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 RESEARCH 
 Estimation of state of nonlinear stochastic dynamic systems 

with optimized extended Kalman filter 
Dejan Stošović, Elvir Čajić, Maid Omerović, Sead Rešić

INTRODUCTION 
he state accountability in dynamic systems poses a significant
challenge in many scientific and technical areas such as
production management, transportation, robotics, and finance. 

Although linear systems are generally well understood and easy to 
calculate, real-world systems are often nonlinear and subject to 
stochastic variation. In such cases, traditional state estimation 
methods such as Kalman filters may be inadequate due to linearity. 
To address this issue, Extended Kalman Filters (EKFs) have been 
developed, which allow the use of a linear model to compute state 
estimates for nonlinear systems. 

Despite its popularity, the EKF has limitations in terms of accuracy 
and stability, especially in complex stochastic environments. 
Therefore, the aim of this research is to develop a new method of 
estimating state statistics that overcomes these difficulties and 
provides reliable results in real-world situations In this paper, we 
propose a new framework called the Optimized Extended Kalman 
Filter (O-EKF) results. It interacts with teaching methods. 

The main objective of this study is to demonstrate the effectiveness 
and applicability of the O-EKF through an analysis of discrete 
scenarios and a comparison with traditional state accounting 
methods. Through a detailed analysis of the performance of the 
algorithm, we expect to provide compelling evidence of its superiority 

over existing methods. In addition, we will consider practical aspects 
of the implementation and applicability of the O-EKF, disclosure [1]. 

In the following sections of this paper, we will describe the theoretical 
foundation of the extended Kalman filter, introduce the Optimized 
Extended Kalman Filter (O-EKF) algorithm, and evaluate its 
effectiveness through simulation analysis and comparison. 

KALMAN FILTER 
Kalman filter is a basic algorithm for state estimation in dynamic 
systems such as navigation, vehicle tracking, activity control, and 
many other application fields are based on Bayesian statistical 
principles and can estimate the static state of the system an estimate 
of the current based on past conditions and measurements. 

The classical Kalman filter assumes linearity of the system and the 
measurements, and is therefore effective only in cases where these 
assumptions are satisfied. However, in real systems, nonlinearity is 
frequently encountered, which limits the use of the classical Kalman 
filter. The Extended Kalman Filter (EKF) was developed to handle 
nonlinear systems. The EKF enables the computation of states in 
nonlinear systems by linearization of the model surrounding the 
current state estimate. This approach also allows the Kalman filter to 
be applied to complex nonlinear systems, making it a versatile tool in 
a variety of situations [2]. 
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ABSTRACT 
In this paper, we critically investigate the application of the 
Extended Kalman Filter (EKF) in the estimation of states of 
nonlinear stochastic dynamical systems. We apply an algorithmic 
approach to EKF and investigate its efficiency in state estimation 
under stochastic conditions. Through simulation example analysis, 
we provide detailed insights into the performance and advantages 
of the EKF compared to other national accounting methods. This 
paper contributes to the understanding and application of EKF in 
complex nonlinear systems and lays the foundation for further 
research in state estimation in dynamic systems using adaptive 
learning methods, algorithm is adjusted to dynamic changes in the 

system to ensure the best estimate of the situation. In addition, we 
develop and implement advanced fault detection and correction 
methods that ensure O-EKF stability and reliability even under adverse 
conditions through detailed analysis of O-EKF performance over 
various stochastic conditions, we demonstrate a significant 
improvement in the accuracy and speed of conditional estimation 
compared to traditional methods. Finally, we highlight the importance 
of innovation in the development of state accounting systems and the 
applicability of O-EKF in areas such as autonomous vehicles, robotics, 
and industrial logistics actually use it. This paper represents an 
important contribution to research on advanced state accounting 
methods and opens the way for further developments in real-world 
systems. 

Key words:  State statistics; Extended Kalman filter; Nonlinear sto chastic 
dynamical scheme; Algo rithmic 
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In this paper, we study the use of an extended Kalman filter for state 
estimation of nonlinear dynamical systems. We present the 
theoretical foundations of the EKF, introduce the algorithm, and 
investigate its performance through simulations and comparisons 
with other state estimation methods. Our goal is to provide a deeper 
understanding of this basic technique and see how it can be applied 
in different fields. 

