling parameter, m = 2 and 𝜌𝜌𝑔𝑔 is the distance 
between the robot and the goal point. Considering 𝒒𝒒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the goal 
configuration and q represents the point of the robot, 𝝆𝝆𝑔𝑔 can be 
expressed as: 

𝜌𝜌𝑔𝑔 = �𝑞𝑞 − 𝑞𝑞𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�      (44) 

The corresponding attractive force is then given by the negative 
gradient of the attractive potential: 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 = −∇𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 = −𝜉𝜉(𝑞𝑞𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑞𝑞)   (45) 

This force tends to zero as the robot comes closer to the goal. It can 
be noticed that the attractive force is not bounded as the robot moves 
away from the goal. If the goal is very far from the robot, this may 
reduce a very large attractive force. Therefore, the attractive field can 
be redefined as [17] for m=2: 

𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 = �
1
2

𝜉𝜉𝜌𝜌𝑔𝑔
2   𝜌𝜌𝑔𝑔 ≤ 𝑑𝑑

𝑑𝑑𝑑𝑑𝜌𝜌𝑔𝑔 − 1
2

𝜉𝜉𝑑𝑑2       𝜌𝜌𝑔𝑔 > 𝑑𝑑
   (46) 

The corresponding attractive force in this case is: 

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 = −∇𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 = �
−𝜉𝜉(𝑞𝑞 − 𝑞𝑞𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)   𝜌𝜌𝑔𝑔 ≤ 𝑑𝑑

−𝑑𝑑𝑑𝑑(𝑞𝑞−𝑞𝑞𝑔𝑔𝑜𝑜𝑜𝑜𝑜𝑜)
𝜌𝜌𝑔𝑔

 𝜌𝜌𝑔𝑔 > 𝑑𝑑   (47) 

However, the repulsive field is introduced as [26]: 

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = �
1
2

𝜂𝜂( 1
𝜌𝜌𝑜𝑜𝑜𝑜

− 1
𝜌𝜌0

)2   𝜌𝜌𝑜𝑜𝑜𝑜 ≤ 𝜌𝜌0

0    𝜌𝜌𝑜𝑜𝑜𝑜 > 𝜌𝜌0

  (48) 

where 𝝆𝝆0 is the influence distance of the obstacle, 𝜂𝜂 is a positive 
scaling parameter and 𝝆𝝆𝑜𝑜𝑜𝑜 is the distance between the robot and the 
obstacle which is given as:  

𝜌𝜌𝑜𝑜𝑜𝑜 = ‖𝑞𝑞 − 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜‖                                                                          (49) 

where 𝒒𝒒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 indicates the point on the obstacle, where the distance 
between this point and the robot is minimal between the obstacle 
and the robot. The repulsive force is expressed as follows:  

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 = −∇𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = �
−𝜂𝜂( 1

𝜌𝜌𝑜𝑜𝑜𝑜
− 1

𝜌𝜌0
) 1

𝜌𝜌𝑜𝑜𝑜𝑜2 × 𝜕𝜕𝜌𝜌𝑜𝑜𝑜𝑜

𝜕𝜕𝜕𝜕
  𝜌𝜌𝑜𝑜𝑜𝑜 ≤ 𝜌𝜌0

0    𝜌𝜌𝑜𝑜𝑜𝑜 > 𝜌𝜌0

  (50) 

There are several problems when implementing this function. 
Trapping situations due to local minima and oscillating in the 
presence of obstacles are drawbacks of using this repulsive function. 
Another problem is that the goal can be unreachable when the 

obstacles are so close to it. In this case, when the robot comes close to 
the goal it approaches also the obstacles and it will stop without 
reaching the goal. To avoid such problems, a new repulsive potential 
function, proposed in [26], is used instead.  

The new repulsive functions are introduced by considering the 
relative distance between the robot and the goal in the calculation of 
the repulsive field. This approach was inspired by the fact that if the 
repulsive potentials converge to zero as the robot approaches the goal, 
then the goal will be at the global minimum. The proposed repulsive 
function is presented as follows:  

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = �
1
2

𝜂𝜂( 1
𝜌𝜌𝑜𝑜𝑜𝑜

− 1
𝜌𝜌0

)2𝜌𝜌𝑔𝑔
𝑛𝑛   𝜌𝜌𝑜𝑜𝑜𝑜 ≤ 𝜌𝜌0

0    𝜌𝜌𝑜𝑜𝑜𝑜 > 𝜌𝜌0

   (51) 

The last term is added to ensure that the total potential arrives at its 
global minimum if and only if 𝑞𝑞 = 𝑞𝑞𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . The resulted force can be 
written as:  

