Effect of *Oryctes rhinoceros* larva oil supplementation on serum lipid profile and inflammatory markers in mice fed a cholesterol-based diet

Olarewaju M Oluba PhD1, Sunday J Josiah PhD2, Bamidele S Fagbohunka PhD3

A cholesterol-enriched diet has been shown to adversely affect lipoprotein profiles and increase cardiovascular disease risk. Dietary cholesterol plays an important role in modulating inflammatory responses involved in atherosclerosis. In the present study, the effect of *Oryctes rhinoceros* larva oil (ORO), an unsaturated fatty acid-rich animal fat, on serum lipid profile and some proinflammatory markers in mice fed a cholesterol-based diet (CBD) was investigated. Forty male Swiss albino mice were randomly assigned to four groups consisting of control (normal diet) and three experimental groups fed normal diet supplemented with ORO, CBD only and CBD supplemented with ORO, respectively. Serum lipid profile, malondialdehyde, C-reactive protein, interleukin-6 and tumour necrosis factor-alpha levels were evaluated before and after diet treatment. Serum triacylglycerol, total cholesterol and low-density lipoprotein cholesterol levels were significantly reduced (P<0.05) in mice fed a CBD diet supplemented with ORO compared with those fed CBD without ORO. In addition, serum malondialdehyde, C-reactive protein and interleukin-6 levels were significantly lower in mice fed CBD supplemented with ORO compared with those fed CBD only (P<0.05). These results suggest that consumption of ORO improved the serum lipid profile and, in addition, may mitigate the attendant adverse inflammatory processes in atherosclerosis.

**Key Words:** C-reactive protein; Cholesterol-based diet; Interleukin-6; Oil; *Oryctes rhinoceros* larva; Tumour necrosis factor

**METHODS**

**Chemicals**

All chemicals and solvents used in the present study were Analar grade. Petroleum ether, methanol, cholesterol and thiobarbituric acid were obtained from Sigma Chemical Co (USA). The ELISA kit used for the determination of rat CRP, IL-6 and TNF-α levels was obtained from RayBiotech, Inc (USA).

**ORL**

Live ORL were collected from decaying palm trees, from which sap is tapped as palm wine, at Igbo village near Akure (Nigeria). The ORL were transported to the laboratory in an open plate within 2 h of collection.

---

1Department of Biochemistry, College of Natural Sciences, Joseph Ayo Babalola University, Ikeji Arakeji, Osun State; 2Department of Biochemistry, College of Basic Medical Sciences, Igbinedion University, Okada, Edo State; 3Department of Biochemistry, College of Basic Medical Sciences, Olabisi Onabanjo University, Ago Iwoye, Ogun State, Nigeria

Correspondence: Olarewaju M Oluba, Department of Biochemistry, College of Natural Sciences, Joseph Ayo Babalola University, Ikeji Arakeji, Osun State, Nigeria. E-mail olubamike2000@yahoo.co.uk

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact support@pulsus.com
α antibodies (MAbs) or mouse antihuman TNF-α biotinylated rat antihuman IL-6 and biotinylated rat antihuman IL-6 monoclonal antibodies (MAbs) or mouse antihuman TNF-α and biotinylated mouse antihuman TNF-α MAb.

Levels were measured using ELISA kits according to the manufacturer’s instructions (RayBiotech, Inc, USA), with CRP, IL-6 and TNF-α precipitated using heparin at its isoelectric point (pH 5.4).

Cholesterol CHOD-PAP procedure. Low-density lipoprotein (LDL) was determined using the enzymatic method using glycerol as standard (Boehringer, Germany). Triacylglycerol (TAG) levels were determined according to the procedure described by Bligh and Dyer (16).

Oil was extracted from the ORL using a chloroform methanol (1:2, v/v) mixture as described by Bligh and Dyer (16).

