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Summary

Background: Myocardial infarction and stroke represent
a major public health problem in most developing coun-
tries. This study explores genetic predisposition of acute
myocardial infarction in the Czech population.
Methods and Results: Genome-wide expression study
used matched case-control design. Peripheral blood sam-
ples of the controls were matched to those of cases based
on gender, age, status of diabetes mellitus and smoking
status. Six months cardiovascular survival status of the
cases was used to identify two distinct subgroups among
the cases. Linear models for microarray data were em-
ployed to identify differential gene expression. Shrunken
centroids technique helped in identifying the subsets of
differentially expressed genes with predictive properties in
independent samples. Predictive properties were evaluated
using bootstrap sampling. Sixty transcripts were found to
be both clinically and statistically differentially expressed
among the cases not surviving the six months follow-up
period relative to controls, while no such transcripts were
observed among other surviving cases.

The two subgroups of cases exhibited fourteen differen-
tially expressed transcripts. Predictive modeling indicated
sixteen out of sixty transcripts to best discriminate be-
tween the controls and cases that died during the follow-up
period from cardiovascular causes, while for the surviving
cases the already non-significant set of transcripts could
not be further reduced. Eleven out of fourteen transcripts
were found to best discriminate between the two groups of
cases using shrunken centroids.
Conclusions: The study identified genes associated with
excess genetic risk of acute myocardial infarction, including
those associated with the six months fatality of the cases.
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1 Introduction

Morbidity and mortality from atherosclerotic compli-
cations, such as acute myocardial infarction and stroke,
continue to represent major public health issue in most
developing countries. They are caused by multiple envi-
ronmental and genetic factors and the interaction between
them. While there are clinical risk factors known to be as-
sociated with the incidence of acute myocardial infarction,
genetic profile of an individual may represent additional
factors independently associated with the incidence of this
outcome.

Genome-wide expression profiling provides compre-
hensive summary of mRNA levels in a tissue sample, al-
lowing for identification of the sets of genes and transcripts
associated with individual condition. Microarray studies
of human diseases are often limited by challenges in ob-
taining human tissues. Peripheral blood has become an
attractive prime tissue for biomarker detection because of
its critical role in immune response, metabolism, commu-
nication with cells and the extracellular matrix in almost
all tissues and organs in the human body, as well as for
the simplicity and low invasiveness of sample collection
[1].
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2 Study Design and Methods

Experimental design of this study aimed at identify-
ing the genes associated with excess genetic risk for the
incidence of acute myocardial infarction which is not ne-
cessarily captured through known clinical risk factors.

Forty five cases with confirmed diagnosis of acute my-
ocardial infarction were enrolled between September 2006
and January 2011. The diagnosis had to satisfy the cli-
nical criteria, ECG outcome and laboratory findings ac-
cording to medical guidelines. Coronary angiography was
performed in most patients. The cases had to be less than
80 years old and no subjects could be actively treated for
cancer.

Venous blood samples were drawn from each subject
enrolled. Paired controls were selected out of patients hos-
pitalized for motoric complications with no evidence of
coronary artery or peripheral artery disease, normal ECG
and no history of stroke. They were matched to cases
based on their gender, age (the controls could be up to
5 years older than cases), status of Type II diabetes melli-
tus and smoking status. These variables represent clinical
and underlying genetic factors associated with the inci-
dence of acute myocardial infarction. This study focuses
on identifying the profiles associated with excess genetic
risk which are not necessarily expressed through these risk
factors.

Six months following the cardiac event cardiovascu-
lar survival status was assessed for all the cases. We
hypothesized that the cases who have not survived the
six months follow-up period (AMID6) and those who did
(AMI) would each differ in their genetic make-up from the
controls. We also hypothesized differences in genetic pro-
files between the two groups of cases (AIMD6 vs. AMI).
While the average paired gene expression differences be-
tween the cases and their corresponding matched controls
capture the primary prevention perspective, the differ-
ences between AMID6 and AMI reflect the secondary pre-
vention point of view.

The study complies with the Declaration of Helsinki
and was approved by the local ethics committee. All par-
ticipants gave written informed consent. Basic descriptive
characteristics of the data are provided in Tables 1 and 2
below and supplementary Table S10 in [44].

