Dominating sets and domination polynomials of cubic paths

Audin Medona, S Christilda

Medona A, Christilda S. Dominating sets and domination polynomials of cubic paths. J Pure Appl Math 2022;6(5): 32-35

ABSTRACT

Let G = (V, E) be a simple graph. A set $\underline{\mathfrak{E}}$ V is a dominating set of G, if every vertex in V – S is adjacent to at least one vertex in S. Let p_n^3 be the cubic path P_n and let $D(P_n^3, i)$ denote the family of all dominating sets of P_n^3 with

cardinality i. Let $d(P_n^3, i) = |D(P_n^3, i)|$. In this paper, we obtain a recursive formula for $d(P_n^3, i)$. Using this recursive formula, we construct the polynomial $D(P_n^3, i)x^i = \sum_{i=\frac{n}{7}}^n d(P_n^3, i)x^i$ which we call the domination polynomial of Pn3 and

obtain some properties of this polynomial.

Keywords: Domination Set; Domination Number; Domination Polynomials

INTRODUCTION

ets Let G=(V,E) be a simple graph of order |v|=n. For any vertex $v\in V$, the open neighborhood of v is the set $N(v)=\{u\in V\mid uv\in E\}$ and the closed neighborhood of v is the set $N[v]=N(v)\cup\{v\}$. For a set $S\subseteq V$, the open neighborhood of S is $N(S)=\bigcup_{i\in S}N(v)$ and the closed neighborhood of S is $N(S)=\bigcup_{i\in S}N(v)$ and the closed neighborhood of S is N(S)=V is a dominating set of S, if N(S)=V, or equivalently, every vertex in S is adjacent to at least one vertex in S. The domination number of a graph S is defined as the minimum size of a dominating set of vertices in S and it is denoted by S is a dominating set of vertices in S and it is denoted by S is a path in which all its internal vertices have degree two and the end vertices have degree one and is denoted by S is denoted by S in S is a path in which all its internal vertices have degree one and is denoted by S in S is a path in which all its internal vertices have degree one and is denoted by S in S in S is an internal vertices have degree one and is denoted by S in S is a path in which all its internal vertices have degree one and is denoted by S in S in S in S in S is a path in which all its internal vertices have degree one and is denoted by S in S is a path in S is a path in S in

Definition 1

The k^{th} power of a graph is a graph with set of vertices of G and an edge between two vertices if and only if there is a path of length atmost k between them. It is denoted by G_n^k and also called k^{th} power of G.

Definition 2

Let D(G, i) be the family of dominating sets of a graph G with cardinality i and let d(G, i) = |D(G, i)| then the domination polynomial D(G, x) of G is defined by $D(G, x) = \sum_{i=0}^{|V(G)|} d(G, i) x^i$

Where $\gamma(G)$ is the domination number of G.

Definition 3

The cube of a graph with the same set of vertices as G and an edge between two vertices and only if there is path of length atmost 3 between them. The third power of a graph is also called its cube of G [1, 2].

Let p_n^3 be the cubic of the path P_n (3rd power) with n vertices. Let $D(P_{n,j}^3)$ be the family of dominating sets of the graph with cardinality i and let $d(P_n^3, i) = \left| D(P_n^3, i) \right|$ we call the polynomial $D(P_n^3, x) = \sum_{i=\left|\frac{n}{i}\right|}^n d(P_n^3, i) x^i$ MAIN RESULT

Let $D(P_n^3, i)$ be the family of dominating sets of P_n^3 with cardinality i. we investigate the dominating sets of P_n^3 , we need the following lemma to prove our main results in this section [3].

Lemma 1

$$\gamma\left(P_n^3\right) = \left\lceil \frac{n}{7} \right\rceil$$

Figure 1) Proof P_n³

Proo

In the proof P_n^3 , any vertex i with $4 \le i \le n-3$ covers i-1 and i-3 in the left side and i+1 and i+3 in the right side. Similarly any vertex i with $3 \le i \le n-2$ covers i-1 and i-2 in the left side and i+1 and i+2 in the right side. Therefore, a single vertex covers at most 7 vertices Figure 1.

Therefore
$$\gamma(P_n^3) = \lceil \frac{n}{7} \rceil$$

Domination Polynomial of P_n³

Let $D(P_n^3, x) = \sum_{i=\left|\frac{n}{n}\right|}^n d(P_n^3, i) x^i$ be the domination polynomial of a cubic path

 p_n^3 . In this section we derive the expression for $D(P_n^3, \chi)$.