STATE ESTIMATION AND NONLINEAR FILTERING 

State estimation is a crucial process in the analysis of dynamic systems 
that allows for the estimation of the current state of the system based 
on available measurements and system models. This process plays an 
important role in many areas, including process control, vehicle 
tracking, navigation, medical diagnostics, and financial analysis. The 
goal of state estimation is to reconstruct the internal states of the 
system that are not directly observed, enabling informed decision-
making and execution of appropriate actions. 

In traditional approaches, such as the Kalman filter, linearity of the 
system and measurements is assumed, and a mathematical model of 
the system is used to derive the optimal state estimate. However, real 
systems are often nonlinear, posing challenges for traditional 
methods. Therefore, Extended Kalman Filters (EKF) have been 
developed, allowing for state estimation of nonlinear systems through 
the linearization of the model around the current state estimate. 

In this research, we explore a more advanced approach to state 
estimation through the development of a new algorithm called 
Optimized Extended Kalman Filter (O-EKF). O-EKF integrates EKF 
concepts with advanced optimization and adaptive learning 
techniques to improve the accuracy and stability of state estimation in 
complex stochastic environments. 

Many dynamic systems are not strictly linear but also not far from it. 
One of the modifications of the Kalman filter is the Extended 
Kalman Filter (EKF). EKF estimates the state based on the linearized 
model, and the linearized model is calculated around the estimated 
value obtained by the EKF. Using Taylor series, we can linearize the 
estimation of the state in the nth step through partial derivatives of 
nonlinear process and measurement functions, skipping the 
estimation of the state and covariance from some previous step n-1. 
We can observe the introduction of nonlinearity through the 
following system: 

𝑥𝑥𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛−1) + 𝑤𝑤𝑛𝑛−1 
𝑧𝑧𝑛𝑛 = ℎ(𝑥𝑥𝑛𝑛) + 𝑣𝑣𝑛𝑛 

Where f: 𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎  ℎ:𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑙𝑙 are differentiable nonlinear 
functions. For the continuous case, the system is described by: 

�̇�𝑥(𝑡𝑡) = 𝑓𝑓�𝑥𝑥(𝑡𝑡)�+ 𝑤𝑤(𝑡𝑡) 

z(t)=h(x(t))+v(t) 

where differentiable functions f and h are defined equally as in the 
discrete case 3. Discrete Kalman filter for the observed system 

𝑥𝑥𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛−1) + 𝑤𝑤𝑛𝑛−1
𝑧𝑧𝑛𝑛 = ℎ(𝑥𝑥𝑛𝑛) + 𝑣𝑣𝑛𝑛

We define the nominal value of the state when we neglect the process 
noise. 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛)

Let's define perturbations of the nominal value as: 

𝛿𝛿𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝛿𝛿𝑧𝑧𝑛𝑛 = 𝑧𝑧𝑛𝑛 − ℎ(𝑧𝑧𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

Let's expand the function f(x) in a Taylor series around the point. 

x= 𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛

𝑥𝑥𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛−1) = 𝑓𝑓(𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛) +
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

|𝑥𝑥 = 𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛𝛿𝛿𝑥𝑥𝑛𝑛−1

= 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

|𝑥𝑥 = 𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛𝛿𝛿𝑥𝑥𝑛𝑛−1

Then the following expression holds based on the initial equation: 

𝛿𝛿𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

|𝑥𝑥 = 𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛𝛿𝛿𝑥𝑥𝑛𝑛−1

When we neglect higher-order terms, then it will hold: 

𝛿𝛿𝑥𝑥𝑛𝑛 ≈ 𝜑𝜑𝑛𝑛−1𝛿𝛿𝑥𝑥𝑛𝑛−1 + 𝑤𝑤𝑛𝑛−1. 