3 Microarray Analysis

The study utilized Illumina microarray technology
for analyzing gene expression intensities across the full
human genome. Samples of peripheral whole blood
were collected from all subjects using commercial 3 ml
Vacutainer R© sets with EDTA. The tubes were inverted
several times and 2.4 ml of the content was immediately
mixed with 7.6 ml RNAlater R© (Applied Biosystems) in
15 ml tubes, stabilized blood samples were inverted se-
veral times until they were homogenous and the sam-
ples were stored in -70◦C. The RNA was isolated from

1.8 ml aliquot of stabilized blood with RiboPureTM -Blood
Kit (Applied Biosystems, U.S.A.), precipitated and puri-
fied with GLOBINclearTM–Human kit (Applied Biosys-
tems, U.S.A.). The quantification was made on Nanodrop
(Thermo Scientific, U.S.A.) and the integrity of the RNA
was measured on Bioanalyzer 2100 (Agilent Technologies
Inc., U.S.A.). The cRNA was amplified using Illumina R©

TotalPrepTM RNA Amplification Kit, precipitated and
controlled on Nanodrop (Thermo Scientific, U.S.A.) and
Bioanalyzer 2100 (Agilent Technologies Inc., U.S.A.). The
cRNA samples (1.5 µg) were hybridized on HumanWG-6
v2 Expression BeadChips (Illumina Inc., U.S.A.) accord-
ing to manufacturer’s protocol.

4 Statistical Analysis

Statistical analysis used the R system for statistical
computing, graphics and data analysis [2]. We used se-
veral packages which are part of the Bioconductor project
[3]. The ‘beadarray’ package [4] was used for reading in
the gene expression data from Illumina analyzer scans, the
‘BASH’ method [5] was used to identify defective beads on
Illumina chips. We adopted ‘normal-exponential convolu-
tion’ method [6] for separating background noise from the
signal. The log2-transformed quantile-normalized gene
expression intensities were modeled using two explana-
tory variables, the matched pair indicator and the sam-
pling group indicator (‘AMI’, ‘AMID6’, ‘Controls’) us-
ing the ‘limma’ package accounting for correlated data
due to several biologically replicated samples [7]. Apply-
ing the empirical Bayes approach to model fit rendered
moderated t-tests for each transcript/gene and contrast
of interest. Multiple testing issues were handled using
the q-value approach [8]. The two principal contrasts of
interest estimated the mean paired differences in gene ex-
pression intensities between the cases (AIMD6, AIM) and
their matched controls, respectively. Of interest were also
the gene expression differences between the two groups of
cases. Statistical significance was reached for transcripts
with q-value below 0.05, clinical significance was reached
when the log2-fold change was greater or equal to 1 in
absolute value.

To identify subsets of genes possessing predictive pro-
perties in independent samples we employed shrunken cen-
troids approach [9] implemented in the ‘Predictive Ana-
lysis for Microarrays’ (PAM). Subsets of genes identified
as differentially expressed using the limma package were
further analyzed using PAM. The final sets of genes so
identified are believed to possess predictive properties in
independent samples, which were evaluated using boot-
strapping. PAM modeling technique was also applied to
the full genome.

5 RT-qPCR Validation

Modeling results were validated by RT-qPCR ana-
lysis which used available RNA samples from the four
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cases, their matched controls and 6 other randomly se-
lected controls. The genes ADORA3, VNN3, IL18R1,
IL18RAP, ERLIN1, FOS and ARG1 were quantified while
18S and HPRT were used as housekeeping references for
each tested sample. Gene SPATC1 was selected as nega-
tive control.

6 Results

6.1 Limma Modeling Results

Comparing the matched controls with the cases who
died from cardiovascular causes within six months follow-
ing the cardiac event (contrast ‘AMID6 vs. Controls’)
implicated 60 differentially expressed genes/transcripts
which met the criteria of both statistical (q < 0.05) and
clinical (|log2FC| ≥ 1) significance. Of those genes, 40
were up- and 20 down-regulated. Without regard to cli-
nical significance, statistical significance was attained for
323 transcripts; see the Venn diagrams in Figure 1.

