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ABSTRACT

In this article, we study coupled systems of boundary value problems for 
fractional order differential equations. We use the idea of the Generalized 

matric space to develop necessary and sufficient conditions for uniqueness 
of positive solutions of the system. We also obtain sufficient conditions 
for existence of at least one solution via nonlinear differentiation of Leray 
Schauder type. We include an example to illustrate our main results.
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REcently the theory on existence and uniqueness of solutions of fractional 
differential equations have attracted much attentions and a large number 

of research articles on the solvability of nonlinear fractional differential 
equations are available. We refer to (1-4) and the references therein for some 
of the recent development in the theory. On the other hand, coupled systems 
of boundary value problems for non linear fractional differential equations 
are not well studied and only few results can be found dealing with existence

and uniqueness of solutions (5-8). Su (5) developed sufficient conditions 
for existence of solutions to the following coupled systems of two point 
boundary value problems

( ) ( , ( ), ( )), ( ) ( , ( ), ( )), 0 1,D u t f t v t D v t D u t g t u t D u t tα µ β ν= = < <

(0) (1) (0) (1) 0,u u v v= = = =
where 1 , 2, ,α β µ ν≤<  satisfies α µ− and 1β ν− ≥ and 

, :[0,1]f g R R R× × → are continuous and D is the standard Rieman-
Liouville derivative. Wang et al. (8) obtained sufficient conditions for 
existence and uniqueness of positive solutions to the following coupled 
systems of nonlinear three-point boundary values problems

( ) ( , ( )), ( ) ( , ( )), 0 1D u t f t v t D v t g t u t tα β= = < <

(0) 0, (0) 0, (1) ( ), (1) ( ),u v u au v bvη η= = = =

where 1 , 2,0 , 1a bα β ≤ ≤ ≤< and 0 1η< <  and 

, :[0,1] [0, ) [0, )f g × ∞ → ∞  are continuous.

Motivated by the above studies, we develop some new existence and 
uniqueness results for the following coupled systems of nonlinear boundary 
values problems

(1.1)

 
3 2 3 2

( ) ( , ( ), ( )), ( ) ( , ( ), ( )), 0 1,
(0) (0) (1) 0, (0) (0) (1) 0,

D u t f t u t v t D v t g t u t v t t
I u D u u I v D v v

α β

α α β β− − − −

= =

= = = = = =

< <

where 2 , 3α β ≤<  and , :f g I R R R× × →  are continuous and ,D I
denote Riemann-Liouville’s fractional derivative and fractional integral 
respectively. We use Perov fixed point theorem (9) and Leray-Schauder fixed 
point theorem to obtain sufficient conditions for existence and uniqueness 
results. We also provide an example to illustrated our results.

Preliminaries

We recall some fundamental results and definitions (10,11).

Definition 2.1
The fractional integral of order Rα +∈ of a function : (0, )y R∞ → is 
defined by

1

0

1( ) ( ) ( )
( )

t
I y t t s y s dsα α

α
−= −

Γ ∫  

provided the integral converges.

Definition 2.2

The Riemann-Liouville fractional order derivative of a function : (0, )y R∞ →  
is defined by

1

0

1( ) ( ) ( ) ,
( )

n t n
n

dD y t t s y s ds
n dt

α α

α
− −= −

Γ − ∫  

where [ ] 1n α= + and[ ]α represents the integer part of α  provided that the 
right side is point wise defined on (0, ).∞

Lemma 2.3

The following result holds for fractional derivative and integral
1 2 3

1 2 3( ) ( ) ... ,n
nI D y t y t c t c t c t c tα α α α α α− − − −= + + + + +  for arbitrary

, 1, 2,..., .ic R i n∈ =  

Lemma 2.4

(7) Let X be a Banach space with X⊆ closed and convex. LetΩ be a 
relatively open subset of  with 0∈Ω  and :T Ω→Ω  be a continuous 
and compact(completely continuous) mapping. Then either