𝜑𝜑𝑛𝑛−1 =
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

|𝑥𝑥 = 𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

⋯
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

⋮
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑛𝑛

⋮
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥1

⋮
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥2

⋮
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥𝑛𝑛⎦

⎥
⎥
⎥
⎥
⎥
⎤

|𝑥𝑥 = 𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛

An n×n constant matrix. Similarly, we expand the function h in a 
Taylor series, and finally, we obtain: 

𝐻𝐻𝑛𝑛 =
𝜕𝜕ℎ(𝑥𝑥)
𝜕𝜕𝑥𝑥

|𝑥𝑥 = 𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥1

𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥2

⋯
𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥𝑛𝑛

𝜕𝜕ℎ2
𝜕𝜕𝑥𝑥1

𝜕𝜕ℎ2
𝜕𝜕𝑥𝑥2

⋮
𝜕𝜕ℎ2
𝜕𝜕𝑥𝑥𝑛𝑛

⋮
𝜕𝜕ℎ𝑙𝑙
𝜕𝜕𝑥𝑥1

⋮
𝜕𝜕ℎ𝑙𝑙
𝜕𝜕𝑥𝑥2

⋮
𝜕𝜕ℎ𝑙𝑙
𝜕𝜕𝑥𝑥𝑛𝑛⎦

⎥
⎥
⎥
⎥
⎥
⎤

|𝑥𝑥 = 𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛

An l×n constant matrix. When we combine the results of these two 
functions, the new linearized system reads: 

𝛿𝛿𝑥𝑥𝑛𝑛 = 𝜑𝜑𝑛𝑛−1𝛿𝛿𝑥𝑥𝑛𝑛−1 + 𝑤𝑤𝑛𝑛−1 

𝛿𝛿𝑧𝑧𝑛𝑛 = 𝐻𝐻𝑛𝑛𝛿𝛿𝑥𝑥𝑛𝑛 + 𝑣𝑣𝑛𝑛 

The problem with linearizing around the nominal state value is that 
the difference between the actual value and the nominal value tends 
to diverge over time, making higher-order terms in the Taylor series 
increasingly significant, which is not desirable [3-6]. To address this 
issue, we will replace the nominal state value with the estimated one 
and expand the Taylor series around the estimated value [7]. This 
way, the difference between the actual value and the estimated one 
will always remain small, enabling us to linearize the system. 
Therefore, we will introduce a modification by replacing 𝑥𝑥𝑛𝑛−1𝑛𝑛𝑛𝑛𝑛𝑛 with
𝑥𝑥𝑛𝑛−1  and 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  with 𝑥𝑥𝑛𝑛 then, we will be able to express the partial
differential equations in the form: 

𝜑𝜑𝑛𝑛−1 =
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥  

𝐻𝐻𝑛𝑛 =
𝜕𝜕ℎ(𝑥𝑥)
𝜕𝜕𝑥𝑥  

J Pure Appl Math Vol 8 No 4 July 2024 
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Finally, for discrete systems, by linearizing around the estimated state 
value, we obtain the system: 

𝛿𝛿𝑥𝑥𝑛𝑛 = 𝜑𝜑𝑛𝑛−1𝛿𝛿𝑥𝑥𝑛𝑛−1 + 𝑤𝑤𝑛𝑛−1 

𝛿𝛿𝑧𝑧𝑛𝑛 = 𝐻𝐻𝑛𝑛𝛿𝛿𝑥𝑥𝑛𝑛 + 𝑣𝑣𝑛𝑛 [3]

DISCRETE KALMAN FILTER ALGORITHM 

The equations of the Extended Kalman Filter can be divided into two 
groups: 

1. Prediction equations 

2. Correction equations

Prediction equations: These equations are used to predict the next 
state of the system based on the previous state and the control input, 
taking into account the dynamic model of the system. For the linear 
Kalman filter, these equations are usually linear and can be easily 
calculated. However, in the case of the Extended Kalman Filter 
(EKF), which deals with nonlinear systems, prediction equations 
involve linearizing the nonlinear model around the estimate of the 
current state. This linearization is achieved through methods such as 
Taylor series or other linearization techniques. Prediction equations 
typically involve steps such as updating the predicted state, estimating 
the covariance of the prediction error, and propagating the 
covariance [8].  

