RESEARCH

Gell-Mann matrices (strong force interaction) in geometric
algebra Cls

Jesus Sanchez

Sanchez J. GelllMann Matrices (Strong Force Interaction) in
Geometric Algebra Clso. ] Mod Appl Phys. 2023; 6(3):1-15.

ABSTRACT

In this paper, we will find a way to apply the Gell-Mann transformations
made by the A; matrices using Geometric Algebra Clso. And without the
need of adding the time as an ad-hoc dimension, but just considering
that:

t=2p2

The transformations are as follows. Considering the original ¥:

Y= + X + T + 2 + 1,92 + Y5028 + Puy X9 + Yy, 292

The new 1’ obtained when applying each of the Gell-Mann matrices A;
is:
1/)’ = (’11 i 1/)) = 1»[)0 + lpyf + 1l)xy + 1/)2355}2’\ + 1ljyzz’\5c\ + lpxyzfj}i
ll" = (AZ - 11’) =Y+ P,L— Ipyzy_lpyj}é + 2% + wxyzfj}i
I[J' = (A3 - ll’) =y +PX — lpyy + wyzyé — P ZX+ wxyzfj}i
1»[1’ = (A4 d 1/)) = 1/)0 + lpzf + ¢x2 + 1,[1,(3,?2’\ + 1»byzjey + lpxyzfyz’\
1/), = (’15 d 11[)) = 1»[)0 + ¢xy5c\ - 1/)3,22’\ - 1/)23’}2 + lprj} + 1l)xyz)?5}2
lﬁ’ = (/16 - ll’) =Yty 9+ lpbyi + Inyf?? + Y Xy + lpxyzfj}i
1/), = (’17 d 11[)) = 1»[)0 + 1l)xy5> - 1l)zx2 - ll)ZZA)’C\ + lpyfj} + 1l)xyz)?5}2
Y =4 > ) ¢+1¢A+1¢A 2¢A+11/’M
= ->Y) = — Y2+ —= -—Y,2+—= 2
8 0 73 x 73 yyz 73 'z 73 'yzY
+ —\/§¢zx2£ - ﬁwxyfj} + Ipxyzfyé
Considering that Gell-Mann matrices do not consider at all the existence
Lif g and Py, , it is possible that we should consider them zero form

the beginning. Anyhow, above relations would correspond with the most
general case.

We have also worked in the bra-ket product using geometric algebra. For
the Euclidean case we have the equation (where the cross sign means
reverse and the asterisk means conjugate, both mean the same in Cls:

iy =y =

= (Yo + Yuk + Y9 + Y, 2 + Yy 29 + Y X2 + Yy 9T + 1y, 29%) (Yo
TP+ YT+ P2+ Py, P2 + Y 2R + Yy X
+ 1y, %92) =

= (ll’o + Ipr + Ipyj} + lpzi - wyzyé - l»bzxif - l»bxyfj} - lpxyzfj}i)(wo +

U AT + P2+ Yy, 92 + 2R + P B9 + Yy, %92) = p+]
Being p the probability density:
p=1o" i " U Uy U "
And J the fermionic current:
7= Z(IIJOIP;V + lpxwxy - I:bzwyz + wzxwxyz)f + Z(Iﬁollly + wxlpbxy -
Il’zwyz + lplepbxyz)j} + Z(IIJOIPZ — PP + Iabylpyz + Ipxywxyz)z
We have made the same in the case of orthogonal buy not orthonormal
metric, leading to:
Yy =y p=p+J
But in this case:
P =90 + i’ G + Uy Gy + 0, Gz + Wy2" Gyy Gz + Vox” G2 G +
Ipx;\/zgxxgyy + I:bxyzngxgyygzz
And:
j = 2(1/)0111176 - ¢ylpxygyy + 1»bzl»bzxgzz + 1»byzl/)xyzgyygzz)f + 2(+1/)0¢y +
1/)xlrbxygxx - 1/)yzl»bzgzz + 1/)zx1rbxyzgzzgxx)y + 2(+1/)0¢z - 1/)xlnbzxgxx +
Il}yl»byzgyy + Ipxywxyzgxxgyy)z
It has been also shown that the g-2 issue of the muon could be related to
gravitational (non-Euclidean metric) issues without needing another
natural force.
The difference of the values of g-2 of the muon are:

a, —a, =2,79E — 09
And the effect of the non-Euclidean metric on the surface of Earth is:

Gux — 1 = 1,392262E — 09
As you can check, they are in the same order, being one approximately 2
times the other. So, gravitational effects could indeed affect the g-2 value
of the muon on the surface or Earth as commented.
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INTRODUCTION
In this paper, we will calculate which are the transformations
performed by the GellMann matrices but in the realm of the
Geometric Algebra Clzo. We will also check how the bra-ket product is

performed using Geometric Algebra. And in the end, we will check the
effects of gravitational fields (non-Euclidean metric) in this product
and how it could affect the g-2 issue of the muon.
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1.  Welive in eight dimensions
There is a discipline in mathematics that is called Geometric Algebra
also known as Clifford Algebras [1-3]. One curious thing of this
Algebra is that if you consider a certain number of spatial dimensional
(a certain number of independent vectors), automatically appear other
dimensions (or if you want to call them, new degrees of freedom or
other entities other than vectors).
In fact, the total number of degrees of freedom in an n-dimensional
(understanding n as the number of special dimensions or independent
vectors) in Geometric Algebra is:
Total number of degrees of freedom = 2" (1)
If we consider that our world has three spatial dimensions (in
Geometric Algebra it is called Cl 50), we will have:
Total number of degrees of freedom = 23 = 8 2)
And in fact, we can check that this is true Figure 1:

In three dimensions, we have three independent vectors X, y and 2:

Figure 1) Basis vectors in three-dimensional space

In geometric algebra, these three vectors create 5 other entities.

The first other three entities are the bivectors. The bivectors are created
multiplying perpendicular vectors. The result of this product is the
bivector, an independent entity from the vectors that represent

oriented planes. For example, the £ bivector Figure 2:

Figure 2) Representation of the bivectors X9 and yX. They represent the same

plane with opposite orientation. In fact, Xy = —Px

There are three independent bivectors: Xy, ¥Z and 2X.

Another appearing entity is the trivector. It is formed by the product
of the three independent vectors (and represent an oriented element
of volume) Figure 3:

Figure 3) Representation of the two possible orientations of the trivector

We can check that £yZ = —9%2

One important thing of the trivector is that in three dimensions there

is only “one trivector”. I mean, it can be bigger or smaller or with
opposite direction (this means it can be escalated by a real scalar -
positive or negative-), but the trivector itself as basis or unit trivector is
always the same. You can check Annex Al to check wheat I am talking
about.

Another special property of the bivectors and the trivectors is that the
square of a bivector or a trivector is -1. This you can check in all the
papers of GA [1-5]. And the square of a vector is 1. Always talking in
Euclidean metric. If this is not the case, you can check [2, 4]. That the
square of the bivectors and the trivectors is -1, means that they are a
clear candidate for the imaginary unit i in certain circumstances. And
we will see that this property is key for the trivector in the next chapter.
The last entity exiting in Geometric Algebra are the scalars (the
numbers). They exist in their own space (are not linear as vectors,
surface as bivectors or volume as trivector).

So, in total you can check that we have 8 entities when we have three
spatial dimensions: 3 vectors, three bivectors, one trivector and the
scalars.

But why are they “degrees of freedom”?

Ok, I will define another concept, the multivector. A multivector is just
a sum of all the commented previous entities. This is, for example:
A=y + ;X + ayY + az2 + a, Xy + asyz + ag2x + a;xyz2  (3)

Being @; scalars. This means the multivector (whatever it represents) it
has eight degrees of freedom (from @y to @7). Its meaning can vary a
lot depending on the context or the discipline we are talking about.

For example, let us check the position multivector Figure 4:

N>

Figure 4) Representation position multivector

This multivector has 8 coordinates (8 degrees of freedom
corresponding to the scalar, the three space vectors, the three bivectors
and the trivector):

R =15 + 1, & + 1,9 + 0,241 X941, 92 + 1,28 + 1, K92 (4)
We can see that the vector a in the figure corresponds to the linear
position of the particle or to the rigid body center of mass:
d=nX+ny+rn2 (5)
So, we can simplify the representation of the multivector as:

R =1y + d+1y X941, 92 + 1,28 + 1, X2 (6)
Now let’s go to the bivectors. In Figure 4 you can see that there is a
bivector b that represents the orientation of a preferred plane in the
particle/rigid body. This is, if you select a preferred plane solidary to
the particle/rigid body, it tells us the orientation of this plane at a
certain time. To define this orientation, you need a coefficient per basis
bivector (the same as to define a vector you need the sum of three basis

vectors, for bivectors works the same). So:
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bAE = 1, X9+, 97 + 1, 5% ™
Introducing in R:

R =75+ @+ bAC + 1, 292 ®)
You can see that in a unique multivector R we are having the position
and the orientation in the same expression. We have the sufficient
degrees of freedom in the expression of the multivector R to give all
this information just in one entity (the multivector R).