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 = � −𝜂𝜂 � 1
𝜌𝜌𝑜𝑜𝑜𝑜

− 1
𝜌𝜌0

� 𝜌𝜌𝑔𝑔𝑛𝑛

𝜌𝜌𝑜𝑜𝑜𝑜2 × 𝜕𝜕𝜌𝜌𝑜𝑜𝑜𝑜
𝜕𝜕𝜕𝜕

+ 𝑛𝑛
2

𝜂𝜂( 1
𝜌𝜌𝑜𝑜𝑜𝑜

− 1
𝜌𝜌0

)2𝜌𝜌𝑔𝑔
𝑛𝑛−1 × 𝜕𝜕𝜌𝜌𝑔𝑔

𝜕𝜕𝜕𝜕
  𝜌𝜌𝑜𝑜𝑜𝑜 ≤ 𝜌𝜌0

0    𝜌𝜌𝑜𝑜𝑜𝑜 > 𝜌𝜌0

  (52) 

The attractive and repulsive functions used in this work are defined 
based on the new potential function proposed in [26].  

Path planning problem here can be solved as an optimization 
problem by finding the global minimum in the total field 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
starting from initial configuration 𝒒𝒒𝑣𝑣(𝑡𝑡0). The solution of this 
problem can be given by the gradient descent. Thus, the desired 
velocity of the virtual center can be considered to be proportional to 
the negative gradient of 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 as: 

 𝑣𝑣𝑣𝑣𝑣𝑣 = −𝐾𝐾∇𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑞𝑞𝑣𝑣𝑣𝑣)       (53) 

where K is a positive constant and ∇𝑼𝑼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝒒𝒒𝑣𝑣𝑣𝑣) is derived from 
equation (52).   

In this work, 𝑜𝑜𝑜𝑜 is the distance between the virtual center and the 
obstacle and 𝝆𝝆0 is chosen to be the minimum acceptable distance 
between the virtual center and the obstacle. To ensure that none of 
the robots of the formation collide with the obstacles, 𝜌𝜌0 is 
determined as: 

𝜌𝜌0 = 𝑅𝑅 + 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜    (54) 

where 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 is the obstacle radius and  𝑅𝑅 is the radius of the formation 
which indicates the longest distance between the robots to the virtual 
center, which can be calculated using the following equation: 

𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚��𝑥𝑥𝑖𝑖
2 + 𝑦𝑦𝑖𝑖

2�
𝑖𝑖=1:𝑁𝑁

      (55)    

Figure 3 illustrates an example of the potential surface of an obstacle 
environment. There are four obstacles distributed randomly. To 
illustrate the effect shows the path generated using the mentioned 
method.  
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(a) 

(b) 

Figure 3) (a) Projection of the obstacles’ potential surface, (b) Potential 

function of 4 obstacle. 

The second part could use the information from other robots to 
maintain the formation shape which can be guaranteed by using a 
new cost function as follows:  

𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎
𝑖𝑖 = 𝐽𝐽𝑡𝑡

𝑖𝑖 + 𝐽𝐽𝑓𝑓
𝑖𝑖                                                                                  (56)

The dynamic equation of the system represented in a state space form 
(34) will be considered in the design of the controllers. Since the
system is nonlinear, to apply the traditional and Laguerre MPC first
we will need to use the linearized system (38) around the reference
trajectory 𝒙𝒙(𝑡𝑡). The discrete time presentation of the linearized system
can be expressed as follows: 

𝑥𝑥𝑚𝑚(𝑘𝑘 + 1) = 𝐴𝐴𝑚𝑚𝑥𝑥𝑚𝑚(𝑘𝑘) + 𝐵𝐵𝑚𝑚𝑢𝑢(𝑘𝑘)          (57) 

where the state space matrices in discrete time are defined as: 

�𝐴𝐴𝑚𝑚(𝑘𝑘) = 𝐼𝐼𝑛𝑛×𝑛𝑛 + 𝑇𝑇𝑠𝑠𝐴𝐴(𝑡𝑡)
𝐵𝐵𝑚𝑚(𝑘𝑘) = 𝑇𝑇𝑠𝑠𝐵𝐵(𝑡𝑡)           (58) 

where n is the number of state variables, 𝑰𝑰𝑛𝑛×𝑛𝑛 is the identity matrix of 
size n and 𝑇𝑇𝑠𝑠 is the sampling interval.  

TRADITIONAL MPC 

The design of discrete time predictive control with constraints is 
introduced here based on statespace model. The state space form of a 
general linearized MIMO system in discrete time can be described as 
follows :  

�𝑥𝑥𝑚𝑚(𝑘𝑘 + 1) = 𝐴𝐴𝑚𝑚𝑥𝑥𝑚𝑚(𝑘𝑘) + 𝐵𝐵𝑚𝑚𝑢𝑢(𝑘𝑘) + 𝐵𝐵𝑑𝑑𝑤𝑤(𝑘𝑘)
𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝑚𝑚𝑥𝑥𝑚𝑚(𝑘𝑘)            (59) 

where u is the manipulated variable or input variable; y is the process 
output; and 𝑥𝑥𝑚𝑚 is the state variable vector with assumed dimension n. 
Taking a difference operation on both sides of (59) 

