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ABSTRACT

The recent Coronovirus [severe acute respiratory syndrome (SARS)-CoV-2] 
is associated with high morbidity and mortality, known as COVID-19, 
primarily due to the release of pro-inflammatory cytokines, especially IL-6, 
in the lungs. There is increasing evidence that COVID-19 also results in 
mental and neurologic symtpoms. Recent publications have also reported 
the presence of Multisystem Inflammatory Syndrome in children (MIS-C). 
SARS)-CoV-2 and/or the associated cytokines could enter the brain from the 

upper respiratory system, especially via the nose that communicates directly 
with the brain, resulting in Pediatric Acute Neuropsychiatric Syndrome 
(PANS) or Autism Spectrum Disorder (ASD), which involve activated 
microglia. These disorders also involve activation of mast cells, which can be 
triggered by viruses and secrete multiple cytokines including IL-1 and IL-6, 
thus potentially contributing to the pulmonary and neurologic symptoms of 
COVID-19. It will be important to design longitudinal studies to investigate 
the prevalence of ASD in children who were positive for COVID-19, and 
consider reducing inflammation of the brain as a prophylactic intervention.
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INTRODUCTION

The recent Coronovirus [severe acute respiratory syndrome (SARS)-
CoV-2]  is associated with high morbidity and mortality in adults [1] 

known as COVID-19 [2]. COVID-19 has also been reported to contribute to 
neurological [3-5] and mental [6-9] disorders, including anxiety, depression, 
and obsessive-compulsive behaviors [10-13]. Moreover, the health and 
economy-related stress associated with COVID-19 [14] has also contributed 
significantly to the emotional burden of patients, [15-20] with social isolation, 
loneliness and anxiety being key components [21].

Interestingly, children have been reported to either not get infected or 
have milder symptoms than adults, [22-27] possibly due to differences in 
their immune responses [28,29]. Nevertheless, a number of papers recently 
reported the presence of Multisystem Inflammatory Syndrome in children 
(MIS-C) with symptoms resembling toxic shock or Kawasaki syndrome [30-
32]. These findings indicate that COVID-19 in children may present with 
inflammation in other organs, as evidenced by flares of allergies and asthma, 
[33,34] including the brain [35].

COVID-19 patients who recover have been reported to have increased levels 
of specific antibodies and activated T cells [36,37]. Instead, the pulmonary 
pathology appears to result from release of multiple pro-inflammatory 
chemokines, especially IL-6, [36,38-40] that damage the lungs [39,41]. A key 
source of such cytokines in COVID-19 [42] is the mast cells, [43-45] which 
express the renin-angiotensin system, [46] the metalo-ectoenzyme Angiotensin 
Converting Enzyme 2 (ACE2) required for SARS-CoV-2 binding to the target 
cells, and [47,48] serine proteases, [49] including TMPRSS2 required for 
priming of the corona spike protein [50]. Mast cells can be triggered by viruses 
[51] and secrete multiple pro-inflammatory mediators [52-54] including IL-1 
[55] TNF [56] and IL-6, [57] thus potentially contributing to COVID-19. 

Vulnerable populations especially those diagnosed with different “brain 
biotypes,” [58] such as neuropsychiatric diseases including ASD, [59,60] may 
be particularly vulnerable [61]. Some reports indicate that ASD may be a risk 
factor for COVID-19 [62,63].

In this paper, we review the available evidence in Pubmed and propose that 
SARS-CoV-2 itself and/or SARS-CoV-2-generated cytokines may trigger or 
worsen ASD. We further propose that SARS-CoV-2-could enter the brain 
from the upper respiratory system, especially the nose that communicates 
directly with the brain through the olfactory nerve tract via the cribriform 
plexus leading to focal inflammation in the amygdala (Figure 1) [64]. As a 
result, COVID-19 could contribute to Pediatric Acute Neuropsychiatric 

Syndrome (PANS) and/or Autism Spectrum Disorder (ASD), which involve 
focal inflammation of the brain [65,66]. 

COVID-19, Stress and Neuropsychiatric Symptoms

Psychological stress can contribute to pathological processes in various 
diseases, [67] including allergies, [68] anaphylaxis, [69] asthma, [70,71] 
atopic dermatitis (AD) [72] and mastocytosis, [73] conditions which are 
characterized by increased number and/or degree of activation of mast 
cells.  Psychological stress associated with COVID-19 could also worsen 
auto-immune and inflammatory responses [14] and adversely affect brain 
development and function [74]. Moreover, allergic diseases in preschoolers 
had more behavioral problems [75]. Epidemiological studies have shown 
that atopic diseases, [76-79] such as allergies [77,78,80] and asthma, [81] are 
significantly associated with ASD [82,83].

Maternal psychological problems during pregnancy increased the risk of 
childhood AD [84,85]. In fact, stress during gestation increased cord blood 
levels of IgE [86]. In this context, a recent paper reported the important 
observation that fetal mast cells in utero can respond to the mother’s 
circulating IgE and results in vetical transmission of postnatal skin and 
airway inflammation [87]. This finding implies that fetal mast cells could also 
respond to other alarmins, such as IL-33, [88,89] with detrimental effects in 
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Figure 1) The nose that communicates directly with the brain through the olfactory 
nerve tract via the cribriform plexus leading to focal inflammation in the amygdala.
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brain development especially in premature babies [90].