Example 1

The graph p_4^3 has one dominating set of cardinality 4, 4 dominating set of cardinality 3, 6 dominating set of cardinality 1.

Therefore its domination polynomial is $D(P_4^3, x) = x^4 + 4x^3 + 6x^2 + 4x$.

RESULT

If $D(P_n^3)$ is the family of dominating sets with cardinality i of P_n^3 , then $d(P_n^3,i)=d(P_{n-1}^3,i-1)+d(P_{n-2}^3,i-1)+d(P_{n-3}^3,i-1)+d(P_{n-3}^3,i-1)+d(P_{n-3}^3,i-1)+d(P_{n-3}^3,i-1)+d(P_{n-3}^3,i-1)$

Where
$$d(P_n^3, i) = |D(P_n^3, i)|$$

We obtain $d\left(P_{n}^{3},\,i\right)$ for $1\leq n\leq 15$ as shown in following table $d\left(P_{n}^{3},\,i\right)$ the number of dominating set of P_{n}^{3} with cardinality i

In the following theorem we obtain some properties of d (Pn3, i) Figure 2, Table 1.

Theorem 1

The following properties hold for the coefficient of $D(P_4^3, x)$.

i)
$$d(P_{7n}^3, n) = 1$$
 for every $n \in N$

Research Scholar, Department of Mathematics Mother Teresa Women's University, Kodaikanal, India

Correspondence: Audin Medona, Research Scholar, Department of Mathematics Mother Teresa Women's University, Kodaikanal, India,e-mail audintracy33@gmail.com
Received: 21-Sep-2022, Manuscript No. PULJPAM-22-5374, Editor Assigned: 23-Sep-2022, PreQC No. PULJPAM-22-22-5374 (PQ), Reviewed: 30-Sep-2022, QC
No. puljpam-22-5374 (Q), Revised: 02-Oct-2022, Manuscript No PULJPAM-22-5374 (R), Published: 20-Oct-2022, DOI:-10.37532/2752-8081.22.6(5).32-35.

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

Medona, et al.

Figure 2) Graph P_4^3 .

TABLE 1 In the following theorem we obtain some properties of $d(P^3, i)$

in	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1														
2	2	1													
3	3	3	1												
4	4	6	4	1											
5	3	10	10	5	1										
6	2	13	20	15	6	1									
7	1	15	33	35	21	7	1								
8	0	16	48	68	56	28	8	1							
9	0	15	64	116	124	84	36	9	1						
10	0	13	78	180	240	208	120	45	10	1					
11	0	10	88	257	420	448	328	165	55	11	1				
12	0	6	92	341	676	868	776	433	220	66	12	1			
13	0	3	88	423	1012	1543	1644	1269	653	286	78	13	1		
14	0	1	78	491	1420	2549	3186	2913	1922	939	364	91	14	1	
15	0	0	64	536	1876	3948	5728	6098	4835	2861	1303	455	105	15	1

ii)
$$d(P_n^3, n) = 1$$
 for every $n \in N$

iii)
$$d(P_n^3, n-1) = n$$
 for every $n \ge 2$

iv)
$$d(P_{7n}^3, n-2) = nC_2$$
 for every $n \ge 3$

v)
$$d(P_n^3, n-3) = nC_3$$
 for every $n \ge 4$

vi)
$$d(P_n^3, n-4) = nC_4 - 2$$
 for every $n \ge 5$

vii)
$$d(P_n^3, n-5) = nC_5^{-2}(n-4)$$
 for every $n \ge 6$

viii)
$$d\left(P_{7n-1}^{3}, n\right) = n + 1$$
 for every $n \in N$

i) Since
$$d(P_{7n}^3, n) = \{5, 12, 19, ..., 7k - 2\}$$

$$\therefore$$
 we have $d(P_{7n}^{-3}, n) = 1$

ii) Since
$$D(P_n^3, n) = \{[n]\}$$
; we have the result

$$\therefore d(P_n^3, n) = 1 \text{ for every } n \in \mathbb{N}$$

iii) Since
$$D(P_n^3, n-1) = \{[n] - \{x\}/x\hat{I}[n]\}$$
. we have the

result
$$d(P_n^3, n-1) = n$$
.

iv) By induction on n

The result is true for n = 3

LHS
$$d(P_3^3, 1) = 3$$

RHS $3C_2 = \frac{3 \times 2}{1 \times 2} = 3$
 \therefore LHS = RHS

RHS
$$3C_2 = \frac{3 \times 2}{} = 3$$

$$\therefore$$
 The result is true for $n = 3$

Now suppose that the result is true for all numbers less than 'n' and we prove it for n.