𝑥𝑥𝑚𝑚(𝑘𝑘 + 1) − 𝑥𝑥𝑚𝑚(𝑘𝑘) = 𝐴𝐴𝑚𝑚�𝑥𝑥𝑚𝑚(𝑘𝑘) − 𝑥𝑥𝑚𝑚(𝑘𝑘 − 1)� + 𝐵𝐵𝑚𝑚�𝑢𝑢(𝑘𝑘) − 𝑢𝑢(𝑘𝑘 − 1)� + 𝐵𝐵𝑑𝑑�𝑤𝑤(𝑘𝑘) −

𝑤𝑤(𝑘𝑘 − 1)�          (60) 

By defining the incremental of a variable v(k) by: 

∆𝑣𝑣(𝑘𝑘) = 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1)         (61) 

Equation (60) can be rewritten as:  

�∆𝑥𝑥𝑚𝑚(𝑘𝑘 + 1) = 𝐴𝐴𝑚𝑚∆𝑥𝑥𝑚𝑚(𝑘𝑘) + 𝐵𝐵𝑚𝑚∆𝑢𝑢(𝑘𝑘) + 𝐵𝐵𝑑𝑑𝜖𝜖(𝑘𝑘)         
∆𝑦𝑦(𝑘𝑘 + 1) = 𝐶𝐶𝑚𝑚𝐴𝐴𝑚𝑚∆𝑥𝑥𝑚𝑚(𝑘𝑘) + 𝐶𝐶𝑚𝑚𝐵𝐵𝑚𝑚∆𝑢𝑢(𝑘𝑘) + 𝐶𝐶𝑚𝑚𝐵𝐵𝑑𝑑𝜖𝜖(𝑘𝑘)        (62) 

where ∆𝒖𝒖(𝑘𝑘) is the input to the incremental state space model. To 
connect ∆𝒙𝒙(𝑘𝑘) to the output 𝒚𝒚(𝑘𝑘) a new state vector will be 
considered: 

𝑥𝑥(𝑘𝑘) = [∆𝑥𝑥𝑚𝑚(𝑘𝑘)𝑇𝑇    𝑦𝑦(𝑘𝑘)𝑇𝑇]𝑇𝑇            (63) 

Therefore, the augmented system can be represented as: 

�Δ𝑥𝑥𝑚𝑚(𝑘𝑘 + 1)
𝑦𝑦(𝑘𝑘 + 1) � = � 𝐴𝐴𝑚𝑚 0𝑚𝑚

𝑇𝑇

𝐶𝐶𝑚𝑚𝐴𝐴𝑚𝑚 𝐼𝐼𝑞𝑞×𝑞𝑞
� �∆𝑥𝑥𝑚𝑚(𝑘𝑘)

𝑦𝑦(𝑘𝑘) � + � 𝐵𝐵𝑚𝑚
𝐶𝐶𝑚𝑚𝐵𝐵𝑚𝑚

� Δ𝑢𝑢(𝑘𝑘)

+ � 𝐵𝐵𝑑𝑑
𝐶𝐶𝑚𝑚𝐵𝐵𝑑𝑑

� 𝜖𝜖(𝑘𝑘) 

𝑦𝑦(𝑘𝑘) = [0𝑚𝑚    𝐼𝐼𝑞𝑞×𝑞𝑞] �∆𝑥𝑥𝑚𝑚(𝑘𝑘)
𝑦𝑦(𝑘𝑘) �    (64) 

Where q and m are the number of outputs and inputs, respectively. 
For simplicity, equations (64) can be rewritten as follows:  

𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴(𝑘𝑘) + 𝐵𝐵∆𝑢𝑢(𝑘𝑘) + 𝐵𝐵𝜖𝜖𝜖𝜖(𝑘𝑘)         (65) 

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝐶𝐶(𝑘𝑘) 

Considering the following vectors: 

∆𝑈𝑈 = [∆𝑢𝑢(𝑘𝑘𝑖𝑖)𝑇𝑇 ∆𝑢𝑢(𝑘𝑘𝑖𝑖 + 1)𝑇𝑇 … ∆𝑢𝑢(𝑘𝑘𝑖𝑖 + 𝑁𝑁𝑐𝑐 − 1)𝑇𝑇]𝑇𝑇 

𝑌𝑌 = �𝑦𝑦(𝑘𝑘𝑖𝑖 + 1|𝑘𝑘𝑖𝑖)𝑇𝑇 𝑦𝑦(𝑘𝑘𝑖𝑖 + 2|𝑘𝑘𝑖𝑖)𝑇𝑇 … 𝑦𝑦�𝑘𝑘𝑖𝑖 + 𝑁𝑁𝑝𝑝�𝑘𝑘𝑖𝑖�
𝑇𝑇�

𝑇𝑇
  (66) 