Comparing the cases who survived the 6 months fol-
low up period with their matched pair controls (contrast

‘AMI vs. Controls’) revealed no genes that would meet
the above mentioned criteria for either statistically or cli-
nically significant differential expression.

The population gene expression differences between
the two groups of cases (contrast ‘AMID6 vs. AMI’) were
associated with 14 transcripts which met the criteria of
both statistical and clinical significance, out of which 4
were up- and 10 down-regulated. Statistical significance
was observed for 60 genes/transcripts, out of which 13
were up- and 47 down-regulated.

Supplementary tables S1, S4 and S7 in [44] present
a detailed view of limma modeling results assessing the
three linear contrasts in gene expression intensities.

6.2 Predictive PAM Modeling

For all three types of contrasts considered in this study
we were particularly looking for the candidate sets of genes
which would possess predictive properties in independent
samples. Therefore, the available samples were studied
further using shrunken centroids approach. The corre-
sponding results are summarized in Table 3. With each

Table 1: Group counts and percentages for categorical variables.

Variable Level Group Counts and Percentages
AMI AMID6 CONTROL

Gender Male 28 (68%) 2 (50%) 30 (67%)
Smoking Smokers 10 (24%) 0 (0%) 10 (22%)
Type 2 DM YES 12 (29%) 2 (50%) 14 (31%)
Dyslipidemia YES 17 (41%) 2 (50%) 15 (33%)
Hypertension YES 32 (78%) 2 (50%) 29 (64%)
First AMI YES 32 (78%) 4 (100%) –
STEMI YES 26 (63%) 3 (75%) –
Heart failure YES 5 (12%) 3 (75%) –
PCI YES 6 (15%) 0 (0%) –
ACEI* YES 21 (51%) 1 (25%) 16 (36%)
Betablockers* YES 19 (46%) 0 (0%) 15 (33%)
Diuretics* YES 11 (27%) 1 (25%) 14 (31%)
Ca blockers* YES 12 (29%) 3 (75%) 11 (24%)
Statins* YES 14 (34%) 2 (50%) 15 (33%)
Fibrates* YES 2 (5%) 0 (0%) 2 (4%)
Other* YES 20 (49%) 3 (75%) 36 (80%)
*) Chronic medication

Table 2: Descriptive characteristics of continuous variables.

Variable Group Means and Standard Deviations*
AMI AMID6 CONTROL

Age 63.6 (9.18) 72.3 (4.73) 65.5 (9.42)
Height (cm) 167.3 (10.0) 163.3 (10.4) 165.4 (10.2)
Weight (kg) 85.2 (17.9) 81.0 (17.0) 80.3 (12.1)
SBP (mmHg) 140.0 (27.8) 137.5 (12.6) 142.3 (18.0)
DBP (mmHg) 82.7 (15.8) 84.3 (16.5) 82.8 (9.2)
*) At ICU entry
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Figure 1: Counts of statistically significant differentially expressed transcripts (left panel) and those reflecting both statistical
and clinical significance (right panel).

contrast Table 3 presents two candidate sets of genes. The
Set ]1 resulted from further reducing the gene set obtained
from the limma modeling using PAM while the Set ]2 was
obtained by applying the PAM technique to all 39 226
available transcripts. Grey shading accentuates simulta-
neous presence of both statistical and clinical significance,
as defined for this study. Comprehensive results covering
the full genome reduction using PAM may be found in
supplementary tables S3, S6 and S9 in [44], tables S2,
S5 and S8 in [44] show PAM reduction of the gene sets
obtained using limma.

6.3 AMID6 vs. Controls

Applying the shrunken centroids technique to the set
of both statistically and clinically significant transcripts
identified via limma modeling (top 60 genes of Table S1
in [44]) rendered 16 genes (Set ]1) with predictive pro-
perties in independent samples shown in Table 3. Initi-
ating the PAM modeling with the full genome resulted
in a set of 14 genes (Set ]2) of which only IL18R1 and
DUSP1 would not pass the criterion of statistical signifi-
cance within limma modeling framework while adhering to
the clinical one in all instances. Remarkably, the two cor-
responding sets have a large proportion of genes in com-
mon.

