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ABSTRACT

Fluids flow stability is of major importance in both research and engineering. 
Transition between the laminar and turbulent flow regimes is often 
characterized by critical Reynolds number value. In this paper, we used 
experimental results obtained in ducts of several cross-section shape, to 
analyse the deep link between geometry and flow stability. Experiments 

clearly showed the influence of geometry on critical Reynolds number values. 
Considering isoperimetric quotient (IQ), coming from famous isoperimetric 
theorem, we established and quantified the link between fluids flow stability 
and IQ. Moreover, we showed that an abacus could be built giving critical 
Reynolds number values as a function of cross-sections IQ. This abacus could 
be an interesting and important tool for both research and engineering 
applications.
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INTRODUCTION

In fluid dynamics, hydrodynamic stability aims to find out if a given 
flow is stable or unstable, and if so, how these instabilities will cause the 

development of turbulence (1). The Reynolds number is the most important 
tool used in both research and engineering, to determine the flow stability 
and then the flow regime in a pipe. In a very complete paper (2) gave a 
review of mechanisms and possible explanations for phenomena involved 
during the transition between laminar and turbulent flow regimes. The role 
of disturbances was of course discussed as a major source of flow instability. 
In this paper, we will only consider the case of “normal” disturbances; 
i.e. disturbances encountered in classical pilot-plants experiments or in 
industrial devices. These conditions give a critical Reynolds number around 
2000 for a pipe of circular cross-section shape; even if this value can reach 
100,000 by minimizing all ambient disturbances (2).

Flow regime has a considerable importance in transport phenomena, 
and then for industrial applications involving heat, momentum and 
mass transfers. Most of the time, experimental and numerical studies are 
carried out in tubular geometries but development of high performances 
heat exchangers and nanotechnologies requires more and more accurate 
knowledge of fluids flow in arbitrary shape pipes and ducts. Recent paper of 
Manish et al. (3) well illustrated this need for a better understanding of flows 
in complex shape geometries.

Laminar flow in ducts of non-circular cross-section was widely studied, 
and famous theoretical work of Shah et al. (4) is undoubtedly the best 
reference. Poisson’s partial differential equation can be solved analytically 
or numerically depending on the cross-section shape geometry giving the 
boundary conditions (Dirichlet problem). Results are of course the velocity 
fields for the different geometries. But in the transition and turbulent flow 
regimes, the study of the flow in ducts of complex cross-section is much 
more complicated and there exists a relatively small amount of experimental 
and numerical results due to the complexity of Navier-Stokes equation 
which remains unsolved. But, due to the huge interest around this very 
complex mathematical problem, recent publications gave both analytical and 
numerical results of major importance (5-9).

A concrete example of complex geometry is plate heat exchangers (PHE) 
which are widely used in the industry. It surely explains why, their very 
complex flow passages hydrodynamics, was experimentally studied by many 
authors (10-12). PHE friction curves gave a better understanding of liquids 
flow in complex shape flow passages; even in the case of non-Newtonian 
liquids encountered in food processes. As clearly reported by Delplace (12), 
these results showed a very low value of critical Reynolds number (Re

c
) 

compared to well known values found for pipes. For a single PHE channel, 
10 ≤ Re

c
 ≤ 30 and Re

c 
≤ 10 for a complex PHE flow arrangement (11). All 

PHE experimental results showed that the complete friction curve, spanning 
all flow regimes, does not exhibit a marked transition region like in pipes. 
As a consequence, a simple Ergun type model allowed all flow regimes to 
be described. Finally, Delplace (12,13) compared experimental friction 
curves in a PHE channel and in several ducts having triangular, square, 
rectangular and circular cross-sections. These results were obtained with a 
huge number of experimental data and several liquids, both Newtonian and 
non-Newtonian and they are a strong source of information. They clearly 
showed the influence of geometry on flow stability and the huge difference 
of friction factor values between PHE and regular pipes.

Turning now on recent theoretical developments in fluid mechanics and 
geometry, Delplace (14) showed that Reynolds number can be considered 
as the ratio of two curvatures: pipes cross-section curvature defined through 
hydraulic radius and flow velocity field curvature due to inertia and fluid 
dynamic viscosity. Moreover, in an applied Mathematics paper, Delplace 
(15) demonstrated that hydraulic radius based curvature can be extended to 
n-dimensional shapes and then can be used for 3D flows. These approaches 
suggest that shapes curvature, considered as a major parameter in Physics 
(16), could be useful for the study of hydrodynamic stability and then for 
turbulence apparition in ducts of arbitrary cross-section shape.

