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ABSTRACT
Let G = (V, E) be a simple graph. A set & V

every vertex in V - S is adjacent to at least one vertex in S. Let pg be the cubic

is a dominating set of G, if

path P, and let D(Pj, i)dcnote the family of all dominating sets of PS with

cardinality i. Let d(P,f’, i)= ID(Pj, i) |. In this paper, we obtain a recursive
formula for d(P?,1). Using this recursive formula, we construct the polynomial

D (P,i)x' = Y d(PS,i)x' which we call the domination polynomial of Pn3 and

7
obtain some properties of this polynomial.
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INTRODUCTION
Mets Let G = (V, E)be a simple graph of order ‘v‘ =n
. For any vertex ve) , the open neighborhood of v is the set
N(v) = {ueV/ uveEyand the closed neighborhood of v is the set
N[v] = N(v)u{v}. For a set § ¥, the open neighborhood of S is

N(8) =JN) and the closed neighborhood of Sis N[S] = N(S)uS. A set
SV s a dominating set of G, if N[S] = 7, or equivalently, every vertex
in ¥ — S is adjacent to atleast one vertex in S. The domination number of
a graph G is defined as the minimum size of a dominating set of vertices in
G and it is denoted by 7(G). A simple path is a path in which all its internal
vertices have degree two and the end vertices have degree one and is denoted

by k.
Definition 1

The k* power of a graph is a graph with set of vertices of G and an edge
between two vertices if and only if there is a path of length atmost k between
them. It is denoted by G* and also called k* power of G.

Definition 2

Let D(G, i)be the family of dominating sets of a graph G with cardinality i
and let d(G, i) = ‘D(G, i)‘then the domination polynomial D(G,x)of G
G
is defined by D(G,x)= Y d(G,i)x'
i=1(G)

Where 7(G) is the domination number of G.
Definition 3

The cube of a graph with the same set of vertices as G and an edge between
two vertices and only if there is path of length atmost 3 between them. The
third power of a graph is also called its cube of G [1, 2].

Let pg be the cubic of the path P_(3rd power) with n vertices. Let D(P’,)

be the family of dominating sets of the graph with cardinality i and let
a'(P,f’, i) :‘D(p,f, i) ‘ we call the polynomial D(P/f,x) = i d(P},i)x'
MAIN RESULT &

Let D(P’, i) be the family of dominating sets of Pg with cardinality i. we

investigate the dominating sets of Pg , we need the following lemma to prove
our main results in this section [3].

Lemma 1

)y

I , 7 P ¢ 7 ey 02w

Figure 1) Proof PS

Proof

In the proof Pg, any vertex i with 4 <j<n — 3coversi- landi-3in

the left side and i + 1 and i + 3 in the right side. Similarly any vertex i with

3<i<n — 2 coversi- 1andi- 2 in the left side and i+1 and i+2 in the

right side. Therefore, a single vertex covers atmost 7 vertices Figure 1.
Therefore y(P3) =|2

Domination Polynomial of PS

Let D(Pn],x) =Y d(P,i)x' be the domination polynomial of a cubic path

=L

PS' In this section we derive the expression for D(P,f, ;().
Example 1

The graph p3 has one dominating set of cardinality 4, 4 dominating set
of cardinality’ 3, 6 dominating set of cardinality 2, 4 dominating set of
cardinality 1.

Therefore its domination polynomial is D(Pj’,x) =x"+ 4x’ + 6x° + 4x.
RESULT

If D(Pn}) is the family of dominating sets with cardinality i of
p3, then d(P),i) = dB.>, i-1) +d(P_), i-1) + d(P_), i-1)
+d(P.), i-D)+d(P.J, i-1) + d(B., i-1) + d(B}, i-1)

Where d(Rf, i) = ‘D(Rf, i)

We obtain d(Pf, i) for 1<n<15 ag shown in following table
a’(P3 i) the number of dominating set of P with cardinality i

n

In the following theorem we obtain some properties of d (Pn3, i) Figure 2,
Table 1.

Theorem 1

The following properties hold for the coefficient of D(Pi,x) .

i) d(P7n3, n) = lforevery nE€ N
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3 4

Figure 2) Graph Pf.

TABLE 1
In the following theorem we obtain some properties of d (Rf, i)
in 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15
1 1
2 2 1
3 3 3 1
4 4 6 4 1
5 3 10 10 5 1
6 2 13 20 15 6 1
7 1 15 33 35 21 7 1
8 0 16 48 68 56 28 8 1
9 0 15 64 116 124 84 36 9 1
10 0 13 78 180 240 208 120 45 10 1
1 0 10 88 257 420 448 328 165 55 11 1
12 0 6 92 341 676 868 776 433 220 66 12 1
13 0 3 88 423 1012 1543 1644 1269 653 286 78 13 1
14 0 1 78 491 1420 2549 3186 2913 1922 939 364 91 14 1
15 0 0 64 536 1876 3948 5728 6098 4835 2861 1303 455 105 15 1

ii) d(P’f, n) =1 forevery ne N

ii) d(PW3, n—1) = n forevery p >2

) d(R,’, n-2)

v) d(

P3

n?