Correction equations: 

𝑃𝑃𝑘𝑘+𝑄𝑄𝑛𝑛−1 where is: 

𝜑𝜑𝑛𝑛−1 = 𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥

(+) 

After predicting the next states of the system, the correction phase 
follows. These equations are used to adjust the predictions based on 
new measurements to obtain an updated state estimate. In the 
classical Kalman filter, these equations are linear and can be 
computed using the Bayes' formula. However, in the Extended 
Kalman Filter (EKF), where systems are nonlinear, correction 
equations involve linearizing the nonlinear model around the 
predicted state. This step enables the estimation of new states using 
measurements, taking into account the measurement covariances and 
prediction errors. 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘 

Where is: 

𝐻𝐻𝑛𝑛 =
𝜕𝜕ℎ(𝑥𝑥)
𝜕𝜕𝑥𝑥  

These two phases, prediction and correction, are performed 
iteratively to achieve optimal state estimation in a dynamic system. 
The iterative process allows the state estimate to be continuously 
updated and improved as new data becomes available, ensuring 
accuracy and reliability of the estimation even in the presence of 
nonlinearity and stochastic fluctuations. 

Algorithm Steps: 
1. At time k-1 after measuring the variable 𝑧𝑧𝑘𝑘−1 , calculate

𝑥𝑥𝑘𝑘−1 and 𝑃𝑃𝑘𝑘−1.

2. At time k before measuring z_k, compute the prior
estimates 𝑥𝑥𝑘𝑘 and 𝑃𝑃𝑘𝑘

3. At time k, compute the optimal Kalman gain: 𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘

4. After measuring z_k, correct the prior estimates 𝑥𝑥𝑘𝑘 and 𝑃𝑃𝑘𝑘
to obtain the posterior estimates 𝑥𝑥𝑘𝑘 and 𝑃𝑃𝑘𝑘.

5. Compute the partial derivative to obtain the matrix 𝛷𝛷𝑘𝑘−1:

𝛷𝛷𝑘𝑘−1 =
𝜕𝜕𝑓𝑓(𝑥𝑥)
𝜕𝜕𝑥𝑥

6. At time k, compute the partial derivative to obtain the

matrix 𝐻𝐻𝑘𝑘:

𝐻𝐻𝑘𝑘 =
𝜕𝜕ℎ(𝑥𝑥)
𝜕𝜕𝑥𝑥  

This algorithm enables the estimation of the state of a dynamic 
system based on measurements and the system model, taking into 
account nonlinearity and stochastic fluctuations. Prediction 
equations are used to predict the next state of the system based on 
the previous state and control input, using the dynamic model of the 
system. These equations involve linearizing the nonlinear model to 
ensure the applicability of the Kalman filter in nonlinear systems [9].  

On the other hand, correction equations are used to adjust the 
predicted state with new measurements to obtain an updated state 
estimate. These equations involve a linear combination of predicted 
and measured values, adjusted by the Kalman gain to achieve optimal 
state estimation. Through the iterative process of prediction and 
correction, the discrete Kalman filter algorithm enables continuous 
updating of the state estimate based on new data, ensuring accuracy 
and reliability of the estimation even in the presence of nonlinearity 
and stochastic fluctuations. This algorithm is widely used in various 
fields such as process control, navigation, robotics, and many others 
where precise state estimation of dynamic systems is required [4].  

SETTINGS OF THE PROBLEM 

At the beginning of the iterative process, we use prediction and 
correction equations to estimate the next state of the system based on 
previous data and new measurements. Prediction equations involve 
the function f(x), which describes how the system state changes over 
time. This function is used to predict the next state of the system 
based on the previous state. Additionally, we use the state transition 
matrix Φ to linearize the dynamic model of the system. After 
predicting the state, we update the estimation of the prediction error 
covariance P_k(-). Correction equations are used to align predictions 
with actual measurements and obtain an updated state estimate. First, 
we calculate the Kalman gain K_k, which reflects the relative 
reliability of the measurements and state estimates. Then, we use this 
gain to correct the predicted state based on new measurements. After 
that, we update the prediction error covariance matrix P_k(+), which 
reflects the accuracy of the state estimation after correction. We 
iteratively apply these equations for each step k=1,2,...,10 to 
continuously update the state estimate and ensure accuracy even in 
the presence of nonlinearity and stochastic fluctuations. The state 
transition model is defined using the function f(x), in our case 
defined as: f(x)=Φ⋅x where Φ is the state transition matrix. The 
measurement model can be represented by the function h(x), and the 
mathematical expression for this model can be written as: h (x)=H⋅x 
where H is the measurement matrix. The initial covariance matrix 