According the future predictive states, control increment and output 
can be derived based on the state space model (A, B, C). Hence, after 
certain calculations the vector Y is obtained as: 

𝑌𝑌 = 𝐹𝐹𝐹𝐹(𝑘𝑘𝑖𝑖) + ΦΔ𝑈𝑈       (67) 

Where 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎡

𝐶𝐶𝐶𝐶
𝐶𝐶𝐴𝐴2

𝐶𝐶𝐴𝐴3

⋮
𝐶𝐶𝐴𝐴𝑁𝑁𝑝𝑝⎦

⎥
⎥
⎥
⎤
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Φ =

⎣
⎢
⎢
⎢
⎡

𝐶𝐶𝐶𝐶 0 0 ⋯ 0
𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 0 ⋯ 0

𝐶𝐶𝐴𝐴2𝐵𝐵 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐶𝐶𝐴𝐴𝑁𝑁𝑝𝑝−1𝐵𝐵 𝐶𝐶𝐴𝐴𝑁𝑁𝑝𝑝−2𝐵𝐵 𝐶𝐶𝐴𝐴𝑁𝑁𝑝𝑝−3𝐵𝐵 ⋯ 𝐶𝐶𝐴𝐴𝑁𝑁𝑝𝑝−𝑁𝑁𝑐𝑐𝐵𝐵⎦
⎥
⎥
⎥
⎤

  (68) 

Where Nc is the control horizon standing for the number of 
parameters used to calculate the future control trajectory. Np is the 
predictive horizon which indicates the optimization window. The 
main objective of using the model predictive control is to make the 
predictive output close enough or approximately equal to the set 
point signal which can be time varying in the meaning of a reference 
trajectory. To do so, the problem is translated to find the optimal 
solution for the control vector 𝛥𝛥𝛥𝛥 such that the error between the 
predictive output and its desired trajectory converge toward zero. A 
cost function to be minimized is chosen to achieve the objectives of 
the control law. 

However, the problem here is a combination of trajectory tracking 
and formation keeping, so it is more convenient to take that into 
consideration. To this end, the cost function proposed in (56) is 
obtained to achieve both trajectory tracking and formation 
maintaining objective. The proposed cost function contains two 
separate parts as: 

𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖 = 𝐽𝐽𝑡𝑡

𝑖𝑖 + 𝐽𝐽𝑓𝑓
𝑖𝑖            (69) 

Subject to inequality constraints: 

𝑀𝑀∆𝑈𝑈 ≤ 𝑌𝑌           (70) 

Where 𝐽𝐽𝑡𝑡
𝑖𝑖 stands for the part of the control signal that leads the ith

robot to follow its desired trajectory, while 𝐽𝐽𝑓𝑓
𝑖𝑖 is the other part of the

control signal that guarantees formation keeping. Matrix M is a 
matrix reflecting the constraints. The trajectory tracking cost function 
for the ith robot is defined as: 

𝐽𝐽𝑡𝑡
𝑖𝑖 = 𝐸𝐸𝑡𝑡

𝑖𝑖𝑇𝑇
𝑄𝑄𝐸𝐸𝑡𝑡

𝑖𝑖 + ∆𝑈𝑈𝑖𝑖𝑇𝑇𝑅𝑅∆𝑈𝑈𝑖𝑖     (71) 

Where 𝑬𝑬𝒕𝒕
𝒊𝒊  is the tracking error for the ith robot, Q is a positive-

definite weighting matrix, R is a positive semi-definite weighting 
matrix and ∆𝑼𝑼𝒊𝒊 is the control increment for robot i. Both matrices 
are usually diagonal with positive elements. In addition, the 
formation keeping cost function is descried as: 

𝐽𝐽𝑓𝑓
𝑖𝑖 = ∑ 𝐸𝐸𝑓𝑓,𝑗𝑗

𝑖𝑖𝑇𝑇
𝑃𝑃𝐸𝐸𝑓𝑓,𝑗𝑗

𝑖𝑖𝑛𝑛
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

   (72) 

Where 𝑬𝑬 𝑓𝑓,𝑗𝑗𝑗𝑗 is the formation error between the ith and jth robots 
and P is a positive-definite diagonal weighting matrix. The total cost 
function is: 