There are two other components 1y (the scalar) and X2 (the trivector)
that I will explain in the next chapter.

For information, this realm of Geometric Algebra that considers three
spatial dimensions, and the eight degrees of freedom (or eight type of
elements) created by them is called Geometric Algebra Cls.

And for orthonormal bases in Euclidean metric, the following rules

apply in Clso [4-6]:

R =2%=1

P=99=1

P =23=1

29 = —p%

92 =29 8.1)
2% = -2

(£9)* = 2929 = —9229 = —1

(92)? = 9292 = ~2992 = —1

(2%)* = 2%2% = —%22% = 1

(£92)* = 292292 = —1

It is also important to remark that the scalars and the trivector
commute with all the elements. The vectors anticommute among
them as you can see in 8.1 equations.

The bivectors anticommute among them. Example:

RY)(P2) = 2992 = %2 = —2% (8.2)
()(9) = 9259 = ~2929 = 1299 = 22

And the vectors and the bivectors anticommute among them, when
the result is a vector. And they commute if the result is £9Z (or any of
its permutations). Examples:

(R)(2%) = 22% = —%%2 = —2 8.3)
ERYR)=222=2

@)) = 292

(DG = 229 = —229 = 392

It is also worth to comment that the associative and distributive
properties apply to all the elements of the multivector (and in general
in Geometric Algebra). It is only the commutative and
anticommutative properties that apply differently (according above

rules).

To sum up:

e  The scalars and the vectors have positive square. The
bivectors and the trivectors have negative square (see 8.1
equations).

e  The scalars and the trivector commute with all the
elements. The vectors anticommute above them
(equations 8.1). Bivectors anticommute among them
(equations 8.2). Vectors and bivectors can anticommute
(if the result are a vector) or commute (if the result is the
trivector). See equations 8.3.

2.  Time as the trivector
[ am not going to explain a lot here and the reason is because what you

are going to hear is very difficult to believe and digest. You can check

papers to check all the info that corroborates what I am going to tell
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now.
In Geometric Algebra, it is not necessary that the time is a fourth
dimension of the space-time (the classical 3 space dimensions and one
4™ time dimension).

In Geometric Algebra, the time can be the 8" degree of freedom of the
8 degrees of freedom (or dimensions created by the GA itself). The
time is emerging as one of the dimensions that appear automatically
when the three spatial dimensions exist.

This is, the basis vector of the time is not a separate vector £ but it is
the trivector XyZ already commented.

t=3%y2 ©)

The main reasons to consider this are:

e The signature of time is negative in General Relativity [7].
This can only be achieved considering an ad-hoc metric with
a -1 signature or considering imaginary numbers. In GA,
this is not necessary as the basis vector of time (the trivector)
has a negative square as expected.

e | have written three papers where it is checked that
considering this in Dirac Equation, Maxwell equations and
Lorentz Force equations match perfectly (see chapters 4, 5
and 6 of this chapter for more information). In fact, that the
spinor of the Dirac equation has 8 degrees of freedom, and
to consider one of them, the time-trivector, match perfectly
with the equations [8-10].

So, you will check that from this point on, we will consider always the
trivector as the basis vector of time. This does not mean that the
trivector could not mean other things depending on the context
(sometimes, it could be related to spin or to the electromagnetic
trivector see chapter 7). The same than a vector can sometimes
represent a position, others a force etc. the trivector is just a tool that
has certain properties, and these properties match perfectly with the
properties of what we perceive as time.

Anyhow, that the trivector represents at the same time the volume and
the time could be a hint that somehow, they are related. And the time
could be a kind of measurement of the continuous creation of volume
in the universe (you can check different mechanisms of creation of

volume by the masses in the universe.

After this shock, we continue with the other pending item of the
previous chapter, this is, ro. The meaning of this element is more
obscure. As [ have commented, the scalars in the multivector are a kind
of scalation factor that affects all the magnitudes that are multiplied by
it.

So, it could be related to a kind of scalation in the metric appearing in
non-Euclidean metrics (kind of local Ricci scalar or trace of the metric
tensor).

Another simpler interpretation for ro, is that the scalars appear when
we multiply or divide vectors (or bivectors or the trivector) by
themselves. So, sometimes it is necessary a degree of freedom to
accommodate these results when they appear. For example, in the
current density through time, sometimes is accompanied by the
trivector and other times is just a scalar depending on the operations

that have been performed before [6].

And to finish, I will just comment the i imaginary unit. In geometric

algebra will be always substituted by another that also has -1 square.
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These are the bivectors or the trivector (in Cl3,0). When it is related
with a magnitude with no preferred direction (energy, time), it will be
substituted by the trivector £JZ. When i is attached to a magnitude
with specific direction (velocity, momentum) it will be represented by
a bivector (normally representing the plane perpendicular to that
direction). You can see examples in [4,5]. In this paper, the substitution

by the trivector X9Z will be sufficient, as we will see.

3. Spinors in Geometric Algebra Cls,

If we have a spinor in matrix notation like:
1»[)17“ + 1l)1ii
g [ or i
Ysr + Pyl
Yar + Pyl
And we apply the substitution of i by the trivector as commented in
chapters 1 and 2.

i %92
We get:
lplr + lplii 1plr + lplifyi
»= Yor + il | _ [ Yor + ¥2:X92 (10)
I:037" + ¢3ii ¢3r + 1!’31'9?)72
1/)4r + 1»[)41": ¢4r + 1!’41"?)72

Now, we want to project the spinor in the four dimensions X, ¥, and
t premultiplying by them:

Y1y + Y1292

Yor + Y2292

Y3 + Y3292

Yur + Yo X92

@9y 2z Dy=x 9 2z D

But here we can use the equation (9) of chapter 2:
t= 292

Togetto:(X § 2 1)

Yy + 1 XY2

Yor + Y5 %92

Y3, + Y3292

Yoy + Py XY2

V=@ 5 2 %92

Here, you could think that the 92 in the row vector, should be
negative as we conjugate (put negative the elements with square -1)
when a column vector is converted to row. Even you could think that
instead of projecting to £ , we could project to the scalar 1 (as our APS
friends probably would propose). No worries, all of them would work,
just conventions of signs or nomenclature between elements will
change but the result would remain coherent [11-20]. You can make
the checking if you want.

If we continue operating:

Yy + 91 %92
Yor + 3 %92
Y3 + Y3 %92
Yy + PyiX92
VY1292) + Yoy + Y2ux92) + 2(3r + Y3, 292) + 292y +
Yy R92) = 1,8 + Y1 RXYZ + Y309 + P2 IRI2Y 3,2 +1P3i2892

@y z Dy=@& 9 2 %92) =2, +

1/)3@? + 1!’47"?5}2 — Yy
If we rename the components the following way:

Yir = Py

Yor = ¢y

Y3 =Y,

Iabli = lpbyz (11)
Yo = Pux

Ia03i = 1pxy

Yyr = Il’xyz

—Yy =Py

4

We obtain the typical definition of a spinor in Geometric Algebra Clso
[5,2047].

Y=+ P L+ 1/)3,5; +Y,Z + lpyzj;ZA + Y, 2% + lpxy’?j} +

Vyy XVZ (12)
We can see that it has the 8 degrees of freedom commented for a
general multivector in Geometric Algebra Clso. You can compare it
with equations (1) or (1.1) for example.

Although one of the ideas of geometric Algebra is not to use matrices,
but as we will have to handle the Gell-Mann matrices (see next chapter)
in this paper, we will show also the matrix form of this multivector. So,
we have it prepared when we have to use it. We apply equations (1) to

(19) to obtain:
Yy + 9,292

= Yy + X2
T Yty R92
1/)xyz - 1/)02372/
In this paper, we will proceed as follows. We will apply the GellMann

(13)

matrices (see next chapter) to an original spinor called ¥ (13). These
matrices will transform the original spinor ¥ into a new one called ¥’
(14) with a similar form but different values for each element.
Y+ 1ll’yza?372\
, 7 ans
Y= \iy:fgj} (14)
z xy
Y, — ¥ X292
Once we have this transformed matrix vector, we can obtain its
equivalent multivector in Geometric Algebra Cls as follows:
Y=y Y Y I+ Y FE+Y 2R+ R+
L5724 (15)

4.  Gell-Mann matrices
First comment is that it has been already tried to get a correspondence
between Gell-Mannatrices and geometric algebra [48-53]. Some of the
ideas in the paper have come from these previous papers.
The GelllMann matrices used in Strong Force interactions are as

following [46]:

01 0
A=[1 0 0
000

0—10)
0 0

~
N
I
-
=}
=}

~
&
Il

|
Lo
oo
v

~
£
Il

o O
SN~——o

OO O OO O RO

> >
~ o
I I
o oo o o~

~
wu
I
N N N NN

IS
OO"_‘NOO»—\OOOOOOOOO
or o
v

0

0 0
1 0
0 -2

The first thing that we see is that they 3x3 matrices. So how can we use

&
5l -
/N

them in matrix vectors of 4 rows as (13):
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Yy + P, %92
Y, + Py, 292
1»bxyz - 1!’055\?2}
One of the important things of Gell-Mann matrices is that they only