Animals and diets
A total of 40 male Swiss albino mice (15 g to 22 g body weight) obtained from the animal laboratory of the Department of Medical Biochemistry, University of Ibadan, Nigeria, were used for the study. The animals were housed in stainless steel cages with raised wired floor at 30°C under standard conditions of humidity and a 12 h light/12 h dark cycle. They were fed standard feed (Guinea Feeds Ltd, Nigeria) and water ad libitum, and were housed for an initial period of two weeks to acclimatize to their new environment. Subsequently, after an overnight fast, they were weighed and randomly divided into four groups of 10 animals each and placed on a specified diet (control [normal diet], group 1 [ORO], group 2 [CBD] and group 3 [CBD + ORO]) for a period of seven weeks (Table 1). To obtain baseline levels of the evaluated parameters, five animals from each group were euthanized on day zero before commencing the feeding trial. All experimental protocols complied with National Institutes of Health guidelines (17).

Blood collection and serum preparation
At the end of the feeding experiment, mice in each group were weighed, anesthetized (in a chloroform-saturated chamber) and euthanized by jugular puncture. Blood was collected from the jugular vein into plain, sterile bottles for serum enzyme assays. The blood was allowed to stand for 30 min to clot and subsequently centrifuged at 3000 × g for 10 min at room temperature to separate the serum (18). The serum samples were collected by aspiration using a Pasteur pipette into sterile bijou bottles and stored frozen until required for analysis, which was performed within 72 h.

Lipid profile assays
Triacylglycerol (TAG) levels were determined according to the enzymatic method using glycerol as standard (Boehringer, Germany). Total cholesterol (TC) was measured by the enzymatic method (CHOD-PAP; Boehringer, Germany) according to the procedure described by Alain et al (19). High-density lipoprotein (HDL) was separated from the serum by precipitation of lipoproteins of lower densities with polyethylene glycol (PEG 20,000, Fluka, Switzerland). After centrifugation, the cholesterol concentration in the HDL fraction, which remained in the supernatant, was determined using the cholesterol CHOD-PAP procedure. Low-density lipoprotein (LDL) was precipitated using heparin at its isoelectric point (pH 5.4).

CRP, IL-6 and TNF-α assays
CRP, IL-6 and TNF-α levels were measured using ELISA kits according to the manufacturer’s instructions (RayBiotech, Inc, USA), with rat antihuman IL-6 and biotinylated rat antihuman IL-6 monoclonal antibodies (MAbs) or mouse antihuman TNF-α and biotinylated mouse antihuman TNF-α MAb.

Determination of atherogenic index
The atherogenic index (AI) for each sample was calculated using the formula described Slater and Sawyer (20):

\[ AI = \frac{TC}{HDL-cholesterol} \]

Statistical analysis
Results are presented as means ± SEM of five independent determinations and analyzed for statistical significance by one-way ANOVA followed by Duncan multiple range test for multiple comparisons. Values were considered to be statistically significant at P<0.05.

RESULTS
The oil extracted (21% v/v) from ORL was golden yellow in colour and in liquid form at room temperature.

Results obtained for all of the evaluated parameters showed no significant differences (P>0.05) in baseline levels among control and test animals. Weekly feed intake was significantly lower in mice fed the modified diets compared with control (Table 2). No statistically significant difference (P>0.05) was observed in weekly food intake in mice groups fed a CBD with or without ORO supplement. Observed body weight changes were statistically nonsignificant between mice fed ORO-supplemented diets and those fed the control diet. However, mice fed CBD without ORO supplement showed significantly higher (P<0.05) body weight values compared with those fed control diet as well as those fed ORO-modified diets.

Lipid profile analysis showed that serum TAG, TC and LDL-cholesterol concentrations were not significantly different (P>0.05) in mice fed ORO-modified diets (with or without cholesterol) and those fed the control diet. Mice fed CBD without ORO showed significantly higher (P<0.05) serum TAG, TC and LDL-cholesterol levels compared with those fed the control diet. Serum HDL-cholesterol was not significantly altered (P>0.05) between mice fed modified diets and those fed control diet (Figure 1). The AI was significantly higher (P<0.05) in mice fed the ORO diet and those fed CBD without ORO compared with control (Figure 2). However, the AI value in mice fed CBD supplemented with ORO and control was not significantly different (P>0.05).