𝐽𝐽 = ∆𝑈𝑈𝑇𝑇𝑖𝑖 �Φ𝑖𝑖𝑇𝑇𝑄𝑄Φ𝑖𝑖 + 𝑅𝑅 + (𝑛𝑛 − 1)Φ𝑖𝑖𝑇𝑇𝑃𝑃Φ𝑖𝑖� ∆𝑈𝑈 − 2 �𝑅𝑅𝑠𝑠
𝑖𝑖 −

𝐹𝐹𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘𝑚𝑚)�
𝑇𝑇

𝑄𝑄Φ𝑖𝑖∆𝑈𝑈𝑖𝑖 + �𝑅𝑅𝑠𝑠
𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘𝑚𝑚)�

𝑇𝑇
𝑄𝑄 �𝑅𝑅𝑠𝑠

𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘𝑚𝑚)� +

∑ �−2𝐸𝐸𝑓𝑓,𝑗𝑗
𝑖𝑖 𝑇𝑇𝑃𝑃Φ𝑖𝑖∆𝑈𝑈𝑖𝑖 + 𝐸𝐸𝑓𝑓,𝑗𝑗

𝑖𝑖 𝑇𝑇𝑃𝑃𝐸𝐸𝑓𝑓,𝑗𝑗
𝑖𝑖 �𝑛𝑛

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

       (73) 

Finding the optimal control signal ∆𝑼𝑼 that minimizes the cost 
function (70) subject to the constraints (69) is a Quadratic 
programming (QP) problem. Hence, the cost function to minimize is 
written as follows: 

𝐽𝐽 = 1
2

∆𝑈𝑈𝑇𝑇𝐻𝐻∆𝑈𝑈 + 𝑓𝑓𝑇𝑇∆𝑈𝑈       (74) 

𝑆𝑆. 𝑡𝑡     𝑀𝑀∆𝑈𝑈 ≤ 𝛾𝛾 

Constraints and model predictive control 
The constraints acting on a process can originate from amplitude 
limits in the control signal, slew rate limits of the actuator and limits 
on the output signals, and can be described, respectively, by: 

∆𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∆𝑈𝑈(𝑘𝑘) ≤ ∆𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢(𝑘𝑘) − 𝑢𝑢(𝑘𝑘 − 1) ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚      (75) 

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑦𝑦(𝑘𝑘) ≤ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 

Since the increment of the control is the only variable that can be 
manipulated, the output constraints must be expressed as a function 
of the control parameter, ∆𝑼𝑼, using the prediction equation (5-15). 
For an m input and n output system with a predictive horizon of N, 
these constraints can be expressed as 

1∆𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 ≤ ∆𝑈𝑈(𝑘𝑘) ≤ 1∆𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 

1𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑀𝑀𝑢𝑢∆𝑈𝑈(𝑘𝑘) − 1𝑢𝑢(𝑘𝑘 − 1) ≤ 1𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚     (76) 

1𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 ≤ Φ∆𝑈𝑈(𝑘𝑘) + 𝐹𝐹𝐹𝐹(𝑘𝑘𝑖𝑖) ≤ 1𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 

Where 1 is an  (𝑁𝑁 × 𝑛𝑛) × 𝑚𝑚  matrix formed by 𝑁𝑁(𝑚𝑚 × 𝑚𝑚)  identity 
matrices and 𝑀𝑀𝑢𝑢 , 𝑀𝑀𝑑𝑑𝑑𝑑 , 𝑀𝑀𝑦𝑦  are block matrices. The constraints in 
equation (76) need to be written in the form below:  

𝑀𝑀∆𝑈𝑈 ≤ 𝛾𝛾   (77) 

With: 

𝑀𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑀𝑀𝑑𝑑𝑑𝑑
−𝑀𝑀𝑑𝑑𝑑𝑑

𝑀𝑀𝑢𝑢
−𝑀𝑀𝑢𝑢
𝑀𝑀𝑦𝑦

−𝑀𝑀𝑦𝑦 ⎦
⎥
⎥
⎥
⎥
⎤

,     𝛾𝛾 =

⎣
⎢
⎢
⎢
⎢
⎡

1∆𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

−1∆𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

1𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 − 1𝑢𝑢(𝑘𝑘 − 1)
−1𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 + 1𝑢𝑢(𝑘𝑘 − 1)

1𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐹𝐹(𝑘𝑘𝑖𝑖)
−1𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐹𝐹𝐹𝐹(𝑘𝑘𝑖𝑖) ⎦

⎥
⎥
⎥
⎥
⎤

    (78) 

Where 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚  are the upper and lower limits of the control 
variable and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  are the upper and lower bounds of the 
output variable.  

All of the terms must be specified for the whole prediction horizon. 
Usually, block diagonal matrices are the most suitable. There should 
be a block of correct dimension for each time step in the prediction 
horizon. For this purpose, Kronecker product of matrices can be 
quite advantageous. 

𝑀𝑀𝑑𝑑𝑑𝑑 = 𝐼𝐼𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐 ⊗ 𝐼𝐼𝑚𝑚×𝑚𝑚

𝑀𝑀𝑢𝑢 = 𝐼𝐼𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐 ⊗ 𝐼𝐼𝑚𝑚×𝑚𝑚     (79) 

𝑀𝑀𝑦𝑦 = 𝐼𝐼𝑁𝑁𝑐𝑐×𝑁𝑁𝑐𝑐 ⊗ Φ 

Stability of NMPC 
It is important to investigate stability and performance of NMPC. 
Stability of the NMPC can be achieved by adding stabilizing terminal 
constraints in addition to Lyapunov function terminal cost. It is 
showed in the literature that viability of the state constraint set can be 
replaced by viability of the endpoint constraint so that will guarantee 
feasibility of the NMPC optimal control problem along the closed 
loop trajectories. By doing this, the finite horizon NMPC will be 
estimated about the infinite horizon performance of NMPC closed 
loop system.  