( Yy + 1,292
1[; =

act in anticommutative elements. See ref for more details [46]. In
Geometric Algebra Cls o (you can check it playing with 8.1,8.2 and 8.3
equations in chapter 2) the anticommutative elements are the vectors
(%, %, 2) and the bivectors (§Z, 2%, £9). And the scalars and trivector
(1,%92) are always commutative. See chapter 2 and [1-6] for more
details.
If you check equation (12) which is the multivector equivalent to (13)
Y=+ X+ 1/)3,5; +y,z+ lpyzyZA + Y, 2% + ¢xy5c\5> + 1l)xyz’?5>2
You can see that the coefficients attached to vectors and bivectors
(anticommutative) are:
2% Ipy Y, I:byz Yox 1pxy
So, this means above coefficients will be affected by the GellMann
matrices.
While the commutative ones Yy,,, and g will not be affected. Thies
leads us to an easy solution. The matrix vector we will use when using
Gell-Mann matrices, will be this “cropped” one:

Yy + Py, 292
1/’ = lpy + 1,[)fo§2

Y, + Py 292
Where we have eliminated the last row. And once we make the
operation to this vector using Gell-Mann matrices, we just have to add
the last row again (or put it as zero? we will comment later this point).
What it is clear is that we do not lose any generality not considering
some elements that are not affected by a transformation and then
putting them again. As commented Gell-Mann matrices only “touch”
anticommutative elements, so we do not need the row with

commutative elements to perform these operations.

The resultant matrix vector, accordingly, will have this form:
W, %92

Y=V, +y k92 (16)
W,y 892

And when finish all the operation, we can just add the last row again.

There is another way to manage this situation and it is to use Gell-
Mann matrices of 4x4 elements if you prefer that option. This we will

comment in chapter 7.

But we will start using the standard GellMann matrices of 3x3
elements. As commented, this means the last row of original spinor:
Yy + 9,292 \

ans

_ lpy + Y, XYZ
VI e+ 92
lpxyz - 1!’09?)72
Will not be touched by the Gell-Mann matrices.
Y+ 1li'yza?}72
ll)'y +y', 292

'= , '\ aan (17)
Ll R 2 /
T

So, in the transformed spinor, the following equations will always apply

(as these elements will not be affected by GellMann matrices:
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w’xyz = wxyz (18)

There is another possibility as we will comment later in chapters 5 and
7. It is that the lambda matrices in an implicit move, provokes the
following:

Yieyz=0 (19)
YPo=0

This is equivalent as deciding if we add a fourth row and column in
Gell-Matrices and decide to put all zeros in these new lines. Or in the
case (18) to put all zeros, except a 1 in the diagonal. See chapter 7 for

more details.

At this stage we will work with equations (18) for two reasons:

e As the GellMann matrices do not consider those
parameters, we guess they are not touched, so they keep the
same value.

e And a practical reason. The case (18) is more general. This
means, if in the end, we discover that they should be zero,
we can just eliminate them from the equations. The
opposite case, supposing that they are zero and then going
backwards is more complicated.

Anyhow, as will see in the following chapters 5 and 7, the option that
they become zero (equation) seem more plausible/symmetric. Anyway,

we will stick to equations for the reasons commented above.

5.  Applying GellMann matrices to {

In this chapter, we will apply each GelllMann matrix to i to get the

result of this transformation as a new ’. This is, we will perform the

following matrix multiplication:
Yy + 1,292 y

lll' = Aﬂ/’ = Ai lpy + lpzxfyZA = Itb’y + Ip’zx”c\yé (20
Y, + Py X2 8%

Where the 1 and the 1’ correspond to the 3-row version of the matrix

vector (14) and (16). This way they can be multiplied by the 3x3 Gell-

Mann matrices A; (See chapter 4). Once this operation is done, we will

obtain the relation between the different elements of original ¥ and

the obtained .

With this information, we will obtain the new ¥’ also in Geometric
Algebra Clsp representation from the original 1. This is, we will see
which the resultant multivector (15) when 2; is applied to (12):
Y=o+ X+ Y + P2 + 1y, Y2 4 P 2R+ Py B + ey, 292
Y=y Y R I 2+ P2y 28+ 9+

V292

5.1 Gell-Mann matrix A

In chapter 4, we saw that A1 was:

010
L=[(1 00
00 0

If we apply it to equation (20):
lp,x + 1!1’},256\?2’\ 1 0 l/)x + ¢y2565>2
=L = ( )

(=]

Y=Y, + k92 1 0 0)|Yy+¥,xy2|=
Y, + Y292 292
Yy, + P X92
Yy + 9,292
0

We obtain:

Ipz + Ipxyx.'yz
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lp,x = lpy

Ialj,yz =Yy

1/)'3, =1y (21)
1/),zx = 1/)yz

Y,=0

1/),xy =0

And we have to add the two equations (18) commented in the end of
chapter 4. As commented, at this stage we will consider them as the
ones to apply (with all the considerations commented in chapter 4).
Other possibilities as equations (19) or even different could be
considered. Apart from what we have commented in chapter 4, we will
come back with more comments about this mainly in chapter 7.

1»b’xyz = 1/)xyz

Yo =1

Remind that we had defined 3’ (in geometric algebra notation) as:
W= A R Y EY 2 SR R+
1/),xyz)?j} Z

This means the new 1)’ obtained of the transformation of applying Ai
lambdal to ¥ is (following all the relations (21) and (18) above):

1/)’ = 1»[]0 + ¢yf + 1l)x5> + lpzxyi + ¢y225€ + 1l]xyz)?5>2 (22)

This means, the matrix A1 interchanges the coefficients in the X and §
axes and in the Z and 2% planes. This is, it creates a kind of rotation
in these axes/planes of the ¥ function. It also destroys all the
information regarding Z axis and X9 planes. And as commented, for
Yo and Py, we keep them as not affected unless something different
is discovered in the future (other clear possibility would be that they

become zero as commented in chapter 4 and will comment later).

Now, that we have seen the process, let’s go to the effects in the rest of
the GellMann matrices. We will reduce the comments -as everything
commented for A1 will apply in general. And we will make just

comments specific to the different results.

5.2 Gell-Mann matrix A,
wlx + Ip,yzfj}i 0 —i 0 lpx + wyzfj}i

1/)’ = lll’y + wlzxfj}i = Azllj = <i 0 0) lpy + I[szf}’}f =
Y, + Y292 0 0 0/ \y, +9,292

0 —292 O\ [Yxt 292 —292(y + P 2P2)
<A3?2 0 0) Yy + Y kyZ | = 295(, + ,,292)
0 0 0/ \Y, + Py X92Z 0
—lﬁy’?f’f - lpzxfj}ifyé _lpy’?yé + lpbzx Ipzx_wyfj}i
( I[JXQ’C\)A/f + wyzfyéfj}i ll’xffff - I:byz _Ipyz + lpryf
0 0 0
Y=Y
I:blyz = _Ipy
wly = _Ipyz
1/),zx =1y
IZ = 0
1/),xy =0

And the ones that are not affected. For the following two, the same
comments as for A; apply:

I:blxyz = 1pxyz

Yo =1

So, this means that the new ’:

Y =9+ P 2+YP I+ Y2+ Y, T2+ 2R+ Y 2T +

V'ay 292

Becomes:

lp’ = IIJO + wzx”c\ - lpbyzy_wyj}é + lpbxif + wxyzfj}i (23)
In this case, we see that we have a change (complementary
transformation,/rotation’) where we have interchanged the axis X with

the ZX plane and the axis J with the JZ plane.

5.3 Gell-Mann matrix As

lp,x + 1!1’},2)’6\?2’\ 1 0 0 l/)x + ¢yzfyz’\
Y=Y, H Y R92 | = A = (o -1 0) Yy + P, XY2 | =
VP P 57 0 0 0/ \¢, +9yy %P2
U + 1,892
_1/))/ — Y RyZ
0
¢’x =1y
1»b’yz = 1»byz
Py =y
lp’zx = _lpbzx
Y,=0
Yy =0

And the ones that are not affected. For the following two, the same
comments as for A1 apply:

1»b’xyz = 1/)xyz

Yo =1,

So, this means that the new ¥':

Y=y, +y 2+ I/J'y)A/ +y',2+ w'yzj’}i +y', 2%+ I/J'xyfj} +
lp,xyzfyé

Becomes:

Y=o + PR — Y + 1,92 — Py 2R + Py, 292 (24)

5.4 GellMann matrix A4

Yo+, 292 0 0 1\ /¥x+ P22
Y= 1p'y + ', 292 | = YRVES (0 0 0) Yy + Y292 | =
Y+ Y292 1.0 0/ \y, + 292

Y, + Py X92

0
Y + Py, 292
¢’x =,
1»b’yz = 1»bxy
Y, =0
P =0
Y, =Y
lp’xy =1y,

And the ones that are not affected. For the following two, the same
comments as for A1 apply:

1»b’xyz = 1/)xyz

Yo =1,

So, this means that the new ¥':

Y=o+ P R+, I+ YL+ 2 2R P X9 +

V'xy X92

Becomes:

V' = Yo + Y+ P2 + Py V2 + Py, X9 + Py, 292 (25)
We see an interchange between axes x and z and the planes yz and xy.

