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 RESEARCH 
Feynman path integral using Lebesgue-Bochner-Stieltjes 

Integration  
Reza R Ahangar1, Erbil Cetin2 , Serife Muge Ege2 

INTRODUCTION AND HISTORY OF INTEGRATION 
THEORY IN BANACH SPACE 

he traditional differential and integral calculus, invented and
developed by Galileo, Leibniz, and Newton has served almost all
aspects of sciences, technology, and engineering for centuries [1-

4]. Diverse application to natural and social sciences has caused 
extensive development in the twentieth century. 

A more general integration than the Lebesgue was introduced and 
published by J. Kurzweil 1957 using the Riemann integral. It was 
studied in-depth by R. Hanstock [5,6]. The stochastic calculus and 
stochastic models were published by Mc Shane 1974, followed by a 
unified approach for integration in 1983 [7-9]. 

The author used Bogdan differential and integral calculus in Banach 
space and applied it to optimal control of nonlinear operator 
differential equations in 1986 [10-12]. 

A general form of this theory called Bochner-Lebesgue Steiltjes 
measure and integration, will be presented in the …first chapter. The 
Generalized Dynamical Systems satisfying operator differential 
equations cover all delay, functional, and algebraic differential 
equations. 

Several challenges faced mathematics of the twentieth century. 

i. A generalized function named after Dirac, called Dirac’s
Delta function, did not follow the traditional definition
of functions. It is extensively used in all aspects of
applications in Sciences, Engineering, Technology, and
Mathematics. We plan to study nonlinear operator
differential equations which include Dirac’s delta

function based on Banach space differential and integral 
calculus [13,14]. 

ii. The development of the Uncertainty Principle in
quantum mechanics by Heisenberg imposed a question
for mathematics on how we could explain uncertain
physical phenomena that described by probabilistic 
differential equations. Our approach in this article is to
use Bochner-Lebesgue-Steiljes integration to justify
Feynman path integration [15].

Some foundation of integration in Banach space 
The goal here is to review the integration theory in Banach-space-
valued functions. To see an easy connection to all varieties of 
approaches to the integral we begin with the Riemann integral. 

Bogdan presented a new development of the theory of Lebesgue and 
Bochner spaces of summable functions [16]. His development of the 
integration theory beyond the classical Riemann integral is important 
for advancements in modern theory of differential equations, theory of 
generalized functions, theory of operators, probability, optimal control, 
and most of all in theoretical physics. 

Generalized functions, introduced into mathematics by P. Dirac and 
put on precise mathematical footing by L. Schwartz  and Dunford; 
turned out to be essential in the analysis of ‡flows of matter endowed 
with mass [17-19]. 
We shall follow the method of Bogdanowicz with some modifications 
to construct a generalized Bochner-Lebesgue-Stielltjes integral of the 

form ( , )u f dµ∫  where u is a bilinear operator acting in the product of

Banach spaces, f is a Bochner summable function, and µ  is a vector 
valued measure [20, 21]. 
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ABSTRACT 
It was known as Feynman Path Integrals in quantum physics, and a 
large part of the scientific community still considers them as a 
heuristic tool that lacks sound mathematical definition. This paper 
aims to refute this prejudice by providing an extensive and self-
contained description of the mathematical theory of Feynman Path 
Integration, from the earlier attempts to the latest developments, as 
well as its applications to quantum mechanics. 

According to de Brogli, it was realized that light could in fact show 
behavioral characteristics of both waves and particles. It was 
demonstrated that electrons show the same dual behavior of matter 
which was later extended to atoms and molecules. We shall follow the 
method of integration by the generalized Bochner-Lebesgue-Steilltjes 
method of integration in Banach space. We demonstrate that the 
Feynman Path Integral is consistent and can be justified mathematically 
with the Bogdan integration approach. 
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Step One: Banach Space of Semi-ring of Binary Operations. 

Definition 1.2 (Definition of a Group) 
Set V with a binary operation “o” is said to be a group if 

a. (V, o) is closed,

b. It is associative,

c. There exists an identity element,

d. Every element has an inverse element in V.

The symbol (V, o) is used for a group G with binary operation “o”. It 
is a semi-group when the last condition (d) does not hold. It is called 
a Monoid if the first two postulates (a) and (b) are true. 

A set V may have another binary operation like ( )∗ such that (V, )∗

will be closed under this operation and it is also associative. 

