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ABSTRACT

While it is known that Euclid’s five axioms include a proposition that 
a line consists at least of two points, modern geometry avoid consistently 
any discussion on the precise definition of point, line, etc. It is our aim to 
clarify one of notorious question in Euclidean geometry: how many points 

are there in a line segment? – from discrete-cellular space  (DCS) viewpoint. 
In retrospect, it may offer an alternative of quantum gravity, i.e. by exploring 
discrete gravitational theories. To elucidate our propositions, in the last 
section we will discuss some implications of discrete cellular-space model in 
several areas of interest: (a) cell biology, (b)  cellular computing, (c) Maxwell 
equations, (d) low energy fusion, and (e) cosmology modelling.

Key Words: Discrete-cellular space; Discrete cosmology models; Lattice universe; 
Cellular automata; Cell biology; Cellular computing

So many students from all ages have asked this question: how many 
points are there in a line segment? And a good math teacher will answer 

politely: in the circumference of a circle there are infinite number of points 
(1). Similarly one can also ask: how many lines are there in a rectangular? 
The answer again is known: there are infinite number of lines in given 
rectangular.

But a careful student will ask again: but what is the definition of point and 
line? Teacher will answer again: a point is a circle with zero diameter, and 
line is composed of infinite points. 

If our beloved student persists, he/she will continue to ask: but teacher, if a 
circle has zero diameter, then an infinite number of zeroes will not make a 
finite line, isn’t it?

At this time, there is fair chance that the teacher feel upset and say: “shut 
up and calculate!”

That is what usually happens in most primary school mathematics classroom, 
and the situation is not getting better in undergraduate classroom. Only 
in graduate math class, then the students are allowed to ask numerous 
questions, such as foundations of mathematics etc. A more serious debate 
among mathematicians over this notorious continuum problem has been 
recorded in ref (2). 

Here we will offer a simpler solution of the above posed question from a 
discrete-cellular space (DCS) viewpoint, with wide implications, including 
more clarity over distinction between quantization and discretization.

Solution: the space consists of circles with finite diameter (discrete cellular 
model)

The obvious paradox that we set in the introduction section can be simplified 
as follows:

 0+0+0+….ad infinitum=0

Therefore the basic postulate that a line segment consists of circles with zero 
diameter is contradictory by itself.

Our proposed solution is to assume that the space consists of circles with 
small but finite diameter (z), therefore if a line segment consists of circles 
like that, we have:

 z+z+z+…ad infinitum=finite line

One implication of this proposition is that we should better consider the 

geometry of space not as continuum, but as a discrete-cellular space. And 
we must remember that discretization of space is much more fundamental 
than quantization.

Moreover, we can consider the following:

a. It can be shown that similar indeterminacy problem plagues the very 
definition of differential calculus, as no one knows that actual size 
of dx. See H.J.M. Bos (3):

I turn now to a difficulty which necessarily arises in any attempt to set up an 
infinitesimal calculus which takes the differential as fundamental concept, 
namely the indeterminacy of differentials.

The first differential dx of the variable x is infinitely small with respect to 
x, and it has the same dimension as x. These are the only conditions it has 
to satisfy, and they do not determine a unique dx, for if dx satisfies the 
conditions then clearly so do 2dx and ½ dx and in general all adx for finite 
numbers a. That is, all quantities that have the same dimension and the same 
order of infinity as dx might serve as dx.

Moreover, there are elements not from this class which satisfy the conditions 
for dx; for instance dx2|a and √adx, for finite positive a of the same 
dimension as x. dx2|a is infinitely small with respect to dx and √adx is 
infinitely large with respect to dx, so that there is even not a privileged class 
of infinite smallness from which dx has to be choosen; there is no “first” 
class of infinite smallness adjacemt to finiteness. Thus first-order differentials 
involve a fundamental indeterminacy.

b. Boyer has shown that Planck blackbody radiation can be derived 
from discrete charge assumption (without partition as assumed by 
Planck). See (4).

c. Lee Smolin has described three approaches to quantum gravity in 
his book (5). But considering our proposition above, it seems that 
the notion of quantum gravity may be not necessary. Instead, we 
should consider discrete gravity theories.

d. Gary W. Gibbons and George F.R. Ellis have considered a discrete 
Newtonian cosmology. That is a good start (5).

e. Gerard ‘t Hooft has proposed a discrete deterministic interpretation 
of QM (6). But it seems the use of both discrete and quantum 
language are superfluous. We need to let go the quantum 
terminology with its own excess baggage.
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f. At astronomical scale, Conrad Ranzan has proposed a cellular 
universe, which is essectially a Newtonian Steady-State model 
but with a discrete cellular space model (7). In our view, such an 
approach needs to be explored and investigated further. See also 
our recent paper, where we suggest an ultradiscrete KdV as model of 
cosmology (8). See also Lindquist-Wheeler model (9,10). We discuss 
this approach in the last example of last section of this paper.

g. It may be possible for certain conditions, to consider a partially 
continuum and partially discrete space. In other words, we may have 
a hybrid space. But we do not investigate it yet.