5.5 Gell-Mann matrix As

Ip,x + lp’yz’?yé 0 0 —i lpx + ll’ysz’f
1»[1’ = ll"y + wlzx’?yi = /151/) = <O 0 0 ) Illy + wleyé =
Y.+ 292 L0 0/ \Y, +9, %92
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0 0 —%P2\ [Yx T, 292 —292(P, + Py 292)
< 0 0 0 ) lpy+1l)zx’?5>2 = 0 =
xyz 0 0 Y, + s £92 292 (Y, + ¥y, 292)
—J?JA’?% + I:bxy 1pxy lpbzfj}i
0 = 0
fyZAlpx - 1/)yz 1/)yz + 1)[))(_)’5?2
’
x = 1/)xy
,yz =-y,
Yy =0
P =0
,z = _lpyz
1/),xy =1,

And the ones that are not affected. For the following two, the same
comments as for A; apply:

I:blxyz = 1pxyz

Yo =1

So, this means that the new ¥':

1/), = 1»[),0 + ll)le + 1/)'3,5} + 1»[),22 + lp,yzyi + lp,zxZA’? + lp,xyfy +

Wy 92

Becomes:

Y =1+ YuyX =Py, 2 — P, 92 + Yo XY + Yy, £92 (26)

5.6 Gell-Mann matrix 4¢

¢x+1/)yzxyz 0 0 O 1l)x"'ll)yzxyz
= ey ( )

Y =Yy + Y R92 0 1)WYy +yYuakyz|=
Y+ Y292 0 1 Y, + Py Xy2
0
Y, + Py XY2
Yy + P, 292
lp,x =0
1/),yz =0
Y, =1,
Iablzx = I:bxy
,z = 1»by
1/),xy =Y

And the ones that are not affected. For the following two, the same
comments as for A; apply:

I:blxyz = 1pxyz

Yo =

So, this means that the new ¥':

1/), = 1»[),0 + ll)le + 1/)'3,5} + 1»[),22 + lp,yzyi + lp,zxZA’? + lp,xyfy +

Yy 92

Becomes:

1/), = 1»[)0 + 1»[)237 + ¢y2 + ¢xy25€ + ¢zx5c\5> + lpxyzfyi (27)

5.7 Gell-Mann matrix A;

Y+, 292

(=]

Y=Yy Y RYE
Y, + Y292

0 —i || ¥y + k92 | =

0 0 ) 1llx + lpyz’?yi
lpz + lllxyX_VZ

o

0 0 0 Yy + 4y, 92
<0 0 —fAé) Wy + k92 | = ( 292(, + Vuy292) | =
0 %yz 0 Y. +¢xyx3/z f/\i Ipy + Y X9Z )
0
—9?}72% + I:bxy = 1ﬁxy I,DZX}/Z >
fyZAlpy - 1/)zx 1/)zx + 1»by)?yz
lp,x =0
1/),yz =0
'y =Py
Iablzx _wz
,z = _1l)zx
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1»[1 xy lpy

And the ones that are not affected. For the following two, the same
comments as for A1 apply:

lp’xyz = Iabxyz

Yo =1,

So, this means that the new ¥":

1»[1’ = 1/),0 + 1l)’xf + 1l)’yy + lp,zZA + ¢’yzyZA + ¢’zx2-’? + ¢’xy565> +
W92

Becomes:

Y =1, + lpxyy —YuZ — P28 + ¢yfy + ¢xyzfyZA (28)

5.8 Gell-Mann matrix As

Y+, 292 10 0\ [¥xtVy.292
Y=Y, + Y aE92 =/14¢=«/i§<0 1 0) 1l’y+1/)zxf§2 =
0 0 5%

VPP 57
1 ona
_Ipx +_¢yZXyZ
V3 \/_
1 ona
_Ipy wzxx:)]z
V3 w/—

2
_\/_glpz - \/_glpxyx}/z

Ve =Fh
Wy = 5y
¥y = Fy,
Vo = i
v, ==Y,
Wy = = ey

And the ones that are not affected. For the following two, the same
comments as for A1 apply:

1»b’xyz = 1/)xyz

Yo = o

So, this means that the new ¥':

Y =9+ 2 +Y I+ Y2+ T2+ 2R+ Y 2T +

V' 1y 292

Becomes:
1 PN 1 ~ 2 A 1 An 1 An
1»[]’ = 1/)0 + \/_gll]xx + \/_gll]yy _\/_glpzz +\/_§¢y2yz + \/_glljzxzx -
2 an PN
\/_glljxyXy + 1/)chZXyZ (29)

Here the square roots of three are used by Gell-lMann to keep the same
norm to the final spinor J’ independently of the transformation, as

the rest of transformations (A1- A7) have less elements in the result.

This is another hint that clearly, he did not consider Yo and Y in the
transformations and probably the outcome value of them should be
zero. Another hint is that in most of the transformations, some other
elements become zero. If we consider the transformations as rotations,
these zeros come probably form the “hidden Yo and Yy that are

already zero” in the original .
But this is too detailed. Let’s go to the summary.

6. Summary of application of Gell-Mann matrices
In the previous chapter we have obtained the results of applying the
Gell-Mann matrices to 1 (22)429) in geometric algebra notation.

Considering this is the original 1):
Y=+ P L+ 1/)3,5; +Y,Z + lpyzj;ZA + Y, 2% + lpxy’?j} + ll)xyz’?yi
The new 1’ obtained when applying each of the Gell-Mann matrices A;

is:
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W= = 9) = Yo+ R+ I + U2+, 00 + Yy, 292
ll" = (/12 - IIJ) =Y+ PR — ll’ysz—ll’yf’f +1) 2% + wxyzfj}i
W= (A3 =) = o + ek~ U9 + 13,92 — a2 + 1y, 292
W= Q= 9) = Yo + P2+ el + Uy 92+ 1,89 + Yy, 292
W= (s = ) = o + ey — P2 — Y92 + kP + Yy, 292
W= > %) = Yo + 19 + U2 + Yy 28 + 10 %9 + ¥y, 292
ll" = (/17 - IIJ) =1+ wxyy — Ui — P28 + lpy’?y + wxyzfyé
W= =) = Yo+ FE+ FUI — S+ 2,9+
FVntR = Z X9 + P, 297

7.  Using Gell-Mann matrices of 4x4
As commented in chapter 4, there is another way of solving the issue
that the Gell-Mann matrices are 3x3 and the spinor matrix vector has
four rows. Before, we have solved it eliminating the last row (with an
explanation of why this is possible). In this chapter, we will show how
to solve it the opposite way. This is, using GelllMann matrices of 4x4.
If we take the example of A;.

010
,11=<1oo>
000

We can add a new row and column with all zeros except a 1 in the

diagonal

o = o
oS O
o oo
o oo

We can see that we will obtain the same result as in chapter in 5.1. If
we consider ¥ and 1’ as:
Yy + Py, 292
Yy + Y, X2
Y, + Yy X2
1»bxyz - 1!’02?2}
(lp,x + 1»b’yz Ayz’\
W=

Y=

Py + Y k92

V', + Y292
1/) xyz — 1»[) OXyZ/
We multiply:
/1,[1’x + w’yzfyz\

vy ez

IR
O 1 0 0 1l]x + lpyzfj?i 1/)3/ + ¢zxfj}2
1.0 0 0\ ¥ tvukyz Py + 1lzyz Aﬁi\
0 0 0

[=)
o
(=)
[N

0 11[)2 + 1l)xyxyZ \ /
Yrys = %MJ Wryz = wom

And we get the same result as in 5.1.

V=1,
1/),yz =P
1/)'3, =1y
1/),zx = 1/)yz
Y,=0
1/),xy =0
1/),xyz = 1»bxyz
Yo =1
Leading to:

As in chapter 5.1

V' =1 + Py + I + Y2 + Py, 2R + Py, 292

There is another option, as already commented. That the Gell-Mann
matrix A1 it affects also Yo and Y converting them to zero. That would

correspond to:

01 00
(100 0
A= 0 0 0 O
0 0 0 O
Multiplying:
A
Y, +y, 22

1)[], \1/) + 1/) AAA = Alllj =
1'b,xyz , 56\5\/2'\
1
0
0
0

0100
1000

00 0 0| ¥, +y292
0 00/ \thyy, — o292

And we will get the same result as in chapter 5.1:

¢’x = ¢y
1»b’yz = 1»bzx
Yy =y
lp’zx = lpbyz
Y, =0
1»b’xy =0
1»b’xyz =
YPo=0
Leading to:

V' =YX+ )+ P IE+ Yy, 2%

As commented, the Gell-Mann matrices do not even consider Yo and
Py so it is not possible to know, which one is correct. Although to
keep the rotation symmetry seems more plausible that they really
become zero.