A triple (V, , )o ∗ is a Semi-Ring if 

1) ( , )V o is a Monoid, 

2) ( , )V ∗ is also Monoid, 

3) (V, , )o ∗ is distributive of " "∗ over the other operation "o"

.
Boolean ring of binary operation on sets 
Assume X is an abstract space with no topology defined. Consider V 
a family of all subsets of X with two operations like  and . Define 
the following Boolean operations. We can consider V to be a power 
set of X, that is, V P(X).= For every element A and B in V define two 
binary operations ⊕ and   

(𝐴𝐴⊕𝐵𝐵) = (𝐴𝐴 ∪ 𝐵𝐵)\(𝐴𝐴 ∩ 𝐵𝐵) 𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴⊙ 𝐵𝐵) = 𝐴𝐴 ∩ 𝐵𝐵 

It is easy to prove that a triple ( , , )V ⊕  is a ring. The operation ⊗ in 
V can also be described by 

( ) ( ) \ ( ) ( \ ) (B\ )A B A B A B A B A⊕ = =    

called a symmetric difference. 

Step TWO: Semi-ring of partitioned space in Banach space: 

Definition 1.3 (Semi-Ring of Subsets) 
In general, a semi-ring of subsets of a set X is a family V of subsets of X 
such that 

1) ,Vφ ∈ that is V includes the empty set.

2) The set of the family of subsets is closed under …finite
intersection: &A B V A B V∈ ⇒ ∈

3) It is closed under the symmetric differences: For any
&A B V∈ there exists an integer k and mutually disjoint

sets: 1 2, , ... kB B B V∈  such that 1\ .
k

j jA B B== 

Conditions (ii) and (iii) imply that V is closed under a symmetric 
difference. 
A B (A \ B) (B\ A).∆ =  The triple ( , , )V ∆  is called a Semi-ring. 

VOLUME AND MEASURABLE SPACES 
Step three: Volume and measurable space 

A function v from the semi-ring V to a Banach space Z, that is :v V Z→

, is called a volume if it satisfies the following conditions: for every 

countable family of disjoint sets (V, , ),(t T)tA ∈ ∆ ∈ such that, 

𝐴𝐴 =∪𝑇𝑇 𝐴𝐴𝑡𝑡 ∈ 𝑉𝑉 ⇒ 𝑣𝑣(𝐴𝐴) = ∑ 𝑣𝑣(𝐴𝐴𝑡𝑡)𝑇𝑇   (2.1) 

The following function µ given by a formula ( ) AA c dvµ = ∫ for

( , , )A V∈ ∆  is well defined. This function will be called the measure 
and its value on a set A will be called the measure of the set A. The 

sum is absolutely convergent and | |(A) sup | ( )|tt T
Aµ µ

∈

 
 = <∞
 ∑ for any 

( , , ),A V∈ ∆  where the supremum is taken over all possible 
decompositions of the set into form (2.1). A volume measure is positive 
if it takes on only nonnegative values. 

Norm in the Positive Volume Space: Let v be a positive volume 
measure defined in a semi-ring ( , , ).V ∆   

Define a space M of all volumes :V Zµ → such that |(A)| ( )c v Aµ ≤ ⋅ for 

some constant c and all .A V∈ The least constant number c satisfying 
this inequality is denoted by || || .µ  

{ }|| || min : | ( )| (A),c R A c v all A Vµ µ= ∈ ≤ ⋅ ∈  (2.2) 

Claim: The space (𝑀𝑀,  ||𝜇𝜇||) is a Banach space. 

STEP FOUR: Space of Simple Functions and Bochner SUM 
Bogdan SUM and the space of Simple (Basic) Functions: Space of S(Y) 
denotes the set of all functions of the form, 

1 21 2
...A A k Ak

h y c y c y c= ⋅ + ⋅ + + ⋅  (2.3) 

for all jy Y∈ and ( 1.. ).iA V for j k∈ = Consider a vector  

𝑦𝑦
→

=< 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, . . . 𝑦𝑦𝑘𝑘 > and demonstrate the vector form of the 
characteristic function 

𝑐𝑐
→

=< 𝑐𝑐𝐴𝐴1 , 𝑐𝑐𝐴𝐴2 , . . . 𝑐𝑐𝐴𝐴𝑘𝑘 >, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑐𝑐𝐴𝐴𝑖𝑖 = �1𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝐴𝐴𝑖𝑖0𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝐴𝐴𝑖𝑖
 

then define, 

1
1

,
i k

Aji
h y c y c

=

=
=< <= ⋅∑ 

Space of simple functions: In other words 

1
( ) { : }

k

j Aj
i

S Y h Y h y c
=

= ∈ = ⋅∑  

Let us denote a vector valued function 1 2| | (| |,| |, ...., | |)ky y y y
→

= and 

vector form of the volume of the set A by 

𝑣𝑣
→

(𝐴𝐴) = (𝑣𝑣(𝐴𝐴1) ,𝑣𝑣(𝐴𝐴2) , . . .𝑣𝑣(𝐴𝐴𝑘𝑘)) 

then the norm of the simple function h will be defined by 

1
|| || | |, ( )) | | ( )

k

j j
i

h y v A y v A
=

= < = ⋅∑   (2.4)
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STEP Five: Bochner Integral 
Bochner Integral Operator: For a fixed bilinear continuous operator 
from a product of the Banach spaces Y, Z into a Banach space W, 