6.4 AMI vs. Controls

The set of genes obtained using limma modeling for
this contrast (Table S4 in [44]) did not exhibit statisti-

cal or clinical significance as defined for our study and
could not be further reduced using PAM modeling. The
set obtained by applying the PAM technique to the full
genome was quite extensive, counting 228 transcripts. Ta-
ble 3 presents truncated list of top thirteen genes (Set ]2)
which includes five genes from the corresponding Set ]1.

6.5 AMID6 vs. AMI

PAM reduction of 14 statistically and clinically signi-
ficant transcripts identified via limma modeling (see Ta-
ble S7 in [44]) rendered 11 predictive transcripts, two of
which pertain to gene ‘CLYBL’. Initiating the PAM ana-
lysis with the full genome resulted in a set of 22 tran-
scripts, four of which also appeared in the corresponding
Set ]1.

Table 4 presents estimates of sensitivity and specificity
of the PAM classifier obtained from three bootstrap stu-
dies evaluating predictive properties of the two sets of
genes identified for each contrast of interest. The stu-
dies used 1000 samples from the target population with
replacement. We report the mean values along with the
5th and 95th percentile for both quantities of interest.

Predictive properties assessed using the PAM classifier
appeared generally more favorable when the gene sets ]2
were employed while notable improvements were observed
in relation to sensitivity rather than specificity. Some im-
provements, however, came at a price of large number of
genes required. This was the case of contrast ‘AMI vs.
Controls’ where the Set ]1 was of size 13 while the Set
]2 counted 228 transcripts. This is a likely consequence
of having observed no statistically or clinically significant
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Table 3: Predictive sets of genes identified using PAM for each contrast of interest, with the ranks in the Set ]1 and Set ]2,
respectively, q-values and log2FC based on limma results.

Symbol Ref Seq ID Definition Set ]1 Set ]2 q-value log2FC
Rank* Rank†

Contrast AMID6 vs Controls
ECHDC3 NM024693.2 enoyl Coenzyme A hydratase domain containing 3 1 1 0.0498 2.03
IL18RAP NM_003853.2 interleukin 18 receptor accessory protein 2 3 0.0195 1.28
PFKFB2 NM_006212.2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 3 5 0.0085 1.93
IRS2 NM_003749.2 insulin receptor substrate 2 4 6 0.0308 1.43
PHACTR1 NM_030948.1 phosphatase and actin regulator 1 5 4 0.0352 1.86
ERLIN1 NM_006459.2 ER lipid raft associated 1 6 2 0.0416 1.77
VNN3 NM_001024460.1 vanin 3 7 7 0.0290 1.44
ADORA3 NM_020683.5 adenosine A3 receptor 8 9 0.0525 2.10
CLEC4E NM_014358.1 C-type lectin domain family 4, member E 9 11 0.0288 1.75
ASPRV1 NM_152792.1 aspartic peptidase, retroviral-like 1 10 12 0.0352 1.01
PFKFB2 NM_001018053.1 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 11 5 0.0416 1.69
CPD NM_001304.3 carboxypeptidase D 12 10 0.0397 1.31
FKBP5 NM_004117.2 FK506 binding protein 5 13 — 0.0596 1.03
PRKDC NM_006904.6 protein kinase, DNA-activated, catalytic polypeptide 14 — 0.0075 1.10
NPM1 NM_199185.1 nucleophosmin (nucleolar phosphoprotein B23, numatrin) 15 — 0.0223 –1.15
SAMSN1 NM_022136.3 SAM domain, SH3 domain and nuclear localization signals 1 16 — 0.0478 1.37
IL18R1 NM_003855.2 interleukin 18 receptor 1 — 8 0.0525 2.10
DUSP1 NM_004417.2 dual specificity phosphatase 1 — 13 0.0596 1.03
LOC645649 XM_928663.1 hypothetical protein LOC645649 — 14 0.0075 1.10
Contrast AMI vs Controls
OLIG2 NM_005806.2 oligodendrocyte lineage transcription factor 2 1 1 0.0756 –0.89
VNN3 NM_001024460.1 vanin 3, transcript variant 3 2 2 0.0756 0.50
MS4A3 NM_006138.4 membrane-spanning 4-domains, subfamily A, member 3, transcript