A bit of philosophical considerations

According to Miguel Lorente, in order to understand better these models 
it would be useful to consider three levels of human knowledge in the 
comprehension of the physical world (11):

Level 1: Physical magnitudes, such as distances, intervals, force, mass, charge, 
that are given by our sensation and perceptions. 

Level 2: Mathematical structures, that are the result of metrical properties 
given by measurements and numerical relations among them. 

Level 3: Fundamental concepts, representing the ontological properties of 
physical world given by our intelligence in an attempt to know the reality. 
This level of knowledge is not accepted by some philosophical positions like 
logical positivismus, conventionalismus, neokantismus.

There must be some connections between the three levels. In QM the 
theoretical models of microphysics in level 2 are related to observable 
magnitudes in level 1 by correspondence laws. If we accept level 3 it should 
be connected to level 2 and to level 1 (through level 2). In fact, the rules 
governing the constructions of theoretical models in level 2 must be grounded 
in some fundamental (ontological) properties of the physical world.

It is also worth noting that there are different interpretations of the concepts 
of space and time. They are usually divided in three classes, as follows (11):

a. Dualistic theories: Space is a container where the particles and waves 
are moving. Time is also a separated entity with respect to which the 
motion takes place. Therefore space and time are absolute and can 
be thought of in the absence of particles (Newton).

b. Monistic theories: Spacetime is identified with some properties 
of matter and can not be concevible without the existence of the 
later. The field of forces and also the sources are nothing more that 
geometrical deformations of the Spacetime (Einstein, Kaluza-Klein, 
Wheeler).

c. (c) Relational theories: Spacetime consists of the set of relations 
among some fundamental objects: monads (Leibniz), units 
(Penrose), processes (Weisaecker, Finkelstein), preparticles (Bunge, 
Garc´ıa Sucre), objects (Hilbert).

In the present paper, following our argument in the previous section, we 
assert that the space consists of discrete cells with finite dimension, which is 
the most realistic model to the best of our knowledge. Next we will discuss 
some implications in different areas of interest.

Proof of concept: A few implications of discrete-cellular space

To elucidate our propositions, in this section we will discuss some 
implications of discrete cellular-space model in several areas of interest: (a) 
cell biology, (b) cellular computing, (c) Maxwell equations, (d) low energy 
fusion, and (e) cosmology modelling.

a. Cell biology: The mathematical modeling of cell populations can 
be, broadly speaking, split into two categories: continuum and 
discrete models. Discrete models treat cells as individual entities 
and hence provide a natural framework within which to make 
use of an increasing amount of experimental data available at the 
cellular and subcellular scales. There are now many different types 
of discrete cell-level models used to describe cell populations, e.g., 
cellular automata, cellular Potts models, cell-vertex, and off-lattice 
cell based model (12).

While continuum models have their own advantages, they also have certain 
limitations, as follows (13): Continuum models of the cell aim at capturing 
its passive dynamics. In addition to the limitations mentioned above, current 
models do not yet typically account for active biology: deformations and 
stresses experienced as a direct consequence of biochemical responses of the 

cell to mechanical load cannot be predicted by current continuum models. 
However, by contrasting the predicted purely mechanical cell response to 
experimental observations, one could isolate phenomena involving active 
biology, such as cell contraction or migration, from the passive mechanical 
response of the cell. Alternatively, continuum models might be envisioned 
that account for active processes through time-dependent properties or 
residual strains that are linked to biological processes. Another limitation 
of continuum models stems from lack of description of cytoskeletal fibers. 
As such, they are not applicable for micromanipulations of the cell with 
a probe of the same size or smaller than the cytoskeletal mesh (∼0.1–1.0 
µm). This includes most AFM experiments. In addition, the continuum 
models exclude small Brownian motions due to thermal fluctuations of 
the cytoskeleton, which would correspond to fluctuations of the network 
nodes in a continuum model and have been shown to play a key role in 
cell motility (Mogilner and Oster, 1996). Finally, continuum models have 
so far employed a limited number of time constants to characterize the cell’s 
behavior. However, cells have recently been shown to exhibit behaviors with 
power-law rheology implying a continuous spectrum of time scales (Fabry et 
al., Desprat et al.,). In the meantime, models involving a finite number of 
time constants consistent with the time scale of the experimental technique 
can be used, recognizing their limitations (13).

b. Cellular computer: Around 18 years ago, Sipper described a number 
of interesting features of cellular computer. He began his article by 