𝑃𝑃0 = �10 0
0 10� represents the initial uncertainty in the system state 

for the initial state 𝑥𝑥0 = �00�. The process noise covariance matrix in 

the state transition model represents the variances and is called the 
process noise covariance matrix Q, which can be expressed as: 𝑄𝑄 =

J Pure Appl Math Vol 8 No 4 July 2024 



Čajić et al.

4 

�1 0
0 1� . The measurement noise covariance matrix represents the 

variance of the white noise in the measurement model and is 
expressed as: R=1 [10-16]. 

This iterative process allows continuous updating of the state 
estimation of the dynamic system based on new data, taking into 
account the system dynamics and noise variances. In the end, the 
algorithm will provide the state estimate of the system and the 
corresponding covariance matrices for each step k from 1 to 10. 

Solution to the problem: 
 Step 1: State estimate xk(+): 
[1.40287130.66803395][1.40287130.66803395]
Covariance matrix Pk(+): 
[0.954545450.454545450.454545456.45454545][0.954545450.4545
45450.454545456.45454545] 
Step 2: State estimate xk(+): 
[3.63348121.82662685][3.63348121.82662685] 
Covariance matrix Pk(+): 
[0.90308370.669603520.669603522.82819383][0.90308370.669603
520.669603522.82819383] 
Step 3: State estimate xk(+): 
[3.842263650.89442913][3.842263650.89442913] 
Covariance matrix Pk(+): 
[0.858566980.494704050.494704052.09781931][0.858566980.4947
04050.494704052.09781931] 
Step 4: State estimate xk(+): 
[1.32404487−0.89443808][1.32404487−0.89443808] 
Covariance matrix Pk(+): 
[0.83181390.436026410.436026411.96741067][0.83181390.436026
410.436026411.96741067] 
Step 5: State estimate xk(+): 
[4.305362861.09969223][4.305362861.09969223] 
Covariance matrix Pk(+): 
[0.823672880.423791130.423791131.94885534][0.823672880.4237
91130.423791131.94885534] 
Step 6: State estimate xk(+): 
[5.277628361.03425255][5.277628361.03425255] 
Covariance matrix Pk(+): 
[0.822067560.422170790.422170791.94719331][0.822067560.4221
70790.422170791.94719331] 
Step 7: State estimate xk(+): 
[6.59778031.18107919][6.59778031.18107919] 
Covariance matrix Pk(+): 
[0.821861270.422075510.422075511.94714276][0.821861270.4220
75510.422075511.94714276] 
Step 8: State estimate xk(+): 
[8.773070661.69168489][8.773070661.69168489] 
Covariance matrix Pk(+): 
[0.821847070.422083170.422083171.94713561][0.821847070.4220
83170.422083171.94713561] 
Step 9: State estimate xk(+): 
[10.863247411.89634214][10.863247411.89634214] 
Covariance matrix Pk(+): 
[0.821846880.422083710.422083711.94712695][0.821846880.4220
83710.422083711.94712695] 
Step 10: State estimate xk(+): 
[10.83566090.90825354][10.83566090.90825354] 

Covariance matrix Pk(+): 
[0.821846640.422082850.422082851.94712376][0.821846640.4220
82850.422082851.94712376] [16]. 

The discrete Kalman filter algorithm was used to estimate the state of 
a dynamic system based on measurements and the system model. For 

each step k from 1 to 10, the algorithm computed the state estimate 
of the system and the corresponding covariance matrix. Initially, the 
algorithm had an initial state and covariance matrix. Then, iteratively, 
it computed predictions and corrections for each step. At each step, 
the algorithm used the dynamic model of the system to predict the 
next state of the system and correction to align predictions with 
actual measurements. The results demonstrate a gradual 
improvement in the estimation of the system state as the algorithm 
iteratively learns from new measurements. In the end, the algorithm 
provided the state estimate of the system and the corresponding 
covariance matrix for each of the ten steps. These results enable a 
better understanding of the system dynamics and ensure the accuracy 
of the state estimation even in the presence of noise in the 
measurements (Figure 1) [11]. 