In the first part of the present paper, we will detail above results and give 
the main relationships used for experimental friction curves description and 
critical Reynolds number values determination. In a second chapter, we will 
analyse results using both Poiseuille number (P

o
: product of friction factor and 

Reynolds number in the laminar flow regime) and cross-sections curvature in 
order to predict critical Reynolds number values. Finally, we will conclude by 
giving a possible explanation of the influence of cross-sections geometries on 
the transition between the laminar and turbulent flow regimes. This result, 
based on one of the most famous theorem in geometry, gives for the first 
time, a clear and simple mean to determine fluids flow stability in ducts and 
then to improve geometries used in industrial applications.

EXPERIMENTAL FRICTION CURVES IN DUCTS OF 
COMPLEX CROSS-SECTION SHAPE

Using a large number of Newtonian and non-Newtonian liquids, Delplace’s 
experiments (12,13) consisted in pressure drop ( )P Pa∆  and flow-
rate measurements, in regular ducts having circular, triangular, square, 
rectangular and elliptical cross-section and in a PHE channel. For Newtonian 
liquids (water and dilute sucrose solutions), this author calculated classical 
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dimensionless numbers i.e. the Fanning friction factor 2f  and the Reynolds 
number Re defined as followed:

 2 22 4
w HPDf

v L v

τ

ρ ρ

∆
= =  				                  (2.1)

Re HvDρ
η

= 					                (2.2)

In these equations, ( )w Paτ   is the average wall shear stress along the cross-

section perimeter; ( )1.v m s−   is the liquid mean velocity; ( )3.kg mρ −
  its 

density; ( )L m  is the pipe length where pressure drop ( )P Pa∆   is measured; 

( )HD m  is the hydraulic diameter and ( ).Pa sη  is the liquid dynamic 
viscosity. As reported in Delplace (12) liquids physical properties ( )3.kg mρ −   
and ( ).pa sη   were measured in the laboratory by use of a densimeter and 
viscometers. Of course, temperature variations were carefully taken into 
account in the calculation of these physical properties. The following Figures 
1 and 2 taken from Delplace et al. (13) illustrate excellent correlations 
obtained, for a wide range of Reynolds number values (from 10-1 to 105), and 
a wide range of viscous behaviours.

As reported above, these experiments covered all flow regimes. For laminar 
flow, the slope of friction curves is (-1) and Poiseuille number: 2.RePo f= , 
values were in perfect agreement with theoretical values reported in Shah et 
al. (4) i.e. 7.11 for a square duct, and 6.67 for an equilateral triangular duct. 
For transition flow, the friction curve slope clearly changed, until it reaches 
the fully developed turbulent flow regime, and the final slope. These results 
were comparable to those obtained in smooth tubes of circular cross section.

For PHE channels, friction curves were quite different; especially in the case 
studied by Leuliet (11) of a complete PHE configuration. The following 
Figure 3, clearly illustrates both the difference in friction curve shape and 
friction factor values.

Friction factor values were clearly larger than previous ones and the value 
of critical Reynolds number was very low: Re 7c = . Being aware of the 
Leuliet’s (11) PHE complex flow configuration, Delplace and Leuliet, 
working in the same laboratory, decided to study a single PHE channel in 

order to eliminate singularities due to brutal changes in flow direction in the 
complex flow arrangement. Delplace (12), using a large amount of liquids, 
both Newtonian and non-Newtonian, obtained the following friction curve 
for the single channel.

The shape of the curve remained the same but critical Reynolds number 
value clearly increased: Re 30c =  and Poiseuille number value largely 
decreased from 40.6 (11) to 14.66 as reported in Figure 4. This last value 
was more in agreement with values reported in source books (10) confirming 
the role of changes in flow direction in the case of Leuliet study (11). These 
results will be discussed and interpreted in the second chapter of this paper.

As reported by Joseph (17), modelling of friction curves is very important. As 
showed in above examples, determination of critical Reynolds number Re

c
 

values is not easy, and it requires a large amount of measurements around 
the transition region; in order to determine when the slope of friction curve 
changes from (-1) which is the characteristic of laminar flow.