An effective strategy to construct stabilizing terminal constraints set is 
to include the desired trajectory in the optimization constraints. The 
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basic idea of the equilibrium terminal constraints is as follows: 
because the closed loop system is needed to converge to the desired 
reference, this requirement is added as a constraint set to the optimal 
control problem. And since “convergence” is not easy to systemize for 
the finite horizon predictions it sounds reasonable to constrain the 
predictions to end exactly at the desired equilibrium. To this end, we 
consider the following assumptions:   

a) The point 𝒙𝒙∗ ∈ 𝕏𝕏 is an equilibrium for an admissible
control value 𝒖𝒖∗ i.e. there exist a
control value 𝒖𝒖∗ ∈ 𝕌𝕌(𝒙𝒙∗) with 𝑓𝑓(𝒙𝒙∗, 𝒖𝒖∗) = 𝒙𝒙∗.

b) The running cost  satisfies (𝒙𝒙∗, 𝒖𝒖∗)
= 𝒙𝒙∗ for 𝒖𝒖∗ from a.

These equilibrium endpoint constraints help to ensure stability in an 
intuitive and easy way for implementation. However, it has 
disadvantage of that the considered system must be controllable to 𝒙𝒙∗ 
in finite time in order to ensure that the feasible sets indeed contain 
a neighborhood of the desired time varying trajectory. Therefore, it is 
not practical for the systems which are stable but uncontrollable. To 
overcome this drawback, we use a terminal cost function.   

The optimal control problem (OCPN,e) is chosen as  

With respect to 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡     𝒙𝒙(0 ,𝒙𝒙0) = 𝒙𝒙0,   𝒙𝒙𝑢𝑢(𝑘𝑘 + 1,𝒙𝒙0) = 𝒇𝒇(𝒙𝒙𝑢𝑢(𝑘𝑘, 𝒙𝒙0),𝒖𝒖(𝑘𝑘)) 

Next, the properties of terminal constraint set 𝕏𝕏0 ⊆ 𝕏𝕏 and the 
terminal cost 𝐹𝐹: 𝕏𝕏0 → ℝ+0 will be specified. To do so, we will consider 
the following assumption:  

Assumption 1: For the closed endpoint constraint set 𝕏𝕏0 ⊆ 𝕏𝕏 

defining  and the terminal cost 𝐹𝐹: 𝕏𝕏0 → ℝ+
0 we assume:  

a) 𝕏𝕏0 is viable, i.e., for each 𝒙𝒙 ∈ 𝕏𝕏0 there exists an admissible
control value 𝒖𝒖𝑥𝑥 ∈ 𝕌𝕌(𝑥𝑥) such that

(𝒙𝒙,𝒖𝒖𝑥𝑥) ∈ 𝕏𝕏0  

Holds. 

a) The terminal cost: 𝕏𝕏0 → ℝ+
0 is such that for each 𝒙𝒙 ∈ 𝕏𝕏0 there

exists an admissible control value 𝒖𝒖𝑥𝑥 ∈ 𝕌𝕌(𝑥𝑥) for which following
relation hold.

𝐹𝐹(𝑓𝑓(𝒙𝒙,𝒖𝒖𝑥𝑥)) + ℓ(𝒙𝒙,𝒖𝒖𝑥𝑥) ≤ 𝐹𝐹(𝑥𝑥)  

This assumption indicates that F is a local control Lyapunov function 
of the control system. The approach of adding F is often referred to 
as quasi-infinite horizon NMPC. The reason for this denomination is 
that if the terminal cost F is an approximation of the infinite horizon 
optimal value function 𝑉𝑉∞, then the finite horizon dynamic 
programming principle is an approximation of the infinite horizon 
dynamic programming principle can be interpreted as an 
approximation to the infinite horizon problem (

SIMULATION 
Simulation parameters 
The system consists of three nonholonomic differential drive wheeled 
mobile robots. The three robots are identically the same and each has the 
parameters shown in table 1.  