By result 3.2,

$$d(P_n^3, n-3) = d(P_{n-1}^3, n-4) + d(P_{n-2}^3, n-4) + d(P_{n-3}^3, n-4) + d(P_{n-4}^3, n-4) + d(P_{n-4}^3, n-4) + d(P_{n-4}^3, n-4) + d(P_{n-5}^3, n-4) + d(P_{n-5}^3, n-4) + d(P_{n-5}^3, n-4) + d(P_{n-7}^3, n-4)$$

$$= (n-1)C_2 + (n-2) + 1$$

$$= \frac{(n-1)(n-2)}{2} + (n-2) + 1$$

$$= \frac{(n-1)(n-2)}{2} + (n-1)$$

$$= \frac{(n-1)}{2} + [(n-2) + 2]$$
Type your text
$$= \frac{(n-1)n}{2}$$

$$= \frac{n(n^2-1)}{2}$$

$$= nC_2$$

$$\therefore d(P_{7n}^3, n-2) = nC_2 \text{ for every } n \ge 3.$$

v) By induction on n

The result is true for n = 4.

$$LHS d(P_4^3,1) = 4$$

RHS
$$4C_3 = \frac{4 \times 3 \times 2}{1 \times 2 \times 3} = 4$$

 \therefore LHS = RHS

 \therefore The result is true for n = 4.

Now suppose that the result is true for all numbers less than 'n' and we

By result 3.2,

$$d(P_n^3, n-2) = d(P_{n-1}^3, n-3) + d(P_{n-2}^3, n-3) + d(P_{n-3}^3, n-3) + d(P_{n-4}^3, n-3) + d d(P_{n-3}^3, n-3) + d d(P_{n-6}^3, n-3) + d(P_{n-7}^3, n-3)$$

$$= (n-1)C_3 + (n-2)C_2 + (n-3) + 1.$$

$$= \frac{(n-1)(n-2)(n-3)}{6} + \frac{(n-2)(n-3)}{2} + (n-3) + 1$$

$$= \frac{1}{6}[(n-1)^6(n-2)(n-3) + 3(n-2)(n-3) + 6(n-2)]$$

$$= \frac{(n-2)}{6}[(n-1)(n-3) + 3(n-3) + 6]$$

$$= \frac{(n-2)}{6}[(n-1)(n-3) + 3(n-1)]$$

$$= \frac{(n-2)}{6}[(n-1)(n-3) + 3(n-1)]$$

$$= \frac{(n-2)(n-1)}{6}[(n-3+3)]$$

$$= \frac{n(n-1)(n-2)}{6}$$

$$\therefore d(P_n^3, n-3) = nC_3 \text{ for every } n \ge 4.$$

vi) By induction on n

The result is true for n = 5.

LHS
$$d(P_5^3, 1) = 3$$

RHS $5C_4 - 2 = \frac{5 \times 4 \times 3 \times 2}{1 \times 2 \times 3 \times 4} - 2 = 3$
 $\therefore LHS = RHS$

 \therefore The result is true for n = 4.

Now suppose that the result is true for all numbers less than 'n' and we prove it for 'n' by result 3.2,

$$d\left(P_{n-1}^{3}, n-4\right) = d(P_{n-1}^{-3}, n-5) + d(P_{n-2}^{-3}, n-5) + d(P_{n-3}^{-3}, n-5) + d(P_{n-3}^{-3}, n-5) + d(P_{n-3}^{-3}, n-5) + d(P_{n-7}^{-3}, n-5$$

$$= \frac{(n-3)(n-2)}{24} [(n-1)(n-4) + 4(n-1)] - 2$$

$$= \frac{(n-3)(n-2)(n-1)}{24} [n-4+4] - 2$$

$$= \frac{(n-3)(n-2)(n-1)n}{24} - 2$$

$$= \frac{n(n-3)(n-2)(n-1)}{24} - 2$$

$$= nC_4 - 2$$

$$\therefore d(P_n^3, n-4) = nC_4 - 2 \text{ for every } n \ge 5.$$

vii) By induction on n

The result is true for n = 6.

LHS
$$d(P_6^3, 1) = 2$$

RHS $6C_5 - 2(6 - 4) = \frac{6 \times 5 \times 4 \times 3 \times 2}{1 \times 2 \times 3 \times 4 \times 5} - 2(2) = 6 - 4 = 2.$

Now suppose that the result is true for all numbers less than 'n' and we prove it for n.