: ,u U Y Z W and Mµ∈ × − > ∈ is a finite additive function from the

semi-ring : ,V Zµ − > dominated by the volume cv for some constant

c 0.> define the operator,

1
( , ) ( , ( ))

k

j j
j

u h d u y Aµ µ
=

=∫ ∑             (2.5a) 

1 1 2 2( , ( )) ( , ( ) ... ( , ( ))k ku y A u y A u y Aµ µ µ= + + +               (2.5b) 

Bochner Integral: We will define also: 

1
( )

k

i i
i

hdv y v A
=

= ⋅ =∫ ∑  (2.6a) 

1 1 2 2( )) ( ) ... ( ))k ky v A y v A y v A= ⋅ + ⋅ + + ⋅   (2.6b) 

These two operators are well defined, that is they are independent of 

the choices ( )h S Y∈ in (2.3), where || || | |.h h= ∫

Basic Sequence of Simple Functions: A sequence of functions 

( )nS S Y∈ is a basic if there exists a sequence ( )nh S Y∈ and a constant

M 0> such that, 

1 2 ... , || || 4
n

n n ns h h h and h M
−

= + + + ≤    (2.7) 

for all n = 1; 2; … 

STEP Six: Space of summable functions 
The space of summable functions: The space of a summable function 

( , )L v Y is the set of all functions f generated by a volume space (X,V, )µ

which, 

( ) ( ){ }, : lim .n n nL v Y f s S Y basicsuchthat s fa e→∞= ∃ ∈ − =

Bogdan Integration Method: We will define the norm of the function
( ) :f L Y∈  

||𝑓𝑓|| = 𝑙𝑙𝑙𝑙𝑙𝑙 | |𝑠𝑠𝑛𝑛||, 

Assuming that u is a bilinear operator acting in the product of Banach 
spaces, we can define the Bogdan integral or generalized Bochner 
Lebesgue-Steiltjes (B-L-S) by 

∫𝑢𝑢(𝑓𝑓, 𝑑𝑑𝑑𝑑) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛−>∞

∫𝑢𝑢( 𝑠𝑠𝑛𝑛,𝑑𝑑𝑑𝑑),  (2.8) 

where f is a Bochner summable function, and µ is a vector valued 
measure. 

If the operator represents a multiplication by a scalar ( as a linear 
operator), that is u ( , )y yλ λ= for y in Banach space Y, and µ

represents a Lebesgue measure on a sigma ring, then the integral 

( , )u f dµ∫ reduces to the classical Bochner integral .f dµ⋅∫

∫𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛−>∞

∫ 𝑠𝑠𝑛𝑛𝑑𝑑𝑑𝑑   (2.9) 

If Y=R, the set of real numbers, then the integral reduces to the classical 
Lebesgue integral. 

Measurable Spaces: Some of the properties of the Bochner-Lebesgue- 
Steiltjes integrals can be studied in the references: [20, 21]. 

QUANTUM MECHANICAL INTEGRATION OF THE 
WAVE-PARTICLE IN BANACH SPACE 

Historical introduction to Feynman path integral  
Feynman path integrals are ubiquitous in quantum physics, even if a 
large part of the scientific community still considers them as a heuristic 
tool that lacks a sound mathematical definition. This paper aims to 
refute this prejudice by providing an extensive and self-contained 
description of the mathematical theory of Feynman path integration, 
from the earlier attempts to the latest developments, as well as its 
applications to quantum mechanics. We will present a detailed 
discussion of the general theory of complex integration on infinite 
dimensional spaces, providing on one hand a unified view of the 
various existing approaches to the mathematical construction of 
Feynman path integrals and on the other hand a connection with the 
classical theory of stochastic processes. Moreover, new topics 
containing recent applications to several Dynamical systems may be 
related to or added to this problem. This paper bridges the gap between 
the realms of stochastic analysis and the theory of Feynman path 
integration. It is accessible to both mathematicians and physicists. 