TABLE 1 
Single robot properties 

Mass of the robot, m 4.5kg  

Moment of inertia, I 0.0572 kg.m2 

Distance between the vehicle longitudinal axis and each wheel, b 0.125m 

Radius of each driven wheel, r 0.05m 
Distance between center of mass and the center point of common 
wheel axis, d 0.11m 

The formation parameters 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 are given in table 2: 

TABLE 2 
Formation parameters 

Xi Yi 

Robot 1 0.104 0.136 

Robot 2 -0.712 -0.656

Robot 3 -0.88 0.88 

The reference trajectory of the virtual center is generated using the 
proposed APF functions. The initial position and orientation of the 
virtual center is: 𝑥𝑥𝑣𝑣𝑣𝑣(𝑡𝑡0) = [−0.2 −1.5 0]𝑇𝑇 . Suppose that the
initial velocities of the robots are zeros. The initial position and 
orientation of each robot is:  

𝑥𝑥1(𝑡𝑡0) = [−0.75 −1.3975 0.327]𝑇𝑇,
𝑥𝑥2(𝑡𝑡0) = [−0.398 −2.702 0.799]𝑇𝑇,
𝑥𝑥3(𝑡𝑡0) = [−1.485 −1.397 0.718]𝑇𝑇 

The goal point for the virtual center to reach is: 𝑥𝑥𝑣𝑣𝑣𝑣(𝑡𝑡0) =
[2.2 4.8]𝑇𝑇. Moreover, the group of the mobile robots forms a circle 
with a radius 𝑅𝑅 = 2.12 where the virtual center is the center of the 
circle. The robots move in an environment, where there are three 
static obstacles. The position and radius for each obstacle can be 
found in table 3.  

TABLE 3 
Obstacles specifications 

Obstacle Position Radious 

Obs1 [-1.25;1.3] 1.5 

Obs2 [0.5;3.1] 1 

Obs3 [1.6;1] 1.5 

Constrains was designed for both input and state variables. In fact, 
we constrain the wheels’ torques and the wheels’ velocities, see table 
(4).  

TABLE 4 
Constraints on inputs and states 

limitations 

Wheel torque (N.m) [-0.25,0.25] 

Wheel angular velocity (rad/sec) [-12,12] 

To demonstrate the effectiveness of the proposed control law, a 
disturbance is applied to one of the agents in the system. In fact, 
actuators don not work perfectly all the time. To illustrate the effect 
of this phenomenon, a disturbance is exerted only on the first robot 
during the time interval of seconds.   
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The same parameters are used also for the other MPC strategies 
which they will be discussed later in this chapter. For each controller 
two cases will be discussed to visualize the effectiveness and 
importance of the control law. First, formation control part of the 
control law will be deleted. The second case will contain the 
formation control. 

Simulation results 
The software used in this simulation is MATLAB and the simulations 
are done in the simulink environment. The available computer 
system used for the simulation has Windows 8.1 specifications with 
Intel 7-core CPU with 2.8 Hz and 8 GB of RAM. The open loop 
control scheme of the simulation is illustrated in figure 4. The input 
to the approximated model is the difference between feedforward 
and original inputs. The error is combined with the reference 
trajectory to get the real trajectory using the linearized model. 
However, the input to the nonlinear model is the feedforward 
control and the output is the real trajectory.  

Figure 4) open loop control for system verification. 

Control parameters are chosen to minimize the error as follows: 

𝑄𝑄 =

⎣
⎢
⎢
⎢
⎡
110 0 0 0 0

0 140 0 0 0
0 0 50 0 0
0 0 0 0.05 0
0 0 0 0 0.05⎦

⎥
⎥
⎥
⎤
 

𝐿𝐿 =

⎣
⎢
⎢
⎢
⎡
20 0 0 0 0
0 30 0 0 0
0 0 8 0 0
0 0 0 0.012 0
0 0 0 0 0.012⎦

⎥
⎥
⎥
⎤
 

𝑅𝑅 = �2000 0
0 2000� ,   𝑁𝑁𝑐𝑐 = 10 

a) Without formation control: Figure (4) shows the desired trajectory
of the virtual center, the real paths of the robots and the obstacles
(Figure 5).

Figures (9-a), (9-b) and (9-c) illustrate the errors of the three robots. 

Figure 5) Virtual center and robot’s trajectories and obstacles using MPC 
with the presence of disturbance on the first robot without formation control.  

Figure (6 and 7) indicates the formation error between the three 
robots, which is relatively large in this case.   

Figure 6) Formation error between the robots. 

Figure 7) Error signals of X, Y and . (a) errors of robot 1. (b) errors of 
robot 2. (c) errors of robot 3. 

It is obvious that the robots cannot maintain the desired formation 
when the formation cost function is ignored. It can be seen that 
when the first robot has disturbance, the other two robot continue 
their paths without reacting to the occurred disturbance leading to a 
large formation error.  
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The required wheels torque for robot 1 is demonstrated in figure 8, 
which are bounded so that the constraints are satisfied.  

Figure 8) First robot wheels’ torque. 

b) With formation control: Figures 9, 10 and 11 illustrate results of
implementing MPC with formation control. The trajectory of the
virtual structure and the robots’ real paths are shown in figure 9. 

Figure 9) Virtual center and robot’s trajectories and obstacles using MPC 
with the presence of disturbance on the first robot with formation control. 