n—73)

vi) d(Pn3, n—4)
vii) d(P?, n-5) = nCS’Z(n - 4) for every n > 6

viii) d(P%H}’ n) =n + | forevery ne N

Proof
i) Since d(P7n3, I’l)

33

.. we have d(

d(]3"3, n) = lforevery ne N

3
P . n

Tn

nC, forevery n >3

I’lC3 for every n > 4

nC4 — 2forevery p>5

Now suppose that the result is true for all numbers less than ‘n” and we

prove it for n

(5,12, 19,..7k — 2}

) =1

i) Since D(Rf, n) = {[}’l]} ; we have the result

iii) Since D(Pn}’ n—l) = {[n] — {x}/xj[n]} we have the
result d(}i’f, n—l)

iv) By induction on n

n.

The result is true for n =

LHS d (P, 1) = 3

RHS 3C, =~
X
~.LHS = RHS

.. The result is true for n = 3

3

x 2
2

=3

3

By result 3.2,
d(B},n=3) = d(B_’, n=4) + d(B,_)’, n=4) + d(F_;’, n-4) +d(F,_}, n-4)

+d(P_¢, n—4) +d(P_}, n—4)+ d(P_;}, n—4)
= (n-1)C+ (n-2) +1

:%+(n—2)+1
_(n=D(n-2) F(n-1)

(n-1
= —2+[(n -2)+2] Type your text
_(n=Dn
_ n(nz— D

2

= nC,

~d(P,}, n=2) = nC, forevery n>3.
v) By induction on n

The result is true for n = 4.

LHS d(P,1) = 4

.~.LHS = RHS
J Pure Appl Math Vol 6 No 5 September 2022



. The result is true for n = 4.

Now suppose that the result is true for all numbers less than ‘n’ and we
prove it for ‘n’

By result 3.2,

d(PHS, n-2) = d(PHS, n-3) +d(P_}, n=3) + d(P_}, n-3)+ d(P”ﬂ,S, n-3)

+dd(P.] n=-3) +dd(P., n-3)+ d(P,}, n-3)

=(n = )G+ (n - 2)Cy+ (n = 3) + L

_=Dn=2)(n=3) (n=2)n-3)

P 5 (n—3)+1
=é|:(n “1) (n=2) (n=3) +3(n-2) (n-3) +6(n-2)]

=%[(n—1) (n-3)+3(n-3)+6]

_(n-2)

[(n—-1) (n73) +3n — 9 + 6]

=D =1y (n - 3) + 3(n - 1)

6
S G T )
6
_ n(n—1)(n-2)
6

d(Rf, n— 3) = nC, for every n >4 .
vi) By induction on n
The result is true for n = 5.
3

LHS d(P’,1) = 3

5 4 x 3 x2
RHS 5C,— 2 =~ " *2 %=

1 x2x3x4
.~.LHS = RHS

2=3

.. The result is true for n = 4.

Now suppose that the result is true for all numbers less than ‘n” and we
prove it for ‘n’ by result 3.2,
d(P’, n—4) = d(B.’, n-5) + d(P,_}, n-5) + d(P_}’, n-5)
+d(P_], n-5) +d(P_], n-5) + d(P_, n-5) + d(P,_, n-5)
=(n-1C-2+(n-2)C+ (n-3)C+ (n - 4) + 1.

(n=D(n-2)(n-3)(n-4) (n=2)(n-3)(n—-4) (n-3)(n-4)
= -2+ + +
24 6
=[(n-1) (n - 2) (n - 3)(7! - 4) + 4(n - 2) (n - 3)(n - 4)
+12(n = 3) (n — 4) + 24(n - 3)]-2

(n=3)

=[(n-1)(n-2) (n - 3)(n - 4) + 4(n - 2) (n - 3)
(n = 4)+12(n = 3) (n — 4)+ 24(n - 3)]-2

n-3
:%[(nfl)(n ~2) (n - 4)

+4(n—2)(n —4) +12(n — 4)+24] - 2
_(n-3)
—7[(11 - 1)(n - 2) (n - 4)
+ 4(n - 2) (n - 4) + 12n-48 + 24)] - 2

=2 (0 = 1)(n = 2) (n - 4)

+4(n - 2) (n +4) +12(n - 2)]-2

:—(”‘3;:”‘2)[(,1 ~1)(n — 4) + 4 (n-4) + 12]-2
:(n—3;in—2)[(n _ 1)(n — 4) + 4n-16 + 12]-2
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=%[(m —1)(n — 4) + 4n-1)]-2
U U U RN
24
_ (n=3)n-2)(n-1n )
24
_ n(n-3)(n-2)(n-1) )
24
=nC,—- 2

d(Pn}’ n— 4) = nC,—2 forevery n>5.

vii) By induction on n
The result is true for n = 6.
s d(R,1) = 2
6 x5x4x3x2
RHS 6C5—2(6 - 4) =
I x2x3x4x5
..LHS = RHS

~2(2)=6-4=2.