There are also other possibilities, in general,

0 1 0 ay

1 0 0 ay

0 0 0 ay

ajy Gy4 Q34 Qgq

Where the asterisk means conjugate (whether it is in i or in xyz

M=

notation). And as4 is real.
That would mean that another transform/rotation is applied to Yo and
Py not consider in the original Gell-Mann transformations (could they

be related to other forces?).

8. Possibilities to apply the Gell-lMann transformations using
Geometric algebra operations (not matrices)

In chapter 6 you have a summary of the transformations obtained with

Gell-Mann matrices, applied to a spinor in Geometric Algebra notation

U to be converted to another one .

In Geometric Algebra the transformations are not normally performed
that way. Instead, we use rotations or boosts to convert one multivector
(in this case, representing a spinor) into another one.

In general, the transformation would something like this:

YV =ae zazxe zagye Z““Ze zasyze—za;,zxe—la7xye—%agxyz
lpezasxyze2a7xyegaszxega5yzez e2a3yez

Where Y is the spinor multivector to which we want to make the
transformation and ' the multivector obtained.

Y=+ P L+ 1/)3,5; +Y,Z + lpyzj;ZA + Y, 2% + lpxy’?j} + ll)xyz’?yi
The exponentials to vectors (which square is +1) are boosts and can be

also written as:

e72%2% = cosh (—ézxz) + sinh (—ézxz)y’c‘ = cosh( z)
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(1 o
sinh (E az) x
The exponentials to bivectors or to the trivector (which square is -1) are
rotations of an angle o in the planes indicated by the bivector (or in

the volume/time in the case of the trivector) and can be written also as
[1,3]:

e_%“syz = cos (—%as) + sin (—éas) yZ = cos Gas) — sin Gaz) A
If you do not understand what a rotation in the volume means,
welcome to the club. But you can see an example of it in annex A.1 of
[2] when I considered that the trivector (I still do) was somehow related
to spin.

There is also a parameter o that it is only a scalation. All a; are real.
The important point is that we have also 8 ai, so we have 8 degrees of
freedom of transformations. This is the same as the 8 Gell-Mann
matrices. So, a correspondence between them would be possible.
Another thing is if it is necessary to find them, now that we have the
table in chapter 6.

The same as commented above with rotations and boosts can be
applied easier using a transformation as:

V' = By + B + B3I + Paz + PsIZ + o2k + 729 + PeXI )Y

This is, to perform this pre-multiplication to {:

W' = By + BoR + B3P + a2 + Bs§2 + B2k + 29 + Be92) (o +
DR + 9 + 1,2 + Py, 92 + Py 2R + Py R9 + Py, 292 )

And even we could have the double-sided version as:

Y= (81 + 8,8 + 839 + 642 — 8592 — 8528 — 8,89 — 8g292)P (6, +
8% + 659 + 842 + 897 + 8427 + 6,29 + 85797)

In both cases, we have 8 parameters that modify the Y function. So,
again there could be found the Bi or & that creates the same

transformations as indicated in chapter 6.

9.  Braket products using spinor multivector

Before showing how the bra-ket multiplication is, I have two show the
operation called reversion of a multivector. This operation reverses the
order of the bivectors and trivector.

It is the equivalent of the conjugate of a complex number applied to a
multivector.

In fact, in the case of Geometric Algebra Clsp (the one we have used
along the paper), what it does is to change the sign of the coefficients
multiplying the bivectors and the trivector (the ones that have square -

1). And it keeps the same the coefficients of the scalar and the vectors.

This is, if we have a multivector :

Y=o+ X+ Y9 + 1,2 + Yy, 92 + Py 28 + Py XY + Yy, 292

Its reverse is:

T =" = o + Yk + T + 2 + 2P + k2 + Yy I+
wxyziyf = lpo + ll’xf + lpyy + wzé - lpyzyi - lpbzxif - lpbxy’?y -
wxyzfyé

In Euclidean geometry Clsp, the reverse 1 and the conjugate 1 *are
the same thing. In non-Euclidean metric (more specifically in non-

orthogonal metric), we will see that this not hold.

The bra-ket product is defined as:

Yy =yy=

= (o + Yuk + Uy F + P2 + Yy, 29 + YruR2 + Yy IR +
Yrys29%) (o + Yok + U9 + 2 + 1y, 92 + 1028 + 1y R +
Wy 292) =

= (ll’o + Ipr + wyj} + ¢22 - wyzyé - lpbzxif - lpbxyfj} -

Yy R92) (o + Yok + U9 + 2 + 1y, 92 + 128 + 1y R +
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Yy 292)

And the important thing is that if we perform the complete operation
we get (see Annex Al):

Y=y Y =p+j (29.1)
Being p the probability density (positive defined):

P=vo U+ AU U AU Ut Yyt (29.2)
And J is the fermionic current as defined in [48]:

_7 = Z(I»bolpy + wxwxy - lpbzwyz + wzxwxyz)f + Z(IIJOIP;V + lpxwxy -
Valyz + Varbayz) + 2(WoWz — Yullan + Wyiys + Yryhyz)2 (29.3)

All the coefficients in bivectors and the trivector cancel as you can see
in Annexes Al and A2.

So, this means, that the spinor multivector is not only a “cool
mathematical artifact”. You can obtain the same information as with
the typical spinor matrix vectors and in a much simpler way. See Annex
Al to see what I am talking about. We just have to perform a
multiplication. And in Annex A2, you can check that the result using
Geometric Algenra is exactly the same as using matrix algebra, so all

the process is validated [54].

10. Braket product in non-Euclidean metric (under
gravitational effects)
In general, in non-Euclidean metric (non-orthonormal and non-
orthogonal) the following equations apply for the basis vectors (instead
of the equation 8.1 in chapter 2) [2,47]:

22 = I21? = gux

72 =190 = gy

22 =12|I” = gz, (30)
Ry = 2gyy — 9%

5}2 = 29yz —zy

In the case of non-orthonormal but yes orthogonal (diagonal) metric,

these equations are simplified as:

22 = I2]1” = gax

y2 =191 = gy,

22 = 12I1” = g, GD
29 = 9%

92= 29

2% = —22

The braket product in non-orthonormal but yes orthogonal metric
leads again to (see Annex A3):

Y =ypYp=p+j (32)
But in this case:

p= 1/)02 + 1»bngxx + 1/)yzgyy + 1/)zzgzz + 1/)yzzgyygzz + 1/)zngzzgxx +
Wy GxxGyy + Wayz” GuxGyyJez (33)
And:

7 = 2(¢01px - 1/)yl/)xygyy + Y50 92s + lpyzll]xyzgyygzz)k\ +

2(+¢0¢y + lpxlpxygxx - I:byzlabzgzz + wzxwxyzgzzgxx)gj} +

2(+lp0¢z — Yo Gax + lpywyzgyy + wxywxyzgxxgyy)é (34)
For the case of non-orthonormal and non-orthogonal case (equations

30), you can check that nightmare in Annex A4 and never come back.

11. Effects of gravitation in muon g-2 issue
Normally, it is said that the gravitational effects are too small to affect
the g2 issue. [ will show that this could not be correct.
If you check equation:

p= llloz + lpngxx + I:byzgyy + Il’zzgzz + Iabyzzgyygzz + Ipzngzzgxx +

9
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Wy’ GexGyy + Vayz” GuxTyyJez
And we consider that we are in the surface of earth. We put the x axis
in the radial direction, and y and z perpendicular to it. According
Schwarzschild metric, the effect in axis x (radial) would be:

A
Gxx = Grr = (1 _E)
Where:
G = 6,6743E —
Mogen, = 5,9722E24 kg
T = Toqren = 6,371E6m
This gives:
Gux = 1+ 1,392262E — 09
And we can consider:

Gyy =Gz =1
We see in equation (33) that g, is included and is affecting 4 of the 8

11Nm?

elements of the equation. So, the probability (and therefore the

probability of the possible states that the particle can take) can be

impacted by it (it is not something neglectable that only affects one of

the 8 elements)

But can this small value in equation (34) affect something?

If we go to the g-2 experiment, we have [55]:

Theoretical value:

a, =2 = 1,1659181E — 03

Traditionally measured value:

@y =2 = 1,16592089E — 03

If we get the difference between the values we have:

ay, — a; = 2,79E — 09

If we divide this value with the “added element” in (34) we have:
279E-09

1,392262E-09

This means, they are in the same order. Perfectly the gy, value could

be affecting the measurement. As commented gy, appears in 4 of the
8 elements of the multivector (33). It is not only affecting in one
direction.