By result 3.2,

$$\begin{split} d(P_n^3, n-5) &= d(P_{n-1}^{-3}, n-6) + d(P_{n-2}^{-3}, n-6) + d(P_{n-3}^{-3}, n-6) \\ &+ d(P_{n-4}^{-3}, n-6) + d(P_{n-5}^{-3}, n-6) + d(P_{n-6}^{-3}, n-6) + d(P_{n-7}^{-3}, n-6) \\ &= (n-1)C_5 - 2\left[(n-1) - 4\right] + (n-2)C_4 - 2 + (n-3)C_3 \\ &+ (n-4)C_2 + (n-5) + 1. \\ &= (n-1)C_5 - 2\left[(n-1) - 4\right] + (n-2)C_4 - 2 + (n-3)C_3 \\ &+ (n-4)C_2 + (n-5) + 1. \\ &= \frac{(n-1)(n-2)(n-3)(n-4)(n-5)}{1 \times 2 \times 3 \times 4 \times 5} - 2[(n-1-4)] + \frac{(n-2)(n-3)(n-4)(n-5)}{1 \times 2 \times 3 \times 4} - 2 \\ &+ \frac{(n-3)(n-4)(n-5)}{1 \times 2 \times 3 \times 4} + (n-5) + 1 \\ &= \frac{(n-1)(n-2)(n-3)(n-4)(n-5)}{120} - 2\left[(n-5)\right] + \frac{(n-2)(n-3)(n-4)(n-5)}{6} + \frac{(n-4)(n-5)}{2} + (n-5) + 1 \\ &= \frac{(n-1)(n-2)(n-3)(n-4)(n-5)}{120} - 2n + 10 + \frac{(n-2)(n-3)(n-4)(n-5)}{6} + \frac{(n-4)(n-5)}{2} + (n-4) \\ &= \left[\frac{(n-1)(n-2)(n-3)(n-4)(n-5)}{120} + \frac{(n-2)(n-3)(n-4)(n-5)}{6} + \frac{(n-4)(n-5)}{2} + (n-4) \right] - 2n + 10 - 2. \\ &= \frac{1}{120}[(n-1)(n-2)(n-3)(n-4)(n-5) + (n-2)(n-3)(n-4)(n-5)}{6} + \frac{(n-4)(n-5)}{2} + (n-4)] - 2n + 10 - 2. \\ &= \frac{1}{120}[(n-1)(n-2)(n-3)(n-4)(n-5) + 5(n-2)(n-3)(n-4)(n-5) + 20(n-3)(n-4)(n-5) \\ &+ 20(n-3)(n-5) + 60(n-5) + 120(n-4)] - 2n + 8. \\ &= \frac{(n-4)}{120}[(n-1)(n-2)(n-3)(n-5) + 5(n-2)(n-3)(n-5) \\ &+ 20(n-3)(n-5) + 60(n-3)(n-5) + 20(n-3)(n-5) \\ &+ 20(n-3)(n-5) + 60(n-3)(n-5) + 60(n-3)(n-2)(n-4). \\ &= \frac{(n-4)(n-3)}{120}[(n-1)(n-2)(n-5) + 5(n-2)(n-3)(n-5) + 60(n-5) + 60(n-3)(n-4). \\ &= \frac{(n-4)(n-3)}{120}[(n-1)(n-2)(n-5) + 5(n-2)(n-3)(n-5) + 60(n-5) + 60(n-3)(n-4). \\ &= \frac{(n-4)(n-3)}{120}[(n-1)(n-2)(n-5) + 5(n-2)(n-3)(n-5) + 60(n-5) + 60(n-3)(n-4). \\ &= \frac{(n-4)(n-3)}{120}[(n-1)(n-2)(n-5) + 5(n-2)(n-3)(n-5) + 60(n-5) + 60(n-3)(n-4). \\ &= \frac{(n-4)(n-3)}{120}[(n-1)(n-2)(n-5) + 5(n-2)(n-3)(n-5) + 60(n-5) + 60(n-3)(n-4). \\ &= \frac{(n-4)(n-3)}{120}[(n-1)(n-2)(n-5) + 5(n-2)(n-3)(n-5) + 60(n-5) + 60(n-3)(n-4). \\ &= \frac{(n-4)(n-3)}{120}[(n-1)(n-2)(n-5) + 5(n-2)(n-3)(n-5) + 60(n-5) + 60(n-$$

(n-5)+20n-100+60]-2(n-4).