Feynman path integral and multiple slits and multiple screen 
experiment 
In modern physics, the double-slit experiment is a demonstration that 
light and matter can display characteristics of both waves and particles; 
moreover, it displays the fundamentally probabilistic nature of 
quantum mechanical phenomena. This double slit experiment was 
first performed, using light, by Thomas Young in 1801 as a 
demonstration of the particle- wave behavior of light [22]. At that time, 
it was thought that light consisted of either waves or particles. With the 
beginning of modern physics, about a hundred years later, it was 
realized that light could in fact show behavior characteristic of both 
waves and particles. In 1927, Davisson and Germer demonstrated that 
electrons show the same behavior, which was later extended to atoms 
and molecules [23, 24]. 

In 1940, R.P. Feynman discovered how to express quantum dynamics 
in terms of the Lagrangian instead of Hamiltonian [25]. 

To understand the Feynman path integral, we start to review the 
introduction to the traveling of a particle -wave through a double, 
triple, or multiple slits. In this experiment the light wave may be 
passing through one or several walls with slits from the source labeled 
S to a destination object called O. 

The goal of the following description is to be able to justify the 
mathematics of multi-slit and multi-screen experiments in classical and 
quantum sense, particularly the mathematical justification of Feynman 
Path Integral. 

In deterministic classical mechanics there will be a unique path for a 
particle- wave between two points: But in quantum mechanics, the 

question is, how does the initial state 0 0( , )x t of a particle evolve with 

time to a final state ( , ) ?f fx t  

How do we determine the time-evolution of | ( )tψ of some initial state 

|𝜓𝜓(𝑡𝑡0)⟩. 

Some elementary assumptions: We will explore step by step 
mathematical justification of the path integral similar to the previous 
section. The following description may look like some repetition. 
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Step One: Banach Space of Semi-ring of paths in multiple slits and 
multiple screen. 

Set the Space 
Let X be the abstract space of all paths of particle–wave in the multi-

slit and multi-screen experiment. Each trajectory Pj represents the j-th 

path, and the energy of the wave particle can be demonstrated by Sj, j 
= 1, 2, 3, … With this action partitioned the abstract space X, in a time 

interval 1t t .k kt+∆ = −  

We can consider V to be a power set of X, and S ,j V∈  that is, 

( ).V P X=  

To establish a partition in the abstract space X, we can follow the 

definition in (1.4) for every element A S Sj kand B= =  in V with two 

binary operations ⊕𝑎𝑎𝑎𝑎𝑎𝑎⊙. 

Step Two: Semi-ring of partitioned space in Banach space: 
To establish a semi-ring ( , , )V ∆   we can follow the definition in (1.5) 
for every path A = Sj and B = Sk in V and symmetric differences with 
two binary operations. 

Step Three: Volume and Measurable Space in Quantum Mechanical 
Approach: 
In every action we may consider some physical characteristic such as 
position, energy, or momentum of the path St: As a result we define a 
function v from the semi-ring V to a Banach space Z, that is : ,v V Z→

is called a volume if it satisfies the following conditions: for every 

countable family of disjoint sets S ( , , ), ( )t V t T∈ ∆ ∈  such that 

𝑆𝑆 =∪𝑇𝑇 𝑆𝑆𝑡𝑡 ∈ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝐴𝐴) = �𝑣𝑣(𝑆𝑆𝑡𝑡) ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝑡𝑡 ⇔𝜓𝜓(𝑡𝑡)
𝑇𝑇

 

Notice that: 

1. the set T can be countably infinite. 

2. for every path Sj there is an associated wave -particle ( )tψ

where in Dirac’s quantum language we can demonstrate a 

ket | ( )tψ as a column vector (t represents a transpose)

|𝜓𝜓(𝑡𝑡)⟩ = [𝜓𝜓1(𝑡𝑡),𝜓𝜓2(𝑡𝑡), . . . ,𝜓𝜓𝑛𝑛(𝑡𝑡)]𝑡𝑡       (3.1) 

We define the volume of this wave-particle by 1( ) | ( )
k n

k kktv S c tψ
=

== ∑
when the number of slits is …finite. We have a general case when t is 
in a continuum space. 

The following measure µ given by a formula

(| ( )) | ( ) ( , , )t c dv for t Vψµ ψ ψ= ∈ ∆∫   is well defined where cS is a

characteristic function. This function will be called the measure and its 
value on a set S will be called the measure of the set S. The sum is 
absolutely convergent and 

{ }| |(| ( ) sup | |(| ( ) ( , , ),
t T

t t for any S Vµ ψ µ ψ
∈

= < ∞ ∈ ∆∑   

where the supremum is taken over all possible decompositions of the 
set in (3.1). A volume-measure is positive if it takes on only nonnegative 
values. 