Even taking the latest value measured in Fermilab, we are in the same
order [56]:

Uermitan = 5> = 1,16592055E — 03

Afermitap — At = 2,45E — 09

2,45E-09
———— =176
1,392262E-09

Again, in the same order of magnitude. So, we can check, that yes, the
gravitational effects creating a non-Euclidean metric could have their

effects in muon g-2 effect.

CONCLUSION
We have found a way of applying the Gell-Mann transformations made
by the A matrices using Geometric Algebra Cls 0. And without the need
of adding the time as an ad-hoc dimension, but just considering that:
t=3%xy2
The transformations are as follows. Considering the original 1):
Y=1+ ¢x9? + lpyj} + szA + lpyzj}ZA + lpzxz\f + ¢xyf)7 +
Yy X92
The new ¥’ obtained when applying each of the Gell-Mann matrices A;
is:
lpl = (/11 - 111) = 1110 +¢y5€\ + lpx}’} + ¢zx?2 + ll}yzZAf +
Yy X92
lpl = (/12 - ll’) = 1110 + wzxk\ - wyzy_lpyj}é + wszf + lpxyzfy\ZA
l,l)’ = (13 - 111) = 1!’0 + lpr - wyy + ¢yzﬁ2 - lpzxZAjC\ + lpxyzfy\ZA

10

Y == Y) =P+ P, X+ P2+ wxyyZA + 1»byz’?y + lpxyz’?yé
l/)’ = (}-5 - 1;0) =+ wxyf - wyzZA =, V2 + PRy + wxysz’
P =g >YP) =P+, 9+ wyé + 1/ny29? + P2V + 1nyz9?37
Y=0;->9P) =9+ 1/ny)7 — Pz — P28 + wyff’ + wxysz’A
W= s = W) = Yo+ Fhk+ E 9 — =P i + £, 97+
FVnt® = 2P 29 + P, 297

Taking into account that GelllMann matrices do not consider at all the

>

N>

existence of Yo and Py, , it is possible that we should consider these
two elements zero from the beginning. Anyhow, above relations would
correspond to the most general case.

We have also worked in the bra-ket product using geometric algebra.
For the Euclidean case we have the equation (where the cross sign
means reverse and the asterisk means conjugate, both mean the same
in Clsp):

Yy =y =

= (Yo + Wk + YT + o2 + )29 + PruR2 + Py I% +
Vrys29%) (o + Yok + P9 + V2 + Yy, 92 + 2R + Py R +

Yy R92) =

= (o + VR + U, F + 1,2 — 1,92 — Py 2R — Py X9 —

Uiy 292) (Yo + Ve + 1y T + Y,2 + 1y, 92 + Y 2% + Yy B9 +
1»bxyz’?yi) =p +j

Being p the probability density:

P =0t U7 " U U U ) Uy,

And J the fermionic current:

_7 = Z(I»bolpy + wxwxy - lpbzwyz + wzxwxyz)f + Z(IIJOIP;V + lpxwxy -
Vallyz + Vaabayz) + 2(WoWz — Yullzn + Wy iyz + Yy hyz)2

We have made the same in the case of orthogonal but not orthonormal
metric, leading to:

Y =ypYp=p+j

But in this case:

p= 1/)02 + 1»bngxx + 1/)yzgyy + 1/)zzgzz + 1/)yzzgyygzz + 1/)zngzzgxx +
Wy GxxGyy + Wayz” GuxGyyJez

And:

j= Z(I»bolpx — Yy iy Gyy + VoW G2z + wyzwxyzgyygzz)f +

2(+1/)0¢y + 1»bxl/)xygxx - 1/)yzl/)zgzz + 1/)lel)xyzgzzgxx)y + 2(+¢0¢z -
VuWrxGux + 1/)yl»byzgyy + ¢xy¢xyzgxxgyy)2

We have shown also that the g2 issue of the muon could be perfectly
related to gravitational issues (to non-Euclidean space). The difference
of the values of g-2 of the muon are:

a, —a; =2,79E — 09

And the effect of the non-Euclidean metric on the surface of Earth is:
Gux — 1 = 1,392262E — 09

As we can check, they are in the same order, being one approximately
2 times the other. So, gravitational effects could indeed affect the g-2

value of the muon on the surface or Earth as commented.
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ANNEX A1l
Annex Al. Bra-Ket product in Euclidean metric
If we operate:
ll’*ll’ = (lpo + llle + lpyy + wzé - ¢sz72 - I[szff - wxy’?y -
YayaX92) (o + Yuk + Wy 9 + 1,2 + 1y, 97 + a8 + 1y 29 +
Yuy 292) =
Yo" + Youuk + Youy§ + Yoth? + Yoy P2 + Yo 2f +
YoWuy XY + Yoy K92 +
lpxlljof + 1l)x2 + 1l)x1/)y’?5> - ¢x1pzZAf + ¢x1/)yz’?5>2 - lpxll]zxi +
wxwxyy + wxwxyzyi +
lllyl,boy - lpbyl»bx’?y + lpyz + lpywzj}i + wywyzi + wylpzx’?yé -
wyll’xyf + llJylleysz +
oZ + Y28 — by 92+, — Y9 + PPk +
wzwxyfyi + wzwxyzfy
—ll’yzll’of’f - lpyzwxfj}i + wyzwyi - wyzlpzj} + 1pyz2 + lpbyzl»bzx’?y -
lpyzll]xyZAf + lpyzll]xyzf -
_lplel]OZA’? - ll)le/)xf - lplel]y’?j;i + ¢zx¢z’? - lplepyz’?j} + 1»bzx2 +
lplepxyyZA + ¢zx¢xyzj> -
_lpxylpofj} + Ipxywxj} - lpbxylzbyf - ll’xyll’sz’f + lpbxylpyzif -
Ipxywzxyé + lpxyz + Ipxywxyzi -
_lpxyzlpofyi - ¢xyzlpx5>2 - lpxyzll]yZAf - lpxyzlljz’?j} + lpxyzlljyzf +
wxyzlpzxy + lleyzlleyf + 1»bxyz2
And now if we take only the scalars we get:
R e T R Tk P
We will call this sum p:
P =" + U+ U U U )

If we separate the components that multiply by £ we get:

1/)Olrbx + 1»bxll)o - 1/)yl»bxy + 1»bzl»bzx + 1/)yzl/)xyz + lplel]z - 1»bxyl»by +
YryzPyz = Z(IIJXIPO =Yy ey TP + 1l’;\/zll’xyz)

In § we get:

lpolljy + 1»bxll)xy + lpylljo - 1»bzl»byz - 1/)yzl»bz + 1»ble»bxyz + 1»bxyl»bx +
1/)xyzl/)zx = 2(1/)01!]31 + 1»bxll)xy - 1/)zll)yz + 1»ble»bxyz)

In Z we get:

ll’oll’z - Ipxlpzx + wywyz + Illzl,bo + wyzwy - ll’lel’x + lpbxylpxyz +
1/)xyzl/)xy = 2(1»[101/)2 — P + 1»byl/)yz + 1»bxyl»bxyz)

In y2Z:

ll’oll’z - Ipxlpzx + wywyz + Illzl,bo + wyzwy - ll’lel’x + lpbxylpxyz +
1/)xyzl/)xy = 2(1»[101/)2 — PPy + 1»byl/)yz + 1»bxyl»bxyz)

Iny2:

Iabolpyz + lpxlpxyz + Ipylpz - lpbzwy - wyzwo + lplepbxy - lpxylpzx -
Ipxyzwx =0

In ZX:

1/)Olrbzx - 1»bxl»bz + 1/)yl/)xyz + 1/)zll)x - 1»byzl/)xy - ll)lello + 1»bxyl»byz -
1/)xyzl/)y =0

In Xy:

wolpxy + Ipxlpy - wylpx + Iabzlabxyz + Iabyzlzbzx - 1plezbyz - lpxylpo -
Yy, = 0

In £92:

1/)Dlnbxyz + 1/)xlnbyz + 1/)yl»bzx + 1»bzl»bxy - 1»byzl/)x - 1»blel)y - 1»bxyl»bz -
Yryztbo = 0

If we call vector J (fermionic current) the sum in £, § and 2 , we get:

] = 2(1/)01!]31 + ¢x¢xy - 1/)zlnbyz + ¢zx¢xyz)’? + 2(1»[101/))/ + 1/)xlnbxy -
Welyz + Yarbey2)9 + 2o, — Yatbax + Yy iy, + Pay Py )2

So, in total we have:
YY=p+j
With:

12

p=o" + " " U U U )

And:

_7 = Z(Iﬁollly + wxwxy - lpbzwyz + wzxwxyz)f + Z(IIJOIP;V + lpxwxy -
wzwyz + Ipzxwxyz)y + Z(IPollJz = Ythe + wywyz + wxywxyz)i

Annex A2. Showing that the bra-ket product in Geometric Algebra
is equivalent to the operations in Matrix Algebra

For this Annex, we will use the paper, that is very clear on how to
operate with matrices in Quantum mechanics. I used the same paper
in to make a one-to-one map of Dirac equation between geometric
algebra and matrix algebra.