1.	 The mappingT has a fixed point inΩ  or

2.	 There exist µ∈∂Ω and (0,1)k∈ with .kTuΩ =

Definition 2.5

For a nonempty set ,Z a mapping : nd Z Z R× →  is called a generalized 
metric on Z if the following hold

( 1) ( , ) 0 , , ;nR
M d u v u v u v X= ⇔ = ∀ ∈  

( 2) ( , ) ( , ), , , (symmetric property);M d u v d v u u v X= ∀ ∈
 

( 3) ( , ) ( , ) ( , ) ( , ), , , , , , (tetrahedral inequality).M d x y d x v d v u d u v x y u v X≤ + + ∀ ∈  
Note: The properties such as convergent sequence, cauchy sequence, open/
closed subset are the same for generalized metric spaces as hold for the 
usual metric spaces.
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Definition 2.6

For an n n× matrix ,A the spectral radius is defined by
( ) max{ , 1,2,..., },iA i nρ λ= =| |  where , ( 1, 2..., )i i nλ =  are the 

eigenvalues of the matrix .A
Lemma 2.7

(11), Let ( , )Z d be a complete generalized metric space and let

:T Z Z→ be an operator such that there exist a matrix A M∈ with 

( , ) ( , ),d Tu Tv Ad u v≤  for all , .u v Z∈  If ( ) 1,Aρ <  thenT has a fixed 

point * ,Z∈Z  further for any 0Z  the iterative sequence 1n T n+ =Z Z

converges to 0.Z

Lemma 2.8

An equivalent Fredholm integral representation of the system of boundary 
value problems (1.1) is given by

(2.1)
1 1

20 01
( ) ( , ) ( , ( ), ( )) , ( ) ( , ) ( , ( ), ( )) ,u t t s f s u s v s ds v t t s g s u s v s ds= =∫ ∫G G where 

1 2,G G are Green’s functions given by

(2.2) 

1 1

1 1

[ (1 )] ( ) ,0 1,
( ) ( )

( , )
[ (1 )] , 0 1,

( )

t s t s s t
t s

t s t s

α α

α

α α

α

− −

−

 − −
− ≤ ≤ ≤ Γ Γ= 

− ≤ ≤ ≤ Γ

G

(2.3) 

1 1

2 1

[ (1 )] ( ) ,0 1,
( ) ( )

( , )
[ (1 )] , 0 1.

( )

t s t s s t
t s

t s t s

β β

β

β β

β

− −

−

 − −
− ≤ ≤ ≤ Γ Γ= 

− ≤ ≤ ≤ Γ

G

Proof

Applying the operator Iα  on the first equation of (1.1) and using lemma 
(2.3), we have

(2.4) 1 2 3
1 2 3 1 2 3( ) ( , ( ), ( )) , , , .u t I f t u t v t c t c t c t c c c Rα α α α− − −= − + + + ∈

The boundary conditions 3 2(0) (0) (1) 0I u D u uα α− −= = = 3 20, 0c c= =  and 

1 (1, (1), (1)).c I f u vα=

Hence, (2.4) takes the form

(2.5) 
1

1
1 1

0 0

1

10

1( ) (1 ) ( , ( ), ( )) ( ) ( , ( ), ( ))
( ) ( )

( , ) ( , ( ), ( )) .

ttu t s f s u s v s ds t s f s u s v s ds

t s f s u s v s ds

α
α

α

α α

−
−

−

= − − −
Γ Γ

=

∫ ∫

∫ G

Similarly, by the same process with the second equation of the system, we 
obtain the second part of (2.1).