Norm in the Positive Volume Space: Let v be a positive volume 
measure defined in a semi-ring ( , , ).V ∆   

Define a space M of all volumes :V Zµ →  such that | (A) | ( )c v Sµ ≤ ⋅  for 
some constant c and all .S V∈  The least constant number c satisfying 

this inequality is denoted by || || .µ  

||𝜇𝜇|| = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑐𝑐 ∈ 𝑅𝑅: |𝜇𝜇(𝑆𝑆)| ≤ 𝑐𝑐 ⋅ 𝑣𝑣(𝑆𝑆),𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ 𝑉𝑉}    ( 3.2) 

Claim: The space ( , || ||)M µ  is a Banach space. Notice that we are 
planning to justify the Feynman path integral in a Banach space with 
infinite dimensional space with a norm || || .  

STEP FOUR: Space of Simple Functions and Bogdan SUM 
In this step we need to describe the differential element of the action 
S(x (t)).  It is assumed that we can approximate the position of a 
particle- wave object x(t) and its velocity 𝑥𝑥′(𝑡𝑡). It is also possible to 

approximate the kinetic energy K E  and potential energy ( )EP  of a 

differential element  S , 1, 2, 3, ...i i∆ = :::of the particle-wave traveling 

in the partitioned set Aj selected from the semi-ring space triple 
( , , )V ∆  , thus 

𝛥𝛥𝑆𝑆𝑖𝑖 ≈ (𝐾𝐾𝐾𝐾(𝐴𝐴𝑗𝑗)− 𝑃𝑃𝐸𝐸(𝐴𝐴𝑗𝑗))𝛥𝛥𝑡𝑡    (3.3) 

Where ( )K jK A  is the kinetic energy of the path jA and ( )E jP A  is the 

potential energy of the same path. 

Action on infinitesimal Path S :i∆

For every path  1,2, ...j =  let ,jP  represent the j-th trajectory segment 

with the energy of Sj such that 

0 1
lim S ( ( ) ( )) dt

n

i i K j E jt j Pj

S dS K A P A
∆ → =

= ∆ = = −∑ ∫ ∫  (3.4) 

Total action 

For each path the energy will be e cos sin
Si S Si

   
= +   

   


 

Where .2
h
π=  The total …finite value of energy for all paths can be

described by 

( ) ( ) exp[ [ ( )]]
j

iA t S x tψ χ = ∑



  (3.5) 

for all infinite continuum trajectories. This sum is over all possible 
trajectories and A(t) is independent of any individual paths, therefore 
it depends only on time [26-31]. 

Basic functions and Bochner SUM 
Using (2.3) we will establish a Bochner SUM of Basic functions in the 

complex plane such that for every point ,jz  belonging to the trajectory 

of the wave-particle in the complex plane there exists a wave function 

.jψ  To establish Bochner SUM of basic functions which is similar to 

the Riemann sum, we define a set of column vectors,

Ahangar



Feynman path integral using 

J Pure Appl Math Vol 8 No 1 January 2024 5 

1 2 3, , , ... kψ ψ ψ ψ ψ= < >
 in the complex plane such that every jψ is 

associated to the set Aj. 

Space of S(Y) denotes the set of all functions of the form , ,cψ< >
  for

all ( 1.. ),j jY and A V for j kψ ∈ ∈ =  and demonstrates the vector form of 

the characteristic function, 

𝑐𝑐 =< 𝑐𝑐𝐴𝐴1 , 𝑐𝑐𝐴𝐴2 , . . . 𝑐𝑐𝐴𝐴𝑘𝑘 >

For every element (V, , )jA ∈ ∆  there exists a vector jψ such that by 

the standard complex point | | , 1, 2, ..., . 1,
i j

j jz e j k where i
ϕ

ψ = = = − the 

imaginary number, and | |jz is the module of the complex point with 

the argument jϕ for each vector. We demonstrate that the vector form 

of the characteristic function 
1 2

( , , ... )A A Ak
c c c c=  then. 