The following friction curve for a smooth pipe of circular ross-section 
was taken from Joseph (17) and it shows that even for the most common 
geometry (circular cross-section), a large amount of data, covering a large 
range of Reynolds number values is necessary to accurately determine for 
that well-known case (Figure 5). 

Delplace (12,13) applied the same approach for all geometries tested. For 
example, the following friction curve was obtained for the duct of square 
cross-section allowing a critical Reynolds number value Re

c
=1150 to be 

accurately determined (Figure 6). 

Delplace (12,13) used the powerful modelling method proposed by Churchill 
(18) for friction curves obtained in his geometries reported above. The main 
advantage of Churchill’s (18) approach is to give a single equation for all 
flow regimes with a great accuracy. For example, for a pipe of circular cross-
section, friction law takes the following mathematical form:

( )

1 1212

3 2
8 1

2
f

Re A B

   = +  
  +  

 				              (2.3)

Figure 1) Friction curve for square cross-section from Delplace et al. (13)

Figure 2). Friction curve for an equilateral triangular cross-section from Delplace et 
al. (13)

Figure 3). Friction curve for a complete PHE from Leuliet (11).

Figure 4). Friction curve for a single PHE channel from Delplace (12). 
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  		              (2.4)

The following friction curves for all flow regimes were then plotted from a 
huge amount of experimental data.

To our knowledge, it is the only existing friction curves obtained in the same 
experimental conditions, i.e. the same pilot-plant, for several cross-section 
shapes, and covering laminar, transition and turbulent flow regimes. It 
clearly shows influence of the ducts cross-section shapes on flow stability 
characterized by critical Reynolds number Re

c
 values.

The less stable flow occurred in equilateral triangle duct Re
c
=780 and the 

most stable in the rectangular duct of aspect ratio 1:5 giving Re
c 
=2300. In 

the laminar flow regime, all Poiseuille number (P
o
) values were of course in 

perfect agreement with Shah et al. (4) theoretical results.

CRITICAL REYNOLDS NUMBER VALUES, POISEUILLE 
NUMBER AND DUCTS CROSS-SECTION CURVATURE

Critical Reynolds number and Poiseuille number values

As reported in the introduction of this paper, Poiseuille number is the 
product of friction factor and Reynolds number in the laminar flow regime. 
We called P

o
 this dimensionless number defined by the following equation:

2
fPo Re=  				           	             (3.1)

As showed in Figure 7, critical Reynolds number values seem to depend on 
Poiseuille number, moreover they follow the same tendency i.e. Re

c
 increases 

when P
o
 value increases.

We decided then to add other data found in literature for P
o
 and Re

c
 values. 

From experimental work of Kao (19) performed in a rectangular duct of aspect 
ratio 1:8, we have P

o
=10.25 and Re

c
=2600. Recently, Marin et al. (20) numerically 

investigated the flow in a hexagonal duct. Their results indicate that pure laminar 
flow occurred below Re=2000 and a value of Re

c
=1500 could be used. From Shah 

et al. (4) work we have P
o
=7.53 for hexagonal ducts.

Finally, the well-known case of infinite parallel plates, often called plane 
Poiseuille flow, has to be considered. In that case, we know from theory that 
P

o
=12, but determination of Re

c
 is always a great debate since the famous 

theoretical work of Lin (21) giving Re
c
=5360. The paper of Orszag (22) well 

discussed the problem and gave the value Re
c
=2800 as the most representative 

of “normal” conditions described in the introduction of this paper. All these 
couples (P

o
, Re

c
 ) were reported in the following graph.

Considering that determination of Re
c
  values is subject to uncertainties, 

mainly due to experimental conditions (vibrations, pipes roughness…) and 
graphical determination (change in the laminar flow friction curve slope), 
we can consider that correlation of data presented in Figure 8 is quite 
acceptable. A quadratic form was used as a model available in the range of 
Poiseuille number values: 20⁄3 ≤ Po ≤ 12; 20⁄3 and 12 being respectively P

o
 

values for equilateral triangle and infinite parallel plates.

(P
o
, Re

c
) values presented in Figure 8, ask the question of PHE results 

described in the previous chapter. If we consider that maximum Poiseuille 
number value in a classical (regular) duct is 12 giving rise to the most stable 
flow and then to the highest critical Reynolds number around Re

c
 = 3000; 

how can we interpret PHE results giving a very low value of Re
c
 around 30 

and a high value of Po around 15? 