Serum malondialdehyde (MDA), CRP and IL-6 levels were significantly increased (P<0.05) in mice fed CBD only, compared with those fed the control diet. Serum MDA, CRP and IL-6 levels were not significantly different in mice fed CBD supplemented with ORO compared with those fed the control diet. Serum CRP level was significantly higher (P<0.05) in mice fed the CBD with or without ORO compared with control. However, the

### Table 1

<table>
<thead>
<tr>
<th>Composition</th>
<th>Control</th>
<th>ORO</th>
<th>CBD</th>
<th>CBD + ORO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize flour</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Fish meal</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Groundnut cake</td>
<td>20</td>
<td>10</td>
<td>18</td>
<td>08</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Oil</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Calories, Kcal/mol</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

Values presented as %. ORO Oryctes rhinoceros c oil; CBD Cholesterol-based diet.

![Figure 1](image)

Figure 1) Serum lipid profile of mice fed a cholesterol-based diet (CBD) supplemented with Oryctes rhinoceros c oil (ORO). Results are presented as means ± SEM of five independent determinations. The asterisks indicate parameter values that are significantly different from one another (ie, P<0.05). CHOL Cholesterol; CTR Control; HDL High-density lipoprotein; LDL Low-density lipoprotein.
The present study aimed to establish the effect of ORO on serum lipid levels and its attendant effects on proinflammatory markers in mice fed a CBD. Studies have shown that dietary fat intake positively correlates with serum TC values and morbidity from coronary artery disease (21). However, several studies have demonstrated that the fatty acid composition of food is more strongly associated with variations in plasma TC concentration and development of atherosclerosis than the amount of fat consumed (22,23). The general picture is that saturated

Table 2

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Weekly feed intake, g</th>
<th>Final</th>
<th>Initial</th>
<th>Change (% change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>12.8±0.53*</td>
<td>26.4±1.14†</td>
<td>15.2±1.4†</td>
<td>11.2±0.57 (73.7)</td>
</tr>
<tr>
<td>ORO</td>
<td>10.1±1.11†</td>
<td>33.7±0.82*</td>
<td>21.6±1.33*</td>
<td>12.1±0.12† (56.0)</td>
</tr>
<tr>
<td>CBD</td>
<td>9.14±0.32†</td>
<td>33.8±1.55*</td>
<td>18.1±0.18†*</td>
<td>15.7±0.33* (86.7)</td>
</tr>
<tr>
<td>CBD + ORO</td>
<td>10.3±0.77†</td>
<td>32.3±2.13*</td>
<td>20.1±0.46*</td>
<td>12.2±0.11† (60.7)</td>
</tr>
</tbody>
</table>

Data presented as mean ± SEM of five independent determinations. Values with different superscripts are significantly different from one another (ie, P<0.05)

Figure 2) Effect of Oryctes rhinoceros larva oil (ORO) supplementation on atherogenic index in mice fed a cholesterol-based diet (CBD). Results are presented as mean ± SEM of five independent determinations. CTR Control; LDL Low-density lipoprotein; TC Total cholesterol

CRP level in mice fed CBD supplemented with ORO was significantly lower (P<0.05) compared with those fed CBD without ORO.