Lemma 2.9

(6) The Green’s function 1 2, )G = (G G  of the system (2.1) has the following 
properties

1( )P G(t,s)  is continuous function on the unit square for all

( , ) [0,1] [0,1];t s ∈ ×  

2( ) 0P ≥G(t,s) for all ( , ) [0,1]t s ∈ and ( , ) 0t s >G for all ( , ) (0,1);t s ∈

3 0 1( ) max ( , ) (1, ), [0,1];tP t s s s≤ ≤ = ∀ ∈G G  

4( )P there exist a constant (0,1)γ ∈  such that

[ ,1 ]
min ( , ) ( ) (1, )

t
t s s s

θ θ
γ

∈ −
≥G G  for (0,1), [0,1]sθ ∈ ∈  where 

min{ , }.α βγ γ γ=
Existence of positive solutions

Define { ( ) ( ) [0,1]}U u t u t C= ∈|  endowed with the Chebychev 

norm [0,1]max ( ) .tu u t∞ ∈=|| || | | Further, define the norms 

( , ) u Vu v u v× ∞ ∞= +|| || || || || || and ( , ) max{ , }.U Vu v u v× ∞ ∞=| | || || || ||

Then, the product spaces ( , . ) ), ( , . )U V U VU V U V× ×× ×|| || | |

are Banach spaces. Define the cones U V⊂ × by 

{( , )}u v= ∈ : ( ), ( ) 0, [0,1]}U V u t v t t× ≥ ∀ ∈ and 

{( , ) : min [ ( ) ( ) , },t J U Vu v u t v t u vγ∈ ×= ∈ + ≥ || ||  where 

[ ,1 ], (0,1).J θ θ θ= − ∈
Lemma 3.1

Assume that , :[0,1]f g R R R× × →  are continuous. Then 

( , )u v U V∈ × is a solution of (2.1), if and only if ( , )u v U V∈ ×  is a 
solution of system of Fredholm integral equations (1.1).

Proof

The proof of lemma (3.1) is similar to proof of lemma (3.1) in (6).

Define :T U V U V× → × by

(3.1)

( )1 1

1 20 0

1 2

( , )( ) ( , ) ( , ( ), ( )) , ( , ) ( , ( ), ( )) ,

( ( , )( ), ( , )( )).

T u v t t s f s u s v s ds t s g s u s v s ds

T u v t T u v t

=

=

∫ ∫G G

By lemma (3.1) the problem of existence of solutions of the integral equations 
(2.1) coincide with the problem of existence of fixed points of .T
Lemma 3.2

Assume that , :[0,1] [0, ) [0, ) [0, )f g × ∞ × ∞ → ∞ are continuous. 

Then ( )T ⊂  and ( ) ,T ⊂  whereT is defined by (3.1).

Proof

 The relation ( )T ⊂   easily follow from the properties 1( )P and 

2( )P of lemma (2.9) and all we need to show that ( )T ⊂  holds. For 

( , ) ,u v ∈ we have ( , )T u v ∈ and in view of property 4( )P of lemma 

(2.9), for all ,t J∈ we obtain

(3.2)

 

1 1

1 1 1
0 0

( ( ), ( )) ( , ) ( , ( ), ( )) (1, ) ( , ( ), ( )) .T u t v t t s f s u s v s ds s f s u s v s dsαγ= ≥∫ ∫G G

Hence, it follows that

1 1min ( ( ), ( )) ( , ) , .
t J

T u t v t T u v t Jαγ ∞∈
≥ ∀ ∈|| ||

Similarly, we obtain

2 2min ( ( ), ( )) ( , ) , .
t J

T u t v t T u v t Jβγ ∞∈
≥ ∀ ∈|| ||

It follows that

1 2 1 2min[ ( ( ), ( )) ( ( ), ( ))] ( , ), ( , ) , ,U Vt J
T u t v t T u t v t T u v T u v t Jγ ×∈

+ ≥ ∀ ∈|| ||

which implies that ( , ) .T u v ∈�
Lemma 3.3

Assume that , :[0,1]f g R R R× × → are continuous then :T → 
is completely continuous.

Proof.

We omit the proof, because it is similar to the proof of lemma (3.2) in (6).

