OPINION

Fermat's last theorem: The numbers A, B, C are infinite

Victor Sorokine

Sorokine V. Fermat's last theorem: The numbers A, B, C are infinite. J Pure Appl Math. 2022; 6(6):11.

ABSTRACT

In the base case of the Fermat equality, the k-digit endings of the numbers in the pairs (A^n, A), (B^n, B), (C^n, C) are equal to the k-digit endings of the numbers a^{n-k-1} , b^{n-k-1} , c^{n-k-1} , c^{n-k-1} , b^{n-k-1} , b^{n-k

INTRODUCTION

Designations

The a, b, c, p, q, r - the last digits in the numbers A, B, C, P, Q, R in the number system with a prime base n>2.

 $A_{k^{\prime}}k^{\prime}th$ (from the end) digit of the number A; $A_{lkl^{\prime}}k^{\prime}digit$ ending of number A.

Theorem (basic case of the FLT)

For prime n>2, and coprimes natural numbers A, B, C not multiple of n from the equality

- 1. $A^n+B^n-C^n=0$ and k>0
- 2. $A^{n}_{[k]} = A_{[k]} = a^{n^{n}(k-1)}_{[k]}, B^{n}_{[k]} = B_{[k]} = b^{n^{n}(k-1)}_{[k]}, C^{n}_{[k]} = C_{[k]} = c^{n^{n}(k-1)}_{[k]}$

The simplest properties of the equality 1*. Lemmas:

- 1. $(d^{n-1})_i=1$ (where single digit d is not equal to 0). /Fermat's Little Theorem./
- 2. Numbers in pairs (CB, P), (CA, Q), (A+B, R) {from equalities
- 3. [Aⁿ=] Cⁿ·Bⁿ=(C·B)P, [Bⁿ=] Cⁿ·Aⁿ=(C·A)Q, [Cⁿ=] Aⁿ+Bⁿ=(A+B)R} are coprime and P[2]=Q[2]=R[2]=01 (because the digits p=q=r=1).
- 4. The digit $(g^n)_t$ does not depend on g_t . /Consequence from Binom Newton./
- 5. $A_{[2]}=a^{n}{}_{[2]}, B_{[2]}=b^{n}{}_{[2]}, C_{[2]}=c^{n}{}_{[2]}.$ Corollary from 02°,
- 6. If $A_{[k]} = a^{n'(k\cdot 1)}_{[k]}$, then $A^n_{[k+1]} = a^{n'k}_{[k+1]}$. Corollary from the Newton binomial for the number $A = A^o n^k + a^{n'(k\cdot 1)}_{[k]}$.

PROOF OF THEOREM

Indeed, for k=1 the equalities 2* are a statement of a Little Theorem. For k=2, the equalities 2* follow from 03°, where $P_{12}=Q_{12}=R_{12}=01$.

Subsequent digits with k>2 are calculated from the INFINITE series of Newton binomials for the numbers A, B, C, written as

Professor of Mathematics Mezos, France. E-mail: victor.sorokine2@gmail.com,

Correspondence: Victor Sorokine, Professor of Mathematics Mezos, France. E-mail: victor.sorokine2@gmail.com,

Received: Dec 12, 2022, Manuscript No. puljpam- -22-5923, Editor Assigned: Dec 14, 2022, PreQC No. puljpam- -22-5923(PQ), Reviewed: Dec 15, 2022, QC No. puljpam- -22-5923(Q), Revised: Dec 16, 2022, Manuscript No puljpam- -22-5923(R), Published: Dec 30, 2022, DOI:-10.37532/2752-8081.22.6(6).11.

ACCESS This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

where a, b, c are the last digits of the base numbers A, B, C and k is arbitrarily large, that is, the numbers A, B, C are infinite. **Keywords:** *Fermat's*; *Learning*; *Infinite*

 $A{=}A^{\circ}n^{k}{+}a^{n'\langle k{\cdot}1\rangle}{}_{[k]}$ (see 06°) with increasing k by 1 in each successive iteration.

OPEN