The typical shape of PHE friction curves without any brutal change in the 
slope in the transition flow regime as showed in Figures 5-7 can be found 
in packed and fluidized beds (McCabe 2001, Harrison et al.). Ergun type 
equations are widely used for that particular case and well known Kozeny-
Carman equation gives:

37.5 1
2 c
f with Re

Re
= ≤  				                (3.2)

Which corresponds to results obtained in PHEs. This means that in PHE 
channels the flow is not free of obstacles like in classical ducts described 
above. The following picture (Figure 9) of flow patterns in a PHE channel 
with straight corrugations plates obtained by Delplace (12) during fouling 
experiments clearly showed the role of contact points between the plates.

Figure 6). Friction curve for a duct of square cross-section from Delplace (12,13).

Figure 5). Friction curve for a pipe of circular cross-section from Joseph (17). 

Figure 7). Friction curves for various cylindrical ducts from Delplace et al. (13).

Figure 8). Re
c
 vs. P

o
 for several ducts cross-section shape.
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This nice picture clearly demonstrated the role of instabilities created by the 
presence of obstacles (contact points between the plates) in the main flow 
stream; and also how eddies can be regularly distributed along the corrugated 
channel. From these observations and the particular shape of PHEs friction 
curves, it is clear that these ducts can not be considered as others (regular) 
previously described. Their hydrodynamical behaviour is more analogous to 
packed beds ones according to Kozeny-Carman and Ergun’s equations.

We will now consider classical (regular) pipes shapes reported in Figure 8 and 
how a geometrical approach could be a way to have a better understanding of 
flow stability in these ducts.

Critical reynolds numbers and ducts cross-section curvature

In a recent publication, Delplace (14) showed that Reynolds number can be 
seen as the ratio of curvatures. In that way of thinking, hydraulic radius was 
considered as the cross-section radius of curvature. It is then possible, for 
each shape previously studied, to calculate Reynolds number as followed:

Triangular duct- 1
2

3 3 HRe C Qρ
η

= 			                 (3.3)

Square duct - 2
1
2 HRe C Qtρ
η

=  				                  (3.4)

Circular duct - 3
2

HRe C Qρ
π η

=   			                (3.5)

Rectangular ducts- 
( )4 2

2
H

abRe C Q
a b

ρ
η

=
+

  		              (3.6)

Infinite parallel plates 5 2 H
aRe C Q
b
ρ
η

=  			                (3.7)

In these equations, ( )11 2H HC R P S m−= =   is the hydraulic curvature, 
with P(m) the cross-section perimeter and Sm2 its surface.

Of course, Re
5 
given by equation 3.7, comes from Re

4 
given by equation 3.6, 

with b≫a and Re
2
 given by equation 3.4, comes also from Re

4
 by considering 

a=b.

Q m3.s-1 is the volumetric flow-rate in the pipe.

Reynolds number takes then the following general form:

n HRe k C Qρ
η

=  					                   (3.8)

Where k is a real number depending on cross-section geometry characterized 
by its hydraulic curvature C

H 
(m-1). For rectangles of aspect ratios 1:5 and 1:8 

we obtain respectively: k=5⁄18 and k=16⁄81.

In another publication in applied Mathematics, Delplace (15) showed the 
great importance of isoperimetric theorem in the definition of hydraulic 
radius for a polygon or a polyhedron. In geometry, isoperimetric theorem 
explains that the discus always has the shortest perimeter for a given 
surface or the highest surface for a given perimeter when compared to all 
others geometries. This strong demonstrated mathematical theorem can 
be extended to higher dimensions. In 2D i.e. for surfaces, the often called 
isoperimetric quotient is defined by:

2

4 SIQ
P
π

=  				                                      (3.9)

This dimensionless number is used to quantify the difference between the 
discus and all others planar geometries. For the discus we have IQ=1 which 
can be considered as the reference or ideal case. For all others compact 
geometries, IQ<1. The following Table 1 gives the values of parameter k and 
isoperimetric quotient IQ for all considered geometries.

From these examples, it is self-evident that ( )2IQ k π=

From equation (3.8), Reynolds number depends on k and then on IQ. 
We decided then to plot the graph Re

c
 vs IQ for all geometries previously 

investigated.