Figure 1) State estimation and covariance matrix P 

These graphs depict the process of tracking and updating state 
estimations of a dynamic system using the Kalman filter across time 
steps. In the first graph, the evolution of state estimates (x1 and x2) 
illustrates how system predictions change as new measurements are 
obtained. This allows visualization of how state estimates adapt over 
time, considering the system dynamics and deviations from measured 
values. The second graph shows changes in the covariance matrix P, 
which represents measures of uncertainty in the state estimation of 
the system. Tracking these changes helps understand how the Kalman 
filter responds to fluctuations in measurements and processes and 
how it adjusts to maintain the accuracy of estimates. These detailed 
graphical representations enable a deeper understanding of how the 
Kalman filter operates and behaves in a dynamic environment 
through iterative steps. 

We will explain the state estimation of a nonlinear stochastic 
differential equation using the Kalman filter on the following 
stochastic differential equation. 

𝑎𝑎𝑥𝑥(𝑡𝑡)
𝑎𝑎𝑡𝑡 = 𝑓𝑓�𝑥𝑥(𝑡𝑡)�+ 𝜔𝜔(𝑡𝑡) 

Where f(x(t)) is a nonlinear state function of the system, and ω(t) is 
white stochastic noise, it can be executed using the Extended Kalman 
Filter (EKF). EKF linearizes the nonlinear state function around the 
current state estimate x(t) and linear measurement model around the 
current measurement z(t). Iteratively, prediction and correction are 
performed to estimate the next state of the system [12]. In this 
context, the equations for prediction and correction are expressed as 
follows:  
Prediction Equation:  

x(t+1)=f(x(t))∆𝑡𝑡 

P(t+1)=F(t)P(t)𝐹𝐹𝑇𝑇(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) 
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Where F(t) is the Jacobian of the function f(x(t)) at the point x(t), Δt 
is the time step, P(t) is the covariance matrix of the state estimate at 
the point x(t), and Q(t) is the covariance matrix of the process noise. 
Equation for correction: 

𝐾𝐾(𝑡𝑡) = 𝑃𝑃(𝑡𝑡)𝐻𝐻𝑛𝑛𝑇𝑇(𝑡𝑡)

𝑥𝑥(𝑡𝑡 + 1) = 𝑥𝑥(𝑡𝑡 + 1) + 𝐾𝐾(𝑡𝑡) 

𝑃𝑃(𝑡𝑡 + 1) = 𝑃𝑃(𝑡𝑡 + 1) 

𝑎𝑎𝑥𝑥(𝑡𝑡)
𝑎𝑎𝑡𝑡 = � 0 1

−0.1 −0.2� 𝑥𝑥
(𝑡𝑡) + �01� 𝑢𝑢

(𝑡𝑡) + �𝜔𝜔1(𝑡𝑡)
𝜔𝜔2(𝑡𝑡)�

Now we can apply the Extended Kalman Filter (EKF) to this system. 
We need to define the functions f(x) and h(x), initialize the initial 
state and covariance matrices, and iteratively apply the prediction and 
correction equations for each time step [13]. The function f(x) 
describes the evolution of the system state over time. For our system, 
it is defined as:  

f(x)=� 0 1
−0.1 −0.2� 𝑥𝑥

(𝑡𝑡) + �01� 𝑢𝑢
(𝑡𝑡) 

The function h(x) describes how we measure the state of the system. 
For our system, it is a linear function that directly takes the first 
element of the state x1(t) as the measurement: h (x(t))=[1 0]⋅x(t) 
(Figure 2).

Figure 2) Estimated state o f the system  

This graph illustrates changes in the estimated states of the system, x1 
and x2, over a period of time. Along the time axis, each point on the 
graph represents the estimated value of the system state at a specific 
moment in time. Analyzing this graph, we can observe how the 
estimated states evolve over time, providing insight into the dynamics 
of the system based on the data obtained through the extended 
Kalman filter. Such analysis allows us to track the behavior of the 
system and identify any trends or oscillations in the estimated system 
states [5].  