Medona, et al.

$$=\frac{(n-4)(n-3)}{120}[(n-1)(n-2)(n-5)$$

$$+5(n-2)(n-5)+20(n-2)]-2(n-4).$$

$$=\frac{(n-4)(n-3)(n-2)}{120}[(n-1)(n-5)+5(n-5)+20]-2(n-4)$$

$$=\frac{(n-4)(n-3)(n-2)}{120}[(n-1)(n-5)+5(n-1)]-2(n-4)$$

$$=\frac{(n-4)(n-3)(n-2)}{120}[(n-1)(n-5)+5n-25+20]-2(n-4)$$

$$=\frac{(n-4)(n-3)(n-2)}{120}[(n-1)(n-5)+5(n-1)]-2(n-4)$$

$$=\frac{(n-4)(n-3)(n-2)}{120}[(n-1)(n-5)+5(n-1)]-2(n-4)$$

$$=\frac{(n-4)(n-3)(n-2)(n-1)}{120}[n-5+5]-2(n-4)$$

$$=\frac{(n-4)(n-3)(n-2)(n-1)n}{120}-2(n-4)$$

$$=\frac{n(n-1)(n-2)(n-3)(n-4)}{120}-2(n-4)$$

$$\therefore d\left(P_n^3, n-5\right)=nC_5-2(n-4) \text{ for every } n\geq 6.$$
viii) From the table it is true, $d\left(P_{n-1}^3, n\right)=n+1 \text{ for every } n\in N.$

Theorem 2

$$\sum_{i=k}^{7k} d(P_i^3, k) = \sum_{i=2}^{7k-7} d(P_i^3, k-1)$$

Proof by induction on n, First suppose that k = 2 then $\sum_{i=k}^{14} d(P_i^3, 2) = 112 = 7 \sum_{i=1}^{14} d(P_i^3, i)$

$$\sum_{\scriptscriptstyle i=k}^{7k} d(P_{\scriptscriptstyle i}^{\,3}\,,k) \quad = \sum_{\scriptscriptstyle i=k}^{7k} d(P_{\scriptscriptstyle i-1}^{\,3}\,,k-1) + \sum_{\scriptscriptstyle i=k}^{7k} d(P_{\scriptscriptstyle i-2}^{\,3}\,,k-1) + \sum_{\scriptscriptstyle i=k}^{7k} d(P_{\scriptscriptstyle i-3}^{\,3}\,,k-1)$$

$$\begin{split} &+\sum_{i=k}^{7k} d(P_{i-4}^{-3},k-1) + \sum_{i=k}^{7k} d(P_{i-5}^{-3},k-1) + \sum_{i=k}^{7k} d(P_{i-6}^{-3},k-1) + \sum_{i=k}^{7k} d(P_{i-7}^{-3},k-1) \\ &+\sum_{i=k-1}^{7(k-1)} d(P_{i-1}^{-3},k-2) + 7 \sum_{i=k-1}^{7(k-1)} d(P_{i-2}^{-3},k-2) + 7 \sum_{i=k-1}^{7(k-1)} d(P_{i-3}^{-3},k-1) \\ &+ 7 \sum_{i=k-1}^{7(k-1)} d(P_{i-4}^{-3},k-2) + 7 \sum_{i=k-1}^{7(k-1)} d(P_{i-5}^{-3},k-2) \\ &+ 7 \sum_{i=k-1}^{7(k-1)} d(P_{i-6}^{-3},k-2) + 7 \sum_{i=k-1}^{7(k-1)} d(P_{i-7}^{-3},k-2) \\ &7 \sum_{i=k-1}^{7k-7} d(P_i^{3},k-1) \\ &= \sum_{i=k-1}^{7k} d(P_i^{3},k) = 7 \sum_{i=k-1}^{7k-7} d(P_i^{3},k-1) \end{split}$$

:. Hence the theorem

CONCLUSION

Using domination Polynomial, we obtain many interesting properties and theorems. This study can be expanded to other graphs also.

REFERENCES

- Alikhani S, Peng H. Introduction to Domination Polynomial of a Graph. arXiv preprint. 2009.
- Alikhani S, Peng H. Domination Sets and Domination Polynomials of Paths. Int J math Math Sci. 2009;1:1.
- Vijayan A. Gipson K. Dominating sets and Domination Polynomials of square of Paths. Open J Discrete Math. 2013;3(1):60-9.