Lemma 3.4

Assume that f and g are continuous on [ ]0,1 R R R× × →� �and there 

exist ( 1, 2) : (0,1) [0, )i i iφψ = → ∞  such that the following hold
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1 1 1( ) ( , , ) ( , , ) ( ) ( ) , (0,1),H f t u v f t u v t u u t v v tφ ψ− ≤ − − ∈| | | | + | |  for

, , , 0;u v u v ≥

2 2 2( ) ( , , ) ( , , ) ( ) ( ) ,H g t u v g t u v t u u t v vφ ψ− ≤ − −| | | | + | |  for 

(0,1), , , , 0;t u u u v∈ ≥

2( ) ( ) 1,H Aρ <  Where the matrix  2,2 ( )A M R+∈  is defined by

1 1

1 10 0
1 1

2 20 0

(1, ) ( ) (1, ) ( )
.

(1, ) ( ) (1, ) ( )

s s ds s s ds
A

s s ds s s ds

α α

β β

φ ψ

φ ψ

 
 =  
  

∫ ∫
∫ ∫

G G

G G

Then the system (2.1) has a unique positive solution ( , ) .u v ∈�

Proof

Define a generalized metric 2:d U V U V R× × × →  by

(( , ), ( , )) , (( , ), ( , ) .
u u

d u v u v u v u v U V
v v

∞

∞

 −
= ∀ ∈ ×  − 

|| ||

|| ||

Obviously ( , )U V d×  is a generalized complete metric space. For any 

( , ), ( , )u v u v U V∈ × using the property 3( )P  and 3( ),H  we obtain

[
1

1 1 1[0,1)
0

( , )( ) ( , )( ) max ( , ) ( , ( ), ( )) ( , ( ), ( ))
t

T u v t T u v t t s f s u s v s f s u s v s ds
∈

− ≤ − ∫ G| | | | | |

1

1 1 10
(1, ) ( ) ( )s s u u s v v dsφ ψ∞ ∞

 ≤ − + − ∫ G || || || ||

( ) ( )1 1

1 1 1 1 1 10
( , ) ( , ) (1, ) ( ) (1, ) ( ) .

o
T u v T u v s s ds u u s s ds v vφ ψ∞ ∞⇒ − ≤ − + −∫ ∫G G| | || || || ||

Similarly, we obtain

( ) ( )1 1

2 2 2 2 2 20
( , ) ( , ) (1, ) ( ) (1, ) ( ) .

o
T u v T u v s s ds u u s s ds v vφ ψ∞ ∞− ≤ − + −∫ ∫G G| | || || || ||

Hence, it follows that

( , ) ( , ) (( , ), ( , )), ( , ), ( , ) ,T u v T u v Ad u v u v u v u v U V= ≤ ∀ ∈ ×| | Where

1 1

1 10 0
1 1

2 20 0

(1, ) ( ) (1, ) ( )
.

(1, ) ( ) (1, ) ( )

s s ds s s ds
A

s s ds s s ds

α α

β β

φ ψ

φ ψ

 
 =  
  

∫ ∫
∫ ∫

G G

G G

3( ), ( ) 1.H Aρ < Hence by lemma(2.7), the system (2.1) has a unique 

positive solutions.

Lemma 3.5

Let f and g are continuous on [0,1] R R R× × → and there exist

, , ( 1, 2) : (0,1) [0, )i i ia b c i = → ∞ satisfying

4 1 1 1( ) ( , ( ), ( )) ( ) ( ) ( ) ( ) ( ) , (0,1), , 0;H f t u t v t a t b t u t c t v t t u v≤ + + ∈ ≥| | | | | |

5 2 2 2( ) ( , ( ), ( )) ( ) ( ) ( ( ) ( ) , (0,1), , 0;H g t u t v t a t b t u t c v t t u v≤ + + ∈ ≥| | | | | |
1 1