variant 1
3 6,7 0.0756 –0.64

CEBPE NM_001805.2 CCAAT/enhancer binding protein (C/EBP), epsilon 4 5 0.0756 –0.45
FOS NM_005252.2 v-fos FBJ murine osteosarcoma viral oncogene homolog 5 4 0.0756 0.39
LIPA NM_000235.2 lipase A, lysosomal acid, cholesterol esterase, transcript variant 2 6 — 0.0756 –0.37
LOC645649 XM_928663.1 hypothetical protein LOC645649 7 — 0.0906 0.29
TCRB M97723 T cell receptor beta locus 8 — 0.0756 0.38
EPAS1 NM_001430.3 endothelial PAS domain protein 1 9 — 0.0756 –0.31
CLINT1 NM_014666.2 clathrin interactor 1 10 — 0.0756 –0.25
MYCT1 NM_025107.1 myc target 1 11 — 0.0756 –0.15
VPS29 NM_016226.2 vacuolar protein sorting 29 (yeast), transcript variant 1 12 — 0.0756 –0.15
LOC130951 NM_138804.2 hypothetical protein BC014602 13 — 0.0756 –0.13
CCL23 NM_005064.3 chemokine (C-C motif) ligand 23, transcript variant CKbeta8-1 — 3 0.2633 –0.84
MYB NM_005375.2 v-myb myeloblastosis viral oncogene homolog (avian) — 8 0.1397 –0.47
C13orf18 NM_025113.1 chromosome 13 open reading frame 18 — 9 0.1347 0.40
PER1 NM_002616.1 period homolog 1 (Drosophila) — 10 0.2012 0.31
CCL23 NM_005064.3 chemokine (C-C motif) ligand 23, transcript variant CKbeta8-1 — 11 0.3385 –0.50
OLIG1 NM_138983.1 oligodendrocyte transcription factor 1 — 12 0.1347 –0.49
PRSS33(**) NM_152891.1 protease, serine, 33 — 13 0.3606 –0.58
Contrast AMID6 vs AMI
ADORA3 NM_020683.5 adenosine A3 receptor 1 15 0.0490 1.78
TCRB M97723 T cell receptor beta locus 2 8 0.0130 –1.52
ERLIN1 NM_006459.2 ER lipid raft associated 1 3 11 0.0490 1.19
CLYBL NM_206808.1 citrate lyase beta like 4 19 0.0234 –1.08
TCEA3 NM_003196.1 transcription elongation factor A (SII), 3 5 — 0.0381 -1.66
TCRA BC070337 T cell receptor alpha locus 6 — 0.049 –1.42
CLYBL NM_206808.1 citrate lyase beta like 7 19 0.0130 –1.18
HSD17B8 NM_014234.3 hydroxysteroid (17-beta) dehydrogenase 8 8 — 0.0490 –1.06
FLT3 NM_004119.1 fms-related tyrosine kinase 3 9 — 0.0490 1.14
AXIN2 NM_004655.2 axin 2 (conductin, axil) 10 — 0.0388 –1.49
— CR596519 full-length cDNA clone CS0DI056YK21 of Placenta Cot 25-

normalized
11 — 0.0490 –1.45

BCAT1 NM_005504.4 branched chain — 1 0.1146 1.05
— AW337887 he12d07.x1 NCI_CGAP_CML1 cDNA clone IMAGE:2918797 3’ — 2 0.0130 0.84
AMPH NM_001635.2 amphiphysin (AMPH), transcript variant 1 — 3 0.0814 1.20
— BM682470 UI-E-EJ0-aig-b-14-0-UI.s1 UI-E-EJ0, cDNA clone UI-E-EJ0-aig-b-