It is obvious that the robots can follow their trajectories while 
maintaining the desired formation when the formation cost function 
is considered. Figures 10-a, 10-b and 10-c illustrate the errors of the 
three robots. It can be seen that when the first robot has disturbance, 
the other two robot try to compensate the formation error leading to 
a tracking error, i.e. the robots change their paths related to the 
occurred disturbance.  

Figure 11 indicate the formation error between the three robots, 
which is reduced in comparison with case (a).  

Figure 10) Error signals of X, Y and . (a) errors of robot 1. (b) errors of 
robot 2. (c) errors of robot 3. 

Figure 11) Distance error between the robots. 

The required wheels torque for robot 1 is demonstrated in figure 12. 

Figure 12) Wheels’ torques for robot 1. 

In the two cases discussed above the predictive horizon is Np=10. 
Comparing results from case (a) and (b), we can conclude that the 
control law is effective and it drives the formation error as near as 
possible to zero while keeping the robots on their own trajectories. In 
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the case of formation control absence, the robots don not interact 
with each other, so that when one of them is suffering from 
disturbance or uncertainties the formation shape will be changed.  

Since in practice the velocity of the motor is limited, two cases are 
studied, control with constraints of velocity and control without such 
constraints. Figure 13 indicates the angular velocities of the right and 
left wheels in both situations. It is seen that the constraints are 
satisfies and the velocities cannot exceed the limits defined as 
desirable. 

(a) 

(b) 

Figure 13) Angular velocities of right and left wheels. (a) Control with 
constrains. (b) Control without constraints. 

Figures 14 illustrate the actual and the desired angular velocities for 
each wheel using nonlinear predictive control without and with 
constraints, respectively. When comparing each pair of figures, we 
can conclude that here is an improvement in the performance where 
the over-shoot in the output becomes slightly small.  

When Compare simulation result it can be easily realized that 
nonlinear MPC results in better performance than the other two 
controllers. Using NMPC, the error signals of each robot are more 
stable and converge to zero faster than the other two methods.   

The control effort and the error resulted in the three control 
approaches are illustrated in table 5. 

Figure 14) Actual and desired velocities in the case of control without 
constraints. 

TABLE 5 
CE and TE for both controllers 

Robot 1 Robot 3 Robot 3 

MPC MPC MPC 

U1 0.2353 0.2264 0.2951 

U2 2.4262 0.2058 0.2178 

E1 (ex) 6.7297 1.7169 3.2488 

E2 (ey) 3.4615 3.8744 2.8263 

E3 (etheta) 3.6174 1.7414 1.4548 

Given the above, the nonlinear model predictive control gives better 
results and the performance obtained with this method is more 
stable.  This is reasonable since the system to be controlled is 
nonlinear and has constraints on the control signal and MPC takes 
into account both current values and future desired values.   

CONCLUSION 

This paper addresses the design and implementation of formation 
control of a multi-robot system in an environment with obstacles. 
The problem of formation control of a multi-agent system can be 
defined as the problem of trajectory tracking while maintaining a 
desired geometric formation to achieve specific tasks. To this end, the 
objectives of our controllers will be divided into two parts, trajectory 
tracking and formation keeping. The nonlinear dynamics of the 
mobile robot is used to design different controllers. Artificial 
potential field is used to generate the desired trajectory for the 
formation then each robot trajectory is determined from the virtual 
structure approach.  

Three other controllers are obtained using three different methods of 
model predictive control, traditional MPC, Laguerre based MPC and 
nonlinear MPC. The idea behind the formation control using MPC 
strategies is to find the optimal solution that achieve control objective 
of trajectory tracking and formation maintaining. To do so, the cost 
function to be minimize includes a term representing the trajectory 
tracking error and another term related to the formation error. From 
the simulation results, applying these three methods on a disturbance 
system emphasizes the effectiveness of the control law. These results 
also reveal that the nonlinear MPC results in better performance 
than the other two controllers. One of the advantages of using MPC 
approaches over feedback linearization is finding the optimal solution 
of the problem with respect to constraints on input, output and 
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control variables. In fact, from the path and error of robot 1 to 3, 
according to table 5, it is possible to see the values of the control 
inputs as well as the planar and angular control fields, which show 
that these values show better control stability compared to the first 
category of robots, so that the robot Compared to the first robot, the 
third one has almost 50% less error than the first robot and also 
spends less optimal energy than avoiding obstacles for routing. 

To conclude, this thesis concerned with the problem of formation 
control using virtual center approach and several controllers. The 
simulation results showed the effectiveness of the proposed methods 
and their ability in maintaining the desired formation. Although the 
thesis mainly focused on the simulation analysis, implementation on 
a real platform was accomplish to an extent. However, exterminations 
are open for future research.  

The future researches also can be extended to further objectives such 
as formation control in a dynamic obstacle environment. Additional 
suggestions for future work is to implement to real platform. 
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