6 1 1 1 1 1
0 0

( ) (1, ) ( ) , (1, )[ ( ) ( )] 1;H s s ds s b s c s dsαα= ∞ = +∫ ∫G G< <� 

1 1

7 2 2 2 2 2 2 2
0 0

( ) (1, ) ( ) , [ ( ) ( )] 1.H s s ds b s c s dsα= ∞ = +∫ ∫G G< < 

Then the system (2.1) has at least one positive solution ( , )u v in

1 1

1 2

( , ) : ( , ) min , .
1 1

u v u v
   = ∈  − −   

  <
 
 

Proof

Choose 1

1

2
1

2

min ,
1

r −

 
=  − 







and define {( , ) : ( , ) }.u v u v rΩ = ∈ ||| ||<

By lemma (3.3), the Operator :T Ω→  is completely continuous. Choose

∈ and ( , )u v ∈∂Ω such that ( , ) ( , ).u v T u v=

Then, by properties 1 3 4( ), ( ) ( ),P P and H we obtain for all [0,1]t∈
1

1[0,1]
0

( ) max ( , ) ( ), ( ), ( )
t

u t t s f s u s v s ds∞ ∈
≤ ∫G|| || | |

( )
1 1

1 1 1 1 1 1 1
0 0

(1, ) ( ) (1, ) ( ( ) ( ) ( ) ( ) ) .s a s s b s u s c s v s ds r r
 

≤ + + ≤ + ≤ 
 
∫ ∫G G  | | | |  

Similarly, we obtain ,v r∞≤|| || hence ( , ) ,U Vu v r×|| || < which shows 

that ( , ) .u v ∉∂Ω Thus by Schauder fixed point theorem,T has a fixed point 

in .Ω
Examples

Example 4.1

Consider the following coupled systems of boundary value problems

5
2

5
2

1 1 1 1
2 2 2 2

2

2

5 ( ) ( )( ) ( ) 0, [0,1],
2 16 32

5 9 cos( ( )) 9 cos ( ))( ) ( ) 0, [0,1],
2 16 32

(0) (0) (1) 0, (0) (0) (1) 0.

tu t t v tD u t t

t u t t v tD v t t

I u D u u and I v D v v

π π

  
+ Γ + = ∈  

 
   + Γ + = ∈  

 
 = = = = = =


| | | ( |
Here 

2 25 5 5 9 5 9
1 1 2 22 16 2 32 2 216 32
( ) ( ) , ( ) ( ) , ( ) ( ) , ( ) ( ) .t t t tt t t t

π π
φ ψ φ ψ= Γ = Γ = Γ = Γ

Moreover

1 1

1 1 1 10 0
1 1

2 2 2 20 0

0.0460 0.0007(1, ) ( ) (1, ) ( )
.

(1, ) ( ) (1, ) ( ) 0.0068 0.0058

s s ds s s ds
A

s s ds s s ds

φ ψ

φ ψ

  
  = =   
     

∫ ∫
∫ ∫

G G

G G

Here, 2( ) 4.61 10 1,Aρ −= × < hence by lemma(3.4) the 

BVP(4.1) has a unique solution. For f and ,g we have 
2 25 5 5 9 5 9

1 1 1 2 2 22 16 2 32 2 216 32
( ) 0, ( ) ( ) , ( ) ( ) , ( ) 0, ( ) ( ) , ( ) ( )t t t ta t b t c t a t b t c t

π π
= = Γ = Γ = = Γ = Γ

and by simple calculation, we obtain 

[ ]
1 1

1 1 1 1 1 1 10 0
( , ) ( ) , ( , ) ( ) ( ) 1,t s a s ds t s b s c s ds= ∞ = +∫ ∫G G< < � 

[ ]
1 1

2 2 2 2 2 2 20 0
( , ) ( ) , ( , ) ( ) ( ) 1.t s a s ds t s b s c s ds= ∞ = +∫ ∫G G< < �  Hence by using 

lemma (3.5), BVP (4.1) has at least one positive solution.

CONCLUSION

With the help of Banach theorem and nonlinear Leray Schauder type, we 
have developed an existence theory to a coupled system of nonlinear FDEs. 
The concerned results have been successfully obtained and demonstrated by 
suitable example.
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