Prenatal stress was associated with higher risk of newborns developing ASD 
[91-94]. A meta-analysis showed a significant association between anxiety 
disorders and ASD [95]. Moreover, children with ASD are more vulnerable 
to stress [96,97] with an exaggerated fear response [98,99]. Moreover, anxiety 
disorders are highly prevalent in individuals with ASD [100]. We recently 
discussed the combined detrimental effects of stress, inflammation and auto-
immunity. Hence, there is now discussion of potential points of intervention 
to potentially reduce parental stress and it effect on maternal immune 
dysregulation [101].

COVID-19 can affect the neuroendocrine-stress axis [102]. Stress stimulates 
secretion of corticotropin-releasing hormone (CRH) from the hypothalamus 
leading to activation of the hypothalamic-pituitary-adrenal (HPA) axis [103]. 
Even though HPA activation leads to anti-inflammatory actions, stress can 
also have pro-inflammatory effects [103,104] via stimulation of mast cells by 
CRH [105,106].

Inflammation of the brain and ASD

Autism Spectrum Disorder is characterized by impaired social interactions 
and communication, as well as stereotypic behaviors [107-111], affecting [in  
children in the US [110,112]. Most autistics have a number of comorbidities 
[113]. The pathogenesis of ASD is still unknown and hence no pharmacologic 
treatment is available for the core symptoms of ASD [114,115].

We had proposed that focal inflammation in the amygdala may lead to 
inflammation of the brain, [116] a process that has since been supported 
by differet investigators [117-119]. As a result, we propose that the fear 
threshold in lowered in children with ASD [120]. Inflammation of the 
brain may involve activation of microglia, [121-124] which were recently also 
implicated in COVID-19 [125]. Microglia express receptors for the peptide 
neurotensin (NT) [126] and Toll-like receptors (TLRs) [127] activated by 
damage associated molecular patterns (DAMPs), such as SARS-CoV-2. We 
reported that NT is increased in the serum of patients with ASD [128,129] 
and can activate human microglia to secrete pro-inflammatory molecules 
[130]. We also reported increased gene expression of the pro-inflammatory 
microRNA-155 (miR-155) in the amygdala of children with ASD, [131] as 
well as reduced expression of the anti-inflammatory cytokine, IL-38 [132].

With respect to cytokines implicated in COVID-19, a longitudinal study 
of mother’s serum measurements during gestation linked IL-6 to decreased 
executive function in their offspring [133]. Another study showed that 
prenatal and early postnatal stress were associated with elevated serum levels 
of IL-6 [134]. Interestingly, pre-existing differences in mouse bone marrow-
derived leukocyte release of IL-6 predicted subsequent social behavior so that 
the highest the IL-6, the more likely the mice were to develop a phenotype 
susceptible to chronic stress [135]. Another study reported that prenatal 
stress or exposure to IL-6 resulted in increased microglia ramification in 
mice, and it was prevented by IL-6 blockade [136]. We had shown that acute 
restraint stress significantly increased serum IL-6 in mice that was entirely 
dependent on mast cells [137].

Inflammation of the brain involves interactions between mast cells and 
microglia [138-140]. Stimulation of mast cells can lead to activation of 
microglia [141-143] an effect also absents in mast cell-deficient mice [144]. 
We had reported that ASD is much more common in children born to 
mothers with systemic mastocytosis, [145] characterized by a greater number 
of hyperactive mast cells than the general population [44] and may lead to 
focal inflammation in the brain. The involvement of mast cells is supported 
by large epidemiological studies showing a strong association between ASD 
and atopic diseases, such as asthma and AD, Theoharides TC., 2016 24603 
/id;Xu, 2018 27065 /id} conditions that involve activation of mast cells, and 
occur more frequently in mothers who experienced stress during pregnancy 
[146-148]. 

Mast cells are ubiquitous in the body, especially the lungs and are critical 
for allergic and pulmonary diseases, including mastocytosis by secreting 
histamine and multiple pro-inflammatory cytokines and chemokines, [149] 
especially IL-6, which has been involved in COVID-19. Mast cells are also 
abundant in the brain, especially the meninges [150,151] and they are 
stimulated by stress. 71 Specifically, we showed that stress increases dura 
vascular permeability, an effect that was absent in mast cell-deficient mice 
[152]. Mast cells are also plentiful in the median eminence, juxtaposed 
to nerve endings positive for CRH [150]. Moreover, mast cells have been 
implicated in the regulation of the HPA axis [153-155]. In particular, 
histamine, [156] IL-6 [157] and CRH [158] released from mast cells can 
activate the HPA axis.

Mast cell-derived mediators, especially cytokines, [159,160] can also increase 
the permeability of the blood-brain barrier (BBB) in rodents [161-164]. 
We showed that restraint stress increased BBB permeability via CRH 
stimulating mast cells [162,165-169]. Hence, SARS-CoV-2 could affect brain 
cells directly, via activation of mast cells or by permitting cytokines to enter 
through a disrupted BBB [170-173].

CONCLUSION

This is the first time to our knowledge that COVID-19 is discussed in 
the context of contributing to ASD. In particular, the evidence reviewed 
indicates that SARS-CoV-2 could enter the brain via the upper respiratory 
system following the olfactory nerve tract and reach the amygdala where it 
could stimulate release of pro-inflammatory cytokines from mast cells and/or 
microglia thus contributing to the pathogenesis of ASD and PANS. Autism 
symptoms may not be immediately apparent in children infected with 
SARS-CoV-2 and it will be important to initiate longitudinal observational 
studies. In the meantime, one may address psychoneuroimmunity by using 
the natural flavonoid luteolin, reported to inhibit both microglia, and mast 
cells, which have been implicated in COVID-19, especially when luteolin is 
formulated in a liposomal form to increase oral absorption.
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