14-0-UI 3’
— 4 0.0490 –0.76

C7orf53 NM_182597.1 chromosome 7 open reading frame 53 — 5 0.1371 0.86
— CR592039 full-length cDNA clone CS0CAP005YH21 of Thymus — 6 0.0994 –1.48
C2orf58 NM_173652.1 chromosome 2 open reading frame 58 — 7 0.1053 0.78
ASPRV1 NM_152792.1 aspartic peptidase, retroviral-like 1 — 9 0.0847 1.19
— CN484989 hx21e11.y1 primary human ocular pericytes. Equalized (hx) cDNA

clone hx21e11 5’
— 10 0.0721 1.44

ETS2 NM_005239.4 v-ets erythroblastosis virus E26 oncogene homolog 2 — 12 0.1218 0.73
NDUFB3 NM_002491.1 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 12kDa — 13 0.4508 0.43
— X00437 mRNA for T-cell specific protein — 14 0.0721 –1.44
ZNF516 XM_496278.2 zinc finger protein 516 — 16 0.2826 0.48
SLC26A8 NM_052961.2 solute carrier family 26, member 8, transcript variant 1 — 17 0.0721 0.63
KIF20B NM_016195.2 kinesin family member 20B — 18 0.0130 –0.86
ARG1 NM_000045.2 arginase, liver — 20 0.0814 3.05
IL18RAP NM_003853.2 interleukin 18 receptor accessory protein — 21 0.0542 1.61
CD59 NM_203329.1 CD59 molecule, complement regulatory protein, transcript variant

3
— 22 0.2374 0.65

*) PAM reduction of the set of statistically and clinically significant genes obtained from limma modeling
†) PAM reduction of the whole genome (represented by 39,226 transcripts)
**) Truncated list of genes
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transcripts using the limma modeling (see Table S4 in
[44]).

6.6 RT-qPCR Validation Study

Results of the RT-qPCR validation are summarized in
supplementary Table S12 in [44]. One observation in the
AIMD6 group of cases (ID=C078) appeared fairly similar
to controls, its removal lead to the overall improvement.
Details concerning the subjects from AMID6 group are
shown in supplementary Table S11 and S12 in [44] presents
the summary of validation study results.

7 Discussion

7.1 AMI vs. Controls

This contrast identifies genes which were differentially
expressed between general population and the cases who
survived the six months follow-up period following the
MI episode. Although no statistically significant results
were obtained for this contrast, several genes shown in
Table 3 were previously linked to MI and cardiovascular
or coronary artery disease. The FOS gene plays a role
in functional organization of central cardiovascular path-
ways; its expression in certain central neurons may lead to
sustained changes in cardiovascular function [10]. VNN3
is part of pantetheinase gene family which regulates hy-
drolysis of pantetheine into pantothenic acid (vitamin B5)
and cysteamine, a potent antioxidant. Human neutrophils
express transcripts encoding multiple splice variants of
VNN3 [11]. In relation to oxidative stress VNN3 may play
a role in tissue repair [12]. Phosphorylation of clock pro-
tein PER1 was shown to regulate its circadian degradation
in normal human fibroblasts [13]. Mutations in the LIPA
gene were shown to be related to cholesterol metabolism
[14] and the gene was described as susceptibility gene for
the incidence of coronary artery disease [15, 16]. Genes
OLIG1 and OLIG2 encode transcription factors expressed
in both the developing and mature vertebrate central ner-
vous system and may have additional functions in a va-
riety of neurological diseases [17]. Wojakowski et al [18]
report up-regulation of OLIG2 in stroke patients. Inouye

et al [19] report gene MS4A3 as one of only three strong
predictors of lipid leukocyte module from their genome-
wide study. Other genes showing significant evidence of
association with lipid traits identified also in our study us-
ing PAM reduction of the whole genome include GATA2,
CPA3, C1ORF186, C1ORF150, SLC45A3, SPRYD5 and
CEBPD (Supplementary Table S6 in [44]), all with poten-
tial contribution to the pathogenesis of coronary artery
disease. Gene EPAS1 was identified as a significant pro-
moter of angiogenesis [20]. Castillo et al [21] demonstrated
that inflammatory chemokine CCL23 is independently as-
sociated with coronary atherosclerosis. The MYB gene
plays essential role in adult vascular smooth muscle cells
survival [22].