Now suppose that the result is true for all numbers less than ‘n” and we
prove it for n.

By result 3.2,

d(P’, n-5) = d(P_’, n—-6) + d(P,_,’, n—6) + d(P_’, n—6)
+d(P_}, n—6) +d(P_], n—6) + d(P_’, n—6) + d(P_,’, n—6)

(n-1C-2[(n-1) = 4] + (n - 2)C,-2+ (n - 3) G,
+(n-4)C+ (n-5) + 1

(n-1C-2[(n-1) = 4] + (n - 2)C,-2+ (n - 3) C,
+(n-4)C+ (n-5) + 1.

_ D=2 -3 -4 -5)
1x2x3x4x5

(n—=2)(n-3)(n-4)(n-5) 5

- 1-4)] +
{(= ] Ix2x3x4

+(n—3)(n—4)(n—5) , (n—4)(n—5)+(n B 5) ‘1
1x2x3 1x2
=(n—l)(n—2)(n—3)(n—4)(n—5)72[(” B 5)]+(n—2)(n—3)(n—4)(n—5)72
120 24
+(z173)(n74)(n75) +(nf4)(n75)n 4
6
_ (nfl)(n72)(n1;03)(n74)(n75) on 4 10+ (n—=2)(n-3)(n-4)(n-5) 2

24
+(}173)(}174)()175) " ()174)(1175)_*(” B 4)
2

6
(n=1)(n-2)(n-3)(n-4)(n-5) + (n=2)(n-3)(n-4)(n-5)
120

o 3 4 5 % 4 5

+('1— )(n—4)(n-5) I (n—4)(n— )+ (n -
6 2

:%[(n—l)(n - 2) (n - 3) (n - 4)(n -5 + 5(n - 2)(;1 -3) (n - 4) (n -5)

+20(n - 3) (n - 4) (n - 5) + 60(11 - 4)(n - 5) + 120 (n - 4)] - 2n + 8.

:%[(ﬂ ~1)(n = 2) (n-3)(n - 5) +5(n-2)(n-3)(n-75)

4)]-2n + 10-2.

+20(n - 3) (n=5) + 60 (n —5) +120] — 2(n—4)

:%[(n—l)(n ~2) (n-3)(n-5) +5(n-2)(n - 3)(n -5

+20(n - 3) (n = 5) + 60n — 300 + 120] — 2(n—4)

= -1 (n = 2)(n = 3) (1 = 5) + 5(n = 2)(n = 3)(n = )

+20(n - 3) (n -5)+ 60(n - 3)] - 2(n—4).

_(mn=4(n-3)
120

[(n=1)(n - 2)(;1 — 5) + S(n — 2)
(n = 5)+20(n — 5) + 60] — 2(n—4).

[(n—l)(n - 2)(n - 5) + S(n - 2)

(n=4)(n-3)
120

(n = 5)+ 201 — 100 + 60]— 2(n—4).
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_(n=4)(n-3)

0 [(nfl)(n - 2)(n - 5)

+ S(n — 2)(;1 - 5)+ 20(n - 2)]—2(n—4).

=IO 1y - 5) + 5(n — 5) + 20] — 2(n—4)

120

:%[m—l)(" - 5) +5(n-1)] - 2(n-4)
D n-D)(n — 5) + Sn = 25+ 20] - 2n-4)
:%[m_g(n ~5) + 5(n — 1)] - 2(n-4)
:(n—4)(n—3)(n—2)(n—1)[n -5 + 5] — 2(n—4)

120
_(n=H(n=3)(n=2)(n-n 2(n—4)

120
GtV Gl Gk Gl N PN

120

d(Pn3, n — 5) = I’ZCS— 2(}’1 - 4)forevery n>6.
viii) From the table it is true, d(P3IH, n ) =n + lforeveryne N.
Theorem 2

3 AP,k

Proof by induction on n,

Tk-7

=Y dE’k-1)

id(33,2)= 112 =7 id(Pf,i)

i=1

= id@j,k—lnidmj,k -1)+ id(lﬁj,k -1)

i=k i=k

First suppose that k = 2 then

ik:d(Pf,k)

i=k

7k 7k 7k 7k
+ dP_°k-1)+ Y dP_> k-1)+> dP S k-1)+ Y dP_° ,k-1)
i=k

i-7
i=k i=k i=k
7(k-1) 7(k-1) 7(k-1)
D AP k-2)+7 D AP, ,k-2)+7 ) dP,, k-1
i=k-1 i=k-1 i=k-1
7(k-1) 7(k-1)
+7 D dP_°k-2)+7 D dP.’ k-2)
i=k-1 i=k-1
7(k-1) 7(k-1)
+7 D dP_ 1 k-2)+7 D d(P_’ k-2)
i=k-1 i=k-1
Tk-7
7 2 d(Rk-1)
= i=K-1
7k Tk-7
2dB k) =7 3 AR’ k-1
i=K i=K-1

~.Hence the theorem

CONCLUSION

Using domination Polynomial, we obtain many interesting properties
and theorems. This study can be expanded to other graphs also.
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