If we consider a general spinor in matrix algebra:

Py Yar + iy
v = Yo | _ | Wor + ity
Y3 Yap + i3
(A Yar + Py

In we obtained the following relations to make a mapping between
Geometric Algebra and matrix algebra with the coordinate frame (or

frame orientation) used in [5]:

1,[117 = _Ipy
lpli = _wx
lpzi = wz
¢3r = _Ipyz
Y3 = Py
Y4y = 1»bxy

Also, we obtained the following two equations, but with an opposite
sign. In this case, we have to reverse their sign for the one-to-one map
to work. This does not lose any generality as these relations completely
free, we are just changing nomenclatures, to be able to compare apples
with apples (to have the coordinate system pointing in the same

direction in both cases).

Yo = _lpxyz
Yai = =Py
So, applying these relations, we get:
" —ty — ith, \ —y — Y292 \

11] — 1,[12 _ _1l)xyz + il/)z _ _1l)xyz + 1/)256372
¢3 _lpyz + ilpzx _lpyz + lpzxfj}i
1/)4 I:bxy - ilpo Ipxy - ll’off’f
Y= @ =
(_1»[)31 + ¢x’?5>2 _lpxyz - 1/)256372 _lpyz - 1l)zx’?5>2 1»bxy + 1/)0565}2)
We see in that the probability is defined as:
p=PyP =9y =9ty
This is:
p=yty=
(_lpy + lprj}i _wxyz - I[sz}/}f _Ipyz - lpzxfj}i 1pxy + ll’off’f)
_Ipy - ll’xffff
_lpxyz + 1!’2-7??2 _ 2 2 2 2 2 2
_wyz + lpzxfyé - 1»[]}1 + lpx + 1l)xyz + 1/)2 + 1»byz + 1»bzx +
1pxy - ll’off’f
1»bxyz + 1,
As you can check this value is the same as the one, we have obtained
in 29.2 using Geometric Algebra.

Also, following we have that the gamma matrices used in matrix algebra

are:

10 0 0
o (01 0 o
"Zlo o -1 o

00 0 -1
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0 0 0 1
. [o o 10
Y=lo -1 0 0
-1 0 00
0 0 0 —i
,_ [0 0o i o
Zlo i 0 o0
- 00 0
0 01 0
s [0 00 -1
"Zl-1 00 o
0 10 0
0010
< [0 00 1
=11 00 0
010 0
If we perform the following products that we will need later, we get:
10 0 0\/0 0 0 1 00 0 1
o1 o1 0 oo o 10\ (oo 1o
ry 00 -1 0/Jlo -100] {0100
00 0 -1/\-1 0 0 0 100 0
10 0 0\/0 0 0 —i 0 0 0 —i
o o1 0 ol\fo o i o) (o o i o
ry 00 -1 0Jlo i 0 o) {o =i 0 o
00 0 -1/\-=i 0 0 0 i 0 0 0
10 0 0\/0 01 0
s 01 0 ol\fo 00 —1)_
ry 00 -1 0Jl-1 00 o]~
00 0 -1/\0 10 0
000 1 0
0 0 0 -1
1.0 0 0
0 -1 0 0

Now, checking we see that:

J*=pyrp =9yt

If we start with the x axis that corresponds with p=1 we have:

J o=t =iy =y9tyyty

We have calculated the product of the y’s before, so operating we have:
(_1»[)31 + ¢x-’?yZA _lpxyz - lpzfyZA _lpyz - 1l)zx’?5>2 1»bxy + 1/)0565}2)

RO

000 1 o

00 1 0\ PryT¥EIZ)

B P
b~ Yoiy

= (—1,[1y + Xy2 —1,[1xyz -, X2 —1,[1yz -9, xy2 1,[1xy + Y, xy2)

/ Dy —wofgi\

“Pyz t P
| |t b

_I»by - lprj}i
I:byzl»bxyz + lpblepz - lpxylpy + ll’olﬁx = 2(_¢y¢xy + Ipxlpo +
1/)xyzl/)yz + ¢zlpzx)
We can see that above result is the same as the one obtained in
Geometric Algebra.
For the axis y we make the same.
P =0 =9ri =y9iyyly
(_1/)3/ + lpryZA _1l)xyz - 1!’255?2 _1l)yz - lpzxfyZA 1/)xy + 1!’02?2’\)
by

0 0 —i PN
0 0 i ol VYo t¥AVZ)
Q :)i g g —wyz +,Xy2
L PN
Y, — XYz

Y, +xyz b, —bxyz b, —b, X2 b, +X92)
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Gell-Mann matrices (strong force interaction) in geometric algebra Cls

-y —P Xyz
0 0 0 —xyz 1’03/ Ve 2},\,\\
0 0 xyz 0 | _lpxyz + lIJnyZ | _
0 —Xxyz O 0 —l[)yz +,, XYz -
Xyz 0 0 0 lpxy _ lPo?)A/Z /

(_1»[)31 + 1,[1ny2 _lpxyz - 1/)256372 _lpyz - 1l)zx’?5>2 1»bxy + 1/)0565}2)
—Yy 92 =1
_wyzfj}i - lpbzx
+1/)xyzfyz’\ + 11[]2
—1/)),)?5}2 + lpx
= (_lpy + lprj}i _lpxyz - I[sz}/}f _lpyz - lpzxfj}i 1pxy + ll’off’f)
—ll’o - wxyfyé
_lpzx - lpyzfyZA
Yy + sy, £92
lﬁx—ll’yff’f
1I)le»bxyz + 1»bxyl»bx + lpoll)y = 2(1»[)311/)0 + lpxll)xy + 1»bxyzl»bzx - 1/)zlrbyz)
Again, with the same result a
Axis z:
JF =72 =0y = 9Ty iy
(_1/)3/ + ll)x)’C\j}Q _1l)xyz - 1!’256372 _1l)yz - lpzxfyZA 1/)xy + 1!’02?2’\)
0 0 1 0 _1/))/ - lpryZA
0 0 0 -1 _Ipxyz + I/szyf
1 0 0 O =y, + ll)zxfﬁéj

= 1»byll)o + ¢x¢xy + 1/)xyzl»bzx - 1/)zll)yz - 1»byzl/)z +

1»bxy - 1»[)0525}2
= (_lpy + lprj}i _lpxyz - I[sz}/}f _lpyz - lpzxfj}i 1pxy + ll’off’f)

_Ipy - ll’xfﬁ
1pxyz - I[sz}/}f
1l]lel)x + 1»bxyl/)xyz + 1/)01!)2 = Z(IPyll)yz - 1/)xl»bzx + 1/)xyzl»bxy + 1»[)21!)0)

Same result as 29.3 for the z axis.

=y, + Yok
k " ¢0xyz} = Uyy, = Utz + Wayshay + Watho + Py, —

So, it has been shown that selecting a coherent position of the axes
between matrix algebra and geometric algebra we get the same results,
as expected.

It is to be remarked that the matrix algebra in this case, clearly is not
optimized. We have 4x4 matrices that only use 4 items maximum
different than zero. Geometric Algebra is much more compact in this

case, avoiding unnecessary redundancies.

Annex A3. Bra-Ket product in non-Euclidean metric (Orthogonal
but not orthonormal)

‘We apply the following relations, when performing the multiplication:
£2 _ 18112 —

22 =121* = gx

yz = ||5}|2:gyy

2 = |2l = g,
29 = 9%
92 = ~29
28 = —%2

VY = (Yo + 0 + T + 1,2 + Yy, 29 + U R2 + 1, IR+
Viyz29%) (Yo + YuR + U9 + P, 2 + Py, 92 + P 28 + Py RY +
1»bxyz’?yi) =

Vo’ + ot + Yoy P + Yot 2 + Yoty 92 + o, 2R +
IPoll’xyf)A’ + wowxyzfyé +

Yok + P NIRIP + Yuihy 29 — Y, 22 + ey, 292 —

Vel IR1122 + Yuthay 2129 + Yuthry 1211292 +

Yy o9 — by 29 + 2PN + Yy 1,92 + Py 1y, 19122 +
V292 — Py Py IFIPR + Py sy 1911225 +

VoI — P29 + 0, 21912 + Yy 1,92 + 0y, 191122 +
Y292 — Py Uy [ID1PR + Py sy 1911225 +
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Wy DoP2 — Py RIZ + Py Py 1922 — Wy, 121179 +

Dy IDIPNZIZ + Py, 121229 — y sy 191222 +

Yy Pay 1P N1212% —

Yy Dox9 + Yy Y IRIPP — Yoy Py 1P P2 — Yy h, 292 +
Vay Wy 191228 = Py W IR1792 + 1y RN NP1 +

Uy Wy 121 D172 —

Yy W92 = Dy WalIZIPIZ — Py 9P 28 — Yy Y, 1211729 +
Yy Wy IIPNZIPZ + Py Do IRIZNZIPD + Py IZ NN 2 +
Yy IRIP NP1 112117