Figure 3) Effect of Oryctes rhinoceros larva oil (ORO) supplementation on malondialdehyde (MDA) levels in mice fed a cholesterol-based diet (CBD). Results are presented as mean ± SEM of five independent determinations. CTR Control

Figure 4) Effect of Oryctes rhinoceros larva oil (ORO) supplementation on serum inflammatory markers in mice fed a cholesterol-based diet (CBD). A C-reactive protein. B Interleukin-6. C Tumour necrosis factor-alpha. Results are presented as mean ± SEM of five independent determinations. CTR Control
fatty acids tend to increase plasma TC level and, thus, increase the risk for coronary artery disease, while unsaturated fatty acids have the opposite effect. A previous study by Ekpo and Onigbinde (24) showed that ORO contains more unsaturated fatty acids than saturated fatty acids. Supporting this fact was that the oil extracted from ORL in the present study and used in feed formulation was in liquid form at room temperature, reflecting its high level of unsaturation. This is surprising because most animal fats are in solid form at room temperature.

Alteration in the concentration of major lipids such as cholesterol, HDL-cholesterol, LDL-cholesterol and TAG can provide useful information regarding lipid metabolism as well as predisposition of the heart to atherosclerosis and its associated coronary artery diseases. TAG, LDL-cholesterol and HDL-cholesterol are associated with lipoplysin, carriers of plasma cholesterol and atherosclerotic tendency, respectively (25). The reduction in serum TC, TAG and LDL-cholesterol levels observed in mice fed a CBD supplemented with ORO suggests that ORO may not predispose animals to cardiovascular risk. This is supported by the reduction in the computed AI, a useful indicator of cardiovascular disease (26). These results are in agreement with the findings by Schultz et al (27), in which consumption of ORO lowered serum TC and non-HDL-cholesterol concentration compared with coconut oil.

IL-6 is the most important acute-phase protein inducer. In humans, IL-6 strongly stimulates hepatocytes to produce CRP, fibrinogen, haptoglobin and antichymotrypsin (28). IL-6 also acts synergistically with other cytokines, enhancing the proliferation of multipotent hematopoietic progenitors and promotes the maturation of human megakaryocytes (29). IL-6 has been shown to play an important role in atherogenesis (30). In a prospective study by Ridker et al (31), elevated levels of plasma IL-6 were reported to be associated with increased risk for future myocardial infarction in apparently healthy men during a six-year follow-up period. IL-6 may increase atherothrombotic risk by increasing the release of adhesion molecules by the endothelium, increasing the hepatic release of fibrinogen and having procoagulant effects on platelets (32). IL-6 has also been shown to affect lipid metabolism by inhibiting lipoprotein lipase and stimulating lipolysis (33). In the present study, serum IL-6 level showed a positive correlation with AI and serum TC, LDL-cholesterol and CRP concentrations. IL-6 probably stimulates the production of CRP, an acute-phase response protein, which could be a consequence of increased oxidation of LDL-cholesterol in response to increased cholesterol deposition in the arterial walls. MDA concentration is a good index of lipid peroxidation. Data obtained from the present study show that serum MDA level positively correlated with serum TC and LDL-cholesterol concentrations, which are components of the membrane with a degree of susceptibility to lipid peroxidation. The significant reduction in serum MDA, CRP and IL-6 levels in mice fed a CBD supplemented with ORO confirms the antioxidative and anti-inflammatory potential of ORO against cholesterol-induced oxidative damage.

Our study is the first to show that consumption of a diet containing ORO improves serum lipid profile and, in addition, represses the production of inflammatory cytokines and acute-phase response protein (ie, CRP) in diet-induced hypercholesterolemic mice. This observation is of interest given the various effects of these proinflammatory cytokines on lipid metabolism and inflammatory responses of the vascular system.

CONCLUSION

The results of the present study suggest that consumption of ORO may help improve serum lipid profile and, in addition, positively mitigate the attendant adverse inflammatory process in atherosclerosis following a high-fat diet, thus improving cardiovascular health.

DISCLOSURES: The authors have no financial disclosures or conflicts of interest to declare.

ACKNOWLEDGEMENTS: The authors acknowledge the support of the following during the extraction and bench work: Leye Babatola, Funke Toyese and Femi Folasoyomi, all of Joseph Ayo Babalola University, Ikeji Arakeji, Nigeria.