In a deeper analysis, the extended Kalman filter was applied to a 
nonlinear stochastic dynamic system for state estimation. 
Subsequently, the code was optimized for improved efficiency and 
readability. The graph has been adjusted to better scale the data and 
more clearly depict the estimated state of the system over time. 
Additionally, information such as title, axis labels, and legend has 
been added to better explain what the graph illustrates. The styling of 
the graph has been enhanced for easier interpretation. All these 
changes contribute to better understanding and visualization of the 
estimated state of the system (Figure 3) [14].  

Figure 3) Improved estimated state visualization 

The enhanced graph, marked in green, displays the estimated state of 
the system over time based on the applied extended Kalman filter. 
This graph provides a clearer visualization of the estimated system 
states x1 and x2, facilitating the tracking of changes in these variables 
over time. On the other hand, the blue graph represents the original 
solution, enabling comparison between the improved and original 
approaches to state estimation (Figure 4) [15].  

Figure 4) Comparison o f improvement results 

The improvement percentage is 61.18%. 
A 61.18% improvement indicates a significant enhancement in the 
accuracy of the system state estimation by applying optimizations and 
improvements in the Kalman filter. In the original code, we used 
standard methods for calculating the Kalman gain and state 
prediction. In the improved version, we changed the approach by 
using simpler and more efficient formulas for calculating the Kalman 
gain, enabling faster and more precise estimations. Additionally, we 
added explicitly defined matrices A and B outside the function to 
reduce unnecessary computation repetition in the loop. These 
improvements resulted in a reduction of estimation error, as reflected 
in the graph and the increase in improvement by 61.18%. Therefore, 
the innovation in this case lies in the optimization of the Kalman 
filter algorithm, resulting in more precise and faster system state 
estimations [6].  

CONCLUSION 
In this work, we investigated and applied an Extended Kalman Filter 
(EKF) for state estimation of nonlinear stochastic dynamical systems. 
We started with a stochastic differential equation describing the 
system evolution, then used the EKF to estimate system state based 
on available measurements Applications included describing the 
system evolution and measurement functions, basic conditions and 
covariance matrices, and we have repeatedly applied prediction and 
correction for each time step. The results were visualized to show the 
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predicted condition. The discussion of this work highlights the 
importance of the Kalman filter in the state estimation problem of 
dynamical systems, especially for nonlinear stochastic systems the 
estimation efficiency and accuracy can be improved by algorithm 
optimization, as the examples in this work have shown. In 
conclusion, the work demonstrates the use of EKF to estimate states 
in nonlinear stochastic systems, with emphasis on improving the 
accuracy of the estimates through algorithm optimization. This 
research can have a wide application in different industries as 
robotics, signal processing, and economic analysis. In addition to 
using different types of filters, such as Unscented Kalman Filter 
(UKF), Particle Filter (PF), or Extended Information Filter (EIF), to 
better understand their respective strengths and weaknesses 
conditionally species, there is further research in this area. It is 
important to explore other state estimation methods such as Least 
Squares Estimation (LSE), Bayesian estimation, or Recursive Least 
Squares (RLS) to better understand how they compare to the 
Extended Kalman Filter (EKF). In addition to using different types of 
filters, such as Unscented Kalman Filter (UKF), Particle Filter (PF), or 
Extended Information Filter (EIF), to better understand their 
respective strengths and weaknesses conditionally species, there is 
further research in this area. It is important to explore other state 
estimation methods such as Least Squares Estimation (LSE), Bayesian 
estimation, or Recursive Least Squares (RLS) to better understand 
how they compare to the Extended Kalman Filter (EKF). 
Furthermore, the flexibility of the EKF in analyzing different systems 
and changing conditions provides valuable insights into the 
limitations of its application. If the EKF is applied to real-world 
scenarios with tracked objects or vehicles applied in situ together with 
the possibility of confirming efficiency and reliability under practical 
conditions. Finally, research on the efficiency of EKF 
implementations in different platforms and programming languages 
can help optimize algorithms for execution efficiency, which is 
important for real-time applications or resource-constrained 
machines. 
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