7.2 AMID6 vs. Controls

This contrast targets differentially expressed genes
among the cases not surviving the 6 months follow-up re-
lative to general population. All predictive genes of the
Set ]2 in Table 3 have shown both clinically and statis-
tically significant differential expression based on limma
modeling. Gene ADORA3 is known as a receptor me-
diating cardioprotective functions during ischemia [23].
In our study the gene was overexpressed in cases that
died within 6 months from cardiovascular complications
relative to controls. The same was true relative to surviv-
ing cases (‘AIMD6 vs. AMI’) while the gene was under ex-
pressed among surviving cases relative to controls (supple-
mentary Table S6 in [44]). Increased activity may be ob-
served with genes involved in the overall immune response
(IL18R1, IL18RAP). Liangos et al [24] uncovered highly
intertwined signaling underlying ischemia reperfusion and
inflammatory response. The corresponding genes iden-
tified in our study include IL18R1, IL18RAP, IL1RAP,
LCN2 and TLR4 (tables S1 and S6 in [44]). Mallat et
al [25] report significant expression of proinflammatory
cytokine IL-18 and its signaling receptor IL-18R in hu-
man atherosclerotic plaques. Rosenberg et al [26] vali-
dated diagnostic test based on the expression of 23 genes
previously found to be associated with the presence of
CAD. From the genes they used in predictive modeling
those identified in our study involve IL18RAP, TLR4 and
CLEC4E, a mediator of immune and inflammatory re-

Table 4: Bootstrap estimates of sensitivity and specificity of the PAM classifier.

Predictive Set ]1 Predictive Set ]2
(based on limma results) (based on 39 226 transcripts)

Contrast Item Mean 5% 95% Mean 5% 95%
AMID6 vs. Controls Sensitivity 0.90 0.75 1.00 1.00 1.00 1.00

Specificity 0.93 0.84 1.00 0.96 0.87 1.00
AMI vs. Controls Sensitivity 0.73 0.63 0.83 0.89 0.78 0.98

Specificity 0.87 0.80 0.93 0.85 0.76 0.96
AMID6 vs. AMI Sensitivity 0.89 0.50 1.00 1.00 1.00 1.00

Specificity 0.95 0.90 1.00 0.96 0.90 1.00
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sponse. Tiret et al [27] related genetic variability in IL18,
IL18R1 and IL18RAP to cardiovascular mortality. The
gene SAMSN1 was found to be preferentially expressed in
mast cells [28] containing large amounts of heparin and
histamine. Protein encoded by the PFKFB2 gene medi-
ates control of glycolysis in eukaryotes. IRS2 gene was
shown to be associated with severe obesity and insulin
sensitivity in Type II diabetic patients [29, 30]. The gene
VNN3 reappears also with this contrast. Gene PHACTR1
was cited for the association with CAD, CVD and MI
based on several recent genome-wide studies [31, 32]. The
ERLIN1 gene was recently identified as a member of the
prohibitin family of proteins that define lipid-raft-like do-
mains of the ER [33]. Polymorphisms in FKBP5 may be
associated with increased vulnerability to posttraumatic
stress disorder [34]. Gene PRKDC is a central regulator
of DNA double-strand break repair. Down-regulation of
NPM1 was previously linked to cardiac cell differentiation
[35], the DUSP1 gene was found to be associated with ox-
idative stress response [36]. No references in relation to
CVD, CAD or MI could be found for the genes ECHDC3
and ASPRV1.

7.3 AMID6 vs. AMI

This contrast signifies population gene expression dif-
ferences between the surviving cases and those who died
within 6 months following the acute MI episode. Both
statistical and clinical significance based on limma mo-
deling was attained for Set ]1. Several predictive genes
are repeated here from the ‘AIMD6 vs. Controls’ con-
trast. They include ADORA3, IL18RAP, ERLIN1, AS-
PRV1, gene TCRB is repeated from ‘AIM vs. Controls’.
Strongly down-regulated genes TCRA, TCRB and AXIN2
participate in V(D)J recombination, T-cell and leukocyte
differentiation, antibody-dependent cellular cytotoxicity
and signal transduction. Dumont et al [37] report as-
sociation of ARG1 polymorphisms with the risk of AMI
and common carotid intima media thickness. Harpster
et al [38] report ARG1 as the single most highly induced
transcript in post-myocardial infarction subjects. Com-
plement regulator CD59 is a potent inhibitor of the mem-
brane attack complex (MAC). Acosta et al suggest that in
diabetes glycation–inactivation of endothelial CD59 would
contribute to the development of vascular complications
[39]. CD59 was shown to protect against atherosclero-
sis by restricting the MAC formation [40]. Transcription
factor ETS2 was recently identified to determine inflam-
matory state of endothelial cells in advanced atheroscle-
rotic lesions [41]. Meta-analysis of 15 GWAS studies [42]
revealed a few genes associated with resting heart rate,
a predictor of cardiovascular mortality, including BCAT1
gene.