𝜓𝜓 =< 𝜓𝜓�⃗ , 𝑐𝑐 >= ∑ 𝜓𝜓𝑗𝑗 ⋅ 𝑐𝑐𝐴𝐴𝑗𝑗
𝑗𝑗=𝑘𝑘
𝑗𝑗=1  (3.6) 

Space of Simple Functions 
We will define the set of simple functions for quantum integration by: 

1
( ) { : }

K

j Ai
J

S Y Y cψ ψ ψ
=

= ∈ = ⋅∑   (3.7-a) 

where the set (V, , )jA ∈ ∆  in which the wave particle takes a position 

zj in the complex plane. Let us denote a vector valued function 

1 2| | ( | |, | |, ..., | |)kz z z z= and vector valued of the volume space by

1 2( ) ( ). ( ),..., ( )kv A v A v A v A=< >
 (3.7-b) 

For every path Aj in the partitioned space (V; ∆; ∩), we define the norm 
of the wave-particle by 

�|𝜓𝜓|� =< �𝜓𝜓�⃗ �, 𝑣𝑣(𝐴𝐴) >= ∑ |𝜓𝜓�⃗ 𝑗𝑗𝑘𝑘
𝑗𝑗=1 |. 𝑣𝑣(𝐴𝐴𝑗𝑗) (3.8) 

STEP Five: Bochner Integral 
To move to the next stage of the path integral, we need to redefine the 
volume of the energy and momentum of each piece Aj. 

An objective operator u can be defined and used for the application of 
this integral 

Bochner integral operator 
For fixed 𝑢𝑢 ∈ 𝑈𝑈,𝜇𝜇 ∈ 𝑀𝑀 define the operator 

1
( , ) ( , ( ))

k

j j
j

u h d u Aµ ψ µ
=

=∑∫
(3.9-a) 

1 1 2 2( , ( )) ( , ( ) ... ( , ( ))k ku A u A u Aψ µ ψ µ ψ µ= + + +  (3.9-a)

We will also define a special case when the volume generator is a scalar 
multiplication of the volume space. Thus relation (3.9) will be in the 
following form: 

1
. ( ) ,

k

j j
i

hdv v A vψ ψ
=

= =< >∑∫
                  (3.10a) 

1 1 2 2. ( )) . ( ) . ( ))k kv A v A v Aψ ψ ψ+ + +

      (3.10b) 

Define the path-integral by 
Assuming that we define the volume measure of the sets 𝐴𝐴𝑗𝑗 ∈ (𝑉𝑉,∆,∩) 

for the total numbers of K slots (in Young Physical experiment) for the 
volume of the set 

𝑧𝑧1 = 𝑟𝑟1𝑒𝑒𝑖𝑖𝜙𝜙1 , 𝑧𝑧2 = 𝑟𝑟2𝑒𝑒𝑖𝑖𝜙𝜙2 , … , 𝑟𝑟𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  

Where 𝑣𝑣�𝐴𝐴𝑗𝑗� = �𝑧𝑧𝑗𝑗�𝑒𝑒𝑖𝑖𝜙𝜙𝑗𝑗 , 𝑗𝑗 = 1,2, …𝐾𝐾  is called the volume of each

partition set. These two operators, well defined in (3.5) and (3.6), are 

independent of the choices ℎ ∈ 𝑆𝑆(𝑌𝑌) in (3.4), where�|ℎ|� = ∫ |ℎ|. 

STEP Six: Space of Summable Functions 
In our final conclusion, we present the LSB integration that can be 
used in path integral. In current application of Lebesgue -Bochner 
integration, the operator 𝑢𝑢 ∈ 𝑈𝑈 may represent mass, energy, or 
momentum. 

1. Basic Sequence of Simple Functions: A sequence of
functions ℎ𝑛𝑛 ∈ 𝑆𝑆(𝑌𝑌)  is a basic if there exists a sequence
ℎ𝑛𝑛 ∈ 𝑆𝑆(𝑌𝑌) and a constant M>0 such that

1 2| | | ,n ns ψ ψ ψ= 〉+ 〉 + + 〉

and || || 4 n
ns M−≤  (3.12) 

for all n = 1; 2; … 

2. The Space of Summable Functions: The space of a
summable function L(Y ) is the set of all functions f which

( ) { : ( )nL Y f S Yψ= ∃ ∈ - basic such that lim . }n n f a eψ→∞ =

Definition: Given that 𝑓𝑓 ∈ 𝐿𝐿(𝑌𝑌). Define the norm, LSB integral, and 

Bochner integral || || lim || ||n nf ψ→∞=

( , ) lim ( , )nn
u f d u dµ ψ µ

→∞
=∫ ∫        (3.13) 

lim nn
fdv dvψ

→∞
=∫ ∫

Assume that u is a bilinear operator acting on the function f which is 
the limit of the particle-wave sequence  𝛹𝛹𝑛𝑛. The set of operators can be 
selected as an operator for Position, Mass, Energy, or Momentum of 
the wave-particle. If this action is applied in the product of Banach 
spaces, we can de.ne the path integral by a generalized Bochner 
Lebesgue - Steiltjes (B-L-S): where f is a Bochner Summable function, 
and µ is a vector-valued measure. 