Square symbols represent regular convex shapes i.e. equilateral triangle, 
square, hexagon and discus (IQ=1). Circular symbols represent rectangles, 
from the square to infinite parallel plates (IQ=0). 

Two excellent correlations indicated in Figure 10 were obtained for the two 
curves maid of these symbols. The first one for regular convex shapes, the 
second one for rectangles. This approach seems to indicate that stretching 
of regular convex shapes increases flow stability and then critical Reynolds 
number value until it reaches a maximum value found for infinite parallel 
plates giving the most stable flow.

This graph could also be considered as an abacus giving critical Reynolds 
number values for a given regular duct cross-section characterized by its 
isoperimetric quotient IQ. The master curve corresponds to regular convex 
shapes obtained by increasing the number of sides: from equilateral triangle 
(3 sides) to the circle (infinite number of sides). The others curves describe 
each stretched geometry like rectangles. The following Figure 11 gives a 
representation of this possible abacus.

Red dotted line corresponds to triangles from equilateral ones, on the regular 
shapes master curve, to all isosceles triangles reaching infinite parallel plates.

Green dotted line describes hexagonal shapes, from regular hexagon, to 
infinite parallel plates by stretching two opposite sides. 

Orange dotted line gives elliptical geometries, from pure circle to also 
infinite parallel plates.

In this representation, the plane Poiseuille flow appears the most stable giving the 
highest critical Reynolds number value according to Lin theoretical work (21).

Figure 9). Flow patterns in a PHE channel from Delplace (12).

Geometry k IQ

2
3 3 3 3

π

1
2 4

π

 

2 15 20
25

ϕ+ 15 20
25

π ϕ+

1
3 2 3

π

1:5
5

18
5
36
π

1:8
16
81

8
81
π

2
π

1

TABLE 1:

Values of parameter k and isoperimetric quotient IQ 1.618ϕ ≅  
is the gold number
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As reported at the end of the introduction of this paper, isoperimetric theorem 
allowed to build this very simple and then practical abacus to determine 
fluids flow stability in ducts. Of course, at this time, there is a lack of data to 
enrich it. But, because of major interest of fluids flow stability for industrial 
applications, i.e. for heat and mass transfers applications; enrichment of this 
abacus by both experimental and numerical research works on the flow in 
ducts of various cross section shape should be performed. 

CONCLUSION

In this paper, we investigated fluid flow stability in ducts of arbitrary cross-
section shape. Our approach is based on a large amount of experimental 
results obtained by several authors and presented using correlations between 
Fanning friction factor and Reynolds number i.e. friction curves.

First of all, we showed the great importance of these experiments to accurately 
determine critical Reynolds number values and then the conditions where 
the flow stops to be purely laminar, i.e. where streamlines stops to be straight 
in the flow direction. For Reynolds number values greater than critical value, 
eddies form and then the flow becomes unstable. We are in the transition 
region. Experiments carried out in ducts having different cross-section shape 
with a large amount of measurements in the transition region are essential 
to understand phenomena.

From these results, we clearly established the major influence of ducts cross-
section geometry in the transition between laminar and fully developed 
turbulent flow regime. The complex and particular case of industrial plate 
heat exchanger was also investigated and analysed. From flow patterns 
observations, their friction curves with very low critical Reynolds number 
values, and very high Poiseuille number values were explained. Plate heat 
exchangers flow passages have to be considered as made of obstacles and then 
very different than classical regular ducts. Their hydrodynamic behaviour is 
analogous to packed or fluidized beds giving friction curves with identical 
characteristics.

Considering 7 regular ducts, and famous Shah et al. (4) theoretical work 
giving Poiseuille number values, we obtained an acceptable correlation 
between Poiseuille numbers and critical Reynolds numbers experimentally 
determined. More experimental work is necessary to make this approach 
more accurate but the quadratic form proposed in this paper can be useful 
for a rapid determination of critical Reynolds number.

Finally, using recent theoretical work of Delplace (15) about curvature of 
polygons and polyhedral, we showed a strong correlation between critical 
Reynolds number value and isoperimetric quotient coming from famous 
isoperimetric theorem. Even if this approach has to be completed by 
experimental and numerical works on the flow in others geometries, it 
shows that an abacus of major interest in fluid mechanics and in industrial 
applications could be built.
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