Number of genes and transcripts identified in our
study as being associated with the outcome represent
novel candidates which were not previously linked to
the incidence of acute myocardial infarction. We illus-
trate four up-regulated (AMPH, FLT3, ZNF516) and

five down-regulated genes (AXIN2, CLYBL, KIF20B,
TCEA3, TCRA) identified in our study. Amphiphysin-
synaptic vesicle-associated protein (AMPH) observed in
Stiff-Man syndrome includes SH3 domains in C-terminal
region. Up-regulated activity of the gene FLT3 is linked
to hematopoiesis activation, angiogenesis, hematopoietic
progenitor cell differentiation, macrophage differentiation
and interleukin, natural killer activation. ZNF516 (zinc
finger protein 516) is a gene family member, coordinating
Zn-ions in stabilizing different cellular processes. AXIN2
plays important role in beta-catenin stabilization. CLYBL
encodes beta-like citrate lyase. KIF20B, kinesin family
member 20B, is a structure required for completion of cy-
tokinesis. The group of down-regulated genes includes the
gene TCEA3 providing interaction with the enzyme RNA
polymerase II during the transcription process. TCRA is
a T-cell antigen receptor, alpha-subunit.

Furthermore, we identified novel up-regulated
(LOC645649, c13orf18, AW337887, c7orf53, c2orf58,
CN484989) and down-regulated structures (LOC130951,
CR596519, BM682470, CR592039, X00437) that are listed
in Table 3. Recently, Puigdecanet et al [43] identified
C13orf18 being part of a molecular signature character-
ized with an upregulation of inflammatory genes related
to neutrophil activation and thrombosis.

Text mining search of medical literature performed at
PubGene.com using MeSH term ‘Myocardial Infarction’
and the set of genes found to be predictive for MI (see
Table 3) rendered 10 genes most cited for their associ-
ation with MI plus four genes (ADORA3, FOS, ARG1,
CD 59) indicated in our study which appear to be related
to these genes. Figure 2 shows that the four genes are
linked to positive regulation of Interleukin 12 production
(ADORA3), co-regulation of insulin secretion (FOS), re-
gulation of reverse cholesterol transport, co-regulation of
insulin secretion, cholesterol absorption, cardiac muscle
contraction and glycoprotein biosynthetic process (ARG1)
and activation of membrane attack complex (CD59). Sup-
plementary Figure S1 in [44] uncovers relationships of
these four genes with other genes. Biological processes
associated with the genes shown in Table 3 are summa-
rized in supplementary Table S13 in [44].

Only a partial agreement with the gene sets reported to
be associated with the incidence of MI from other studies
may in part be explained by the differences in statistical
design, studied population and respective sample sizes,
use of non-homogenous subgroups (diabetics, nondiabetic
patients), population distributions of related risk factors,
therapy (especially use of statins), exclusion criteria, ex-
istence of concomitant diseases and other inflammatory
conditions, heart failure, smoking, extent of non-coronary
atherosclerosis, and examination of circulating cells and
other cells in tissues.

Due to significant costs involved in microarray ana-
lysis our study is limited by a relatively small sample size.
Synthesis of the genetic and clinical information gathered
from genomic studies is expected to refine personalized ap-
proaches to managing the risk of CAD. Genetic risk scores
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Figure 2: Literature search of 10 genes most frequently cited for their association with MI and their relation to predictive genes
identified in Table 3.

derived from several functional single nucleotide polymor-
phisms (SNPs) or haplotypes in multiple genes may im-
prove the prediction of CAD.
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