If the operator represents a multiplication by a scalar (or it is a linear 
operator), that is 𝑢𝑢(𝜆𝜆,𝜓𝜓) = 𝜆𝜆𝜓𝜓  for y in Banach space Y, and µ

represents a Lebesgue measure on a sigma ring, then the integral 

∫𝑢𝑢(𝑓𝑓, 𝑑𝑑𝑑𝑑) reduces to the classical Bochner integral ∫𝑓𝑓. 𝑑𝑑𝑑𝑑. 

∫𝑢𝑢(𝑓𝑓, 𝑑𝑑𝑑𝑑) = � 
𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ ∫𝑢𝑢�𝜓𝜓𝑛𝑛, 𝑑𝑑𝜇𝜇�,    𝑖𝑖𝑖𝑖  𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞𝜓𝜓𝑛𝑛 = 𝑓𝑓

∫𝑓𝑓𝑓𝑓𝑓𝑓, 𝑖𝑖𝑖𝑖 𝑢𝑢(𝜆𝜆,𝜓𝜓)
�    (3.14) 
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We will demonstrate the application of previous sections in Feynman 
Path Integral. 

FEYNMAN PATH INTEGRAL IN BANACH 
SPACE 

This general definition of the integral can be applied to a variety of 
operators u in (3.14). It may be helpful to present a few examples. 

Operators in quantum mechanics: Let us denote a vector 𝑣⃗𝑣 = |𝜓𝜓⟩ in 
Banach Space Y: Every quantum state |𝜓𝜓⟩ represents either position, 
momentum, or energy. 

i) Position Wave can be described by a linear
combination. 

| , 1, 2,3,j j
j

a jψ ψ〉 = =∑ 

  (4.1) 

for discrete case. For continuous case the wave particle and is 
demonstrated by: 

| ( ) |x x dxψ ψ〉 = 〉∫  (4.2) 

which is the position operator of the quantum wave ket vector |𝜓𝜓⟩ for 
continuous case. 

The position operator 𝑋𝑋� can be demonstrated when it is acting on a 

wave particle |𝜓𝜓⟩ by  𝑋𝑋 � |𝜓𝜓⟩. If it is only with x- coordinate, then with
Bra -KET notation will be 

ˆ ˆ| | ( ) ( )X x x x x xψ ψ ψ ψ〉 = 〉 ⇒ =  

The Bra vector applies on the left on continuum bases: 

*ˆ| |X x dxψ ψ ψ ψ〈 〉 = ∫

where 𝜓𝜓∗ represents the complex conjugate. It is interesting to show 
that the eigenvalue and eigenvector: 

( ) ( ) ( ) ( ) 0x x x x xψ λψ λ ψ= ⇒ − =

This relation implies that the wave -particle will be positioned on the 

x-coordinate all the time except when x =λ.  This conclusion indicates
that the behavior of the solution around the value x =λ is following
Dirac’s Deleta function, that is: 

ˆ | ( )X xψ δ λ〉 = −          (4.3) 

ii) Momentum Operator: Let |𝑝𝑝⟩  represent the
momentum action on a position x such that,

1 2 3| p [ , , , , ]t
np p p p〉 =  

then the quantum state of the momentum can be described by 

| p | , 1, 2,3,j ja p j〉 = 〉 =∑ 

  (4.4) 

Time independent momentum operator 

Let 
x̂P i

x
∂

= −
∂


be the time independent momentum operator

based on the x-axis and acting on a quantum waveψ: 

( ) .i p
x
ψ ψ∂

− =
∂


 

This relation demonstrates that Operator. Eigenfunction = eigenvalue. 

Function 

Since this is a time independent differential equation, we can solve it 
by separation of variables. 

1 ln .d ipdx p x
i

ψ ψ
ψ

= − ⇒ =
 

( ) (0).exp .ix p xψ ψ  =  
 

 (4.5) 

As a result of (4.5). The momentum action on the position x can be 
described by ( )| (0).exp .ix p p xψ〈 〉 =



.

The relation ( )' | (0).exp .ip x p xψ〈 〉 = −


can be obtained by 

complex conjugate. We can write, 

' | ( ' )p p p pδ〈 〉 = −  (4.6) 

This is an approach to describe the position, energy, and momentum 
of the solution of the Schrodinger Equation. 