The scalar part is:

P =o” + W IRIP + 9, 2917 + 2 12117 + by 211912112112 +

o HZIPRIZ + Py “NRIPIPNZ + oy RN NP2 12112

pP= lpoz + Iabngxx + lpbyzgyy + lpzzgzz + lpyzzgyygzz + lpbzngzzgxx +
Yy’ GxGyy + Ways” GxGyy Gz

In x axis:

Yolx + Uxtho = YyPuy 9117 + Yo 211 + 9y 0y DI N1 2N1% +
VoW 212 = Yoy Yy TN + Wy, 1912112112

2(oe = Yy Wy 1917 + Y 2117 + Yyt 1D 1P 11211%)
1/)Olrbx + 1»bxll)o - 1/)yl»bxygyy + 1»bzl/)zxgzz + 1/)yzl»bxyzgyygzz +
1/)lel)zgzz - 1/)xyl»bygyy + 1/)xyzl/)yzgyygzz

2(%% - Il’yl»bxygyy + Y YsxG2z + wyzwxyzgyygzz)

In y axis:

oty + Yy IZ112 + Py iho — Yoty 112117 =y, 1211 +
Vuxayz |ZIPIZN? + Yoy RN + Py P 12112112112
2(+%oty + et IR17 = Py 12017 + Yoy 1212112117
2(+%oty + by IR17 = by 12017 + Yoy 121212117
2(+¢01/)y + 1/)xlrbxygxx - 1»byzl»bzgzz + 1»ble»bxyzgzzgxx)

In z axis:

o, — Yt IRIZ + by 1PN + Yibo + Py, 1917 —

Ve WxIZ11? + Yry ey N RIP TN + oy Py IR I NN

2(+ otz = Yz IZIZ + Yy oy DI + Py oy RN 1D11)

+¢0¢z - wxlpbzxgxx + wywyzgyy + ll’zll’o + lpbyzl»bygyy - wlepbxgxx +
wxywxyzgxxgyy + I)bxyzlpxygxxgyy

2(+¢01/)z - 1»bxll)zxgxx + 1/)yl»byzgyy + 1/)xy1rbxyzgxxgyy)

In yz plane:

FPotyz + Pty IRIP + Py, — Py — Yyt + Yy 2% —
Va2 = ey 21 = 0

In zx plane:

F oW = Yty + Wy Wy DI + Y28 — Py P [IF11Z — Poatho +
Yy Wy PP = Wy II? = 0

In xy plane:

TPy + Yty — Yyt + Pty 12117 + Yy 211 -

Yoy lI2I1? = Yy ho — PuystellZI> = 0

In xyz plane:

+1/)0¢xyz + 1/)xlnbyz + 1/)yl»bzx + 1/)zlrbxy - 1/)yzl/)x - 1»blel)y - 1»bxyl»bz -
YryzPo = 0

Again, we only have the probability (scalars) and the fermionic current

(vectors). The planes and the trivector sum zero.

So, summing up:

Yy =y P=p+j

Being for this case (orthogonal but non-orthonormal, non-Euclidean
case):

pP= 1»[102 + 1/)ngxx + 1»byzgyy + 1!’22922 + 1»byzzgyygzz + 1»bzngzzgxx +
Ipx;\/z‘gxxgyy + I:bxyzzgxxgyygzz

And:

j: Z(IIJowx - 1l’ylpxygyy + YrxGzz + wyzwxyzgyygzz)f +
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2(+1/)0¢y + 1»bxl/)xygxx - 1/)yzl/)zgzz + 1/)lel)xyzgzzgxx)y + 2(+¢0¢z -
lpxwzxgxx + Il’ylpyzgyy + wxywxyzgxxgyy)i

Annex A4. Bra-Ket product in non-Euclidean metric (Non
orthogonal and not orthonormal)
We apply the following relations:

22 = |IZ]I? = gax
72 =190 = gy
22 = ”2”2 =9zz
25} - ngy —yx

Y2 =29y, -2y

2% = 29, — X2

= (Yo + Yuk + Uy + U2 + 1), 29 + 1 R2 + Py IR+
Yrys29%) (Yo + Wek + 1y T + Y,2 + 1y, 92 + Y 2% + Yy B9 +
1»bxyz’?yi) =

Yo + Yol + Yoty J + You2 + Yoy, 92 + Yo R +

IPoll’xyf)A’ + wowxyzfyé +

Vatho® + P IRIP + ety 29 + e, R2 + Puihy, 292 + 1), R2R +
Yy 121129 + 1P Yx Py, 92 +

Yyod + Yy ¥IR + Uy I + Wy 1,92 + 191y 2 +
IPyll’szf + wywxyyfj} + wywxyzyfyé +

Vo2 + Y 2R + Py 29 + Y, 112117 + o292 + Py 12112R +
Yy 289 + Py, 2892

Py 0029 + Py P 29% + Py P 2PN + Wy 1,292 +

Dy NZIPNDI? + Yy b 2928 + Py sy 29R + Py 1y, 29292

o Po®2 + P huRIZIP + Wixthy R29 + pup, 2% — Y0y, 2292 +
Vo’ + YWy R2RT + Pty , R2R92 +

TPy PoIZ + Py Y PRI + Yoy, IRI + Yoy, 922 +
VayWyzIRD2 + Py IRZZ + iy 2PN 1211 +

Yy Py IRIZ P12 +

FPayrWo29Z + Wy s W IR 29 + Yy sy 29RY + Wiy, 2922 +
Vays Wy 2 29892 + Py Wux 2IRZR + Py Py IZIP D22 +

Dy RN 12112

And then for the non-simplified products above, you can use the
following relations:

X2 =20, — 2%

2% = (20 — 2R)% = 2g,% — 2|IRI?

£ = (29 — 29 )

2% = 9295 — R2) = 20,9 — 972 = 29,9 — (29, — %9)2 =
Zgzxy - ngyZA + fyZA

IR = (20xy — 29)9 = 29,9 — RUIII?

9292 = (29y9 — RIN*)2 = 29,92 — 22191

29 =29y, — 92

292 = (29y, — 92)2 = 2gy,2 = 9I2|I?

29 = (2gx — R2)9 = 291 — 229 = 29,9 — 2(29,, — 92) =
Zgzxy - 2gyzf + 565}2

2892 = (20,x — X2)92 = 29,97 — R292 = 29,97 — R(29y2 —
92)2 = 295,97 — 2gy,% + 291217

29 =29y, — 92

29% = (2gy, — 92) = 20,8 — 9(20,x — X2) = 20,,% — 29,9 +
(29xy - ’?y )2 = Zgyzf - Zgzxy + 29xy2 - ’?yi

292 = (29,5 — 92)2 = 29,2 — 1211

292% = (Zgyz —92)2% = 29,,2% — |1211*9% = 2g,,2% —

1212 (20 — 29) = 29,525 — 2112112205, + 1211259

2929 = (29,9 — FNFIZ) = 20,29 — 191222 = 29, (29, —
92) ~ 911222 = 49,9, — 205,92 — 191222

2 R R
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29, 121179 — I9N1? (2g.x% = 211R1?) = 49y 9ys2 — 2951121179 —
29191172 + 19171121172
£8 =29, — 5%

xXzy = x(ZgyZ - 372) =2g,,X — %92

R2% = 2g,.% — 2|12

2292 = 2(29,.2 = 9II21*) = 29y,%2 = ZPN2I* = 29,,(2gx — 2%) —
2912112 = 49y.92x — 29,,2% — 211217

R2RY = R(2Gsx — R2)9 = 295, %9 — 12I°29 = 29,,%9 —

211 (29yz — §2) = 292229 — 295121 + |IR1I*92

292x% — 29, 1121172 — 12117 11211%9

V2P = 2959 — 21117

922 = (204y — £9)2 = 20,2 — %92

9292 = 9(20xy — IR)2 = 202,92 — I9II* (29,2 — 28) = 29,92 —
299117 + 1911722

IR2% = JR(20,x — R2) = 20,92 — 2192 = 29,x(29xy — 29 ) =
21292 = 49.2xGy — 292x%T

298 =29y, — 29,V + 29xyZ — X2

1211729 = 11211 (29, — 92) = 29, 121> = IR1I*92

29%9 = 492y Gyz — 295,92 — 191722

29%2 = (Zgyzf =295y + 29597 — fﬁé)é =20y,82 - 29,92 +
29112117 — 112117 %9

29R2% = 29%(20,, — X2) = 295,298 — |RI°292 = 291 (29,5 —
2959 + 29xy2 — £92) = 1217 (29y22 = DNZI?) = 492Gy % —
4922929 + 492y — 295292 = 21|27 gy, 2 + IR1121121179

As you can imagine, this is a complete nightmare. It is better to make
the operation once we know exactly which metric to use and no to try
to go the most general case. Anyhow, with the use of a computer with

a Geometric Algebra program, for sure, we can get the final result.
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