Dirac’s Integration Intuitive Approach 
Dirac never gave an explicit characterization of his intuitive approach 
to integration. But all of the principles of his integration were 
complete. The conclusion theorem presents a final theorem that 
Dirac’s Integral Space (DIS) is isomorphic to the category of Lebesgue 
Measure Spaces.  [30]. 

Quantum Mechanical Solution Operators 
Hamiltonian Operator: In this section, we would like to show a 
solution operator of Schrodinger equation. Assume that there exists an 
operator U acting on an initial |𝜓𝜓(0)⟩ and transforms to a wave at 
time |𝜓𝜓(𝑡𝑡)⟩ which represents a quantum state satisfying the 
Schrodinger equation, 

| ( ) | ( )ti H t
t

ψ ψ∂ 〉
= 〉

∂


  (4.9) 

where H is Hamiltonian. Thus, the solution can be described by: 
|𝜓𝜓(𝑡𝑡)⟩ = 𝑈𝑈(𝑡𝑡)|𝜓𝜓(0)⟩.  

Let us substitute its derivative in the equation (4.9). That is 
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| ( ) | (0)t dU
t dt

ψ ψ∂ 〉
= 〉

∂

( ) | (0) | ( ) ( ) | (0)dU ti H t U t
dt

ψ ψ ψ〉 = 〉 = 〉

 

Simplify this relation and solve the ODE problem within respect to the 
independent variable t. 

( ) ( )( ) ( )dU t dU t ii HU t HU t
dt dt

= ⇒ =



( ) exp( )iU t Ht= −


 (4.10) 

Thus, the solution operator of the equation (4.9) will be: 

| ( ) exp( ) | (0)it Htψ ψ〉 = − 〉


                               (4.11) 

The path integral interpretation: 
We can use the general form of the Lebesgue-Bochner-Stieltjes integral 
of (2.8) and (3.9) using the solution operators (4.10) and (4.11). As a 
result, if 𝑓𝑓 = lim|𝜓𝜓𝑛𝑛(𝑡𝑡)⟩ then,

( , ) | ( ) exp( ) | (0)n n
iu f d d t d Htµ µ ψ µ ψ= 〉 = − 〉∫ ∫ ∫


 (4.12) 

5. DISCUSSIONS ON THE PATH INTEGRAL PROPAGATOR
A particle-wave at position x(t) and momentum p will have a kinetic 
and potential energy: 

2

2
xpKE
m

= and ( )PE V x=  (5.1)

The total energy can be demonstrated by 

2

( )
2

xpE KE PE V x
m

= + = +  (5.2) 

The propagator of a quantum system between two points (x’; t’) and 
(x0; t0) can be defined by the probability transition amplitude between 
the wave function evaluated at those points: 

0 0 0 0[( ', '), ( , )] ( ', ') | ( , )U x t x t x t x tψ ψ= 〈 〉     (5.3) 

If the Hamiltonian carries no explicit time dependence, we can assume 
t0 and denote t=t’-t0. The left hand side of the relation (3.22) can be 
described by U(x’,t;x0). Feynman proposed that the contribution of the 
time independent trajectory x(t) to the propagator is 

( )exp[ ]
i

S x t 
 



  (5.4) 

That is every possible path contributes with equal amplitude to the 
propagator with a phase related to the classical action. Thus, 

0( ', ; ) ( ) exp[ ( )]]iU x t x A t S t= ∑


Feynman path integral using  

(5.5) 

This article has been intended as a mathematical justification of 
Feynman path integral using the integration theory in Banach Space. 
The theory of integration evolved from Riemann, Steiltjes, and 
Lebesgue throughout past centuries. 

Bochner provided the integration theory in Banach spaces. The 
Feynman path integral was originally motivated and presented 
heuristically. 

Several characteristics of the path integral guide us to plan for rigorous 
mathematical work.  

1. It should work in infinite dimensional space.
2. It should be consistent with Dirac’s Integral System.
3. It should be working with a variety of operator differential

equations.
4. The position vector can be selected as a complex variable. 
5. The nature of the quantum level computation is required to

use the Lebesgue- Stieltjes measurable space.

Much research has justified the integration theory based on Hilbert 
space or Banach space. In Generalized approach, we presented 
integration called Lebesgue Bochner- Steiltjes and used it in this paper 
to demonstrate that Feynman Path integral is mathematically 
consistent theory. This work is an introductory development of 
Feynman path integral in Lebesgue- Bochner- Steiltjes integral and it is 
yet to be used in many other applications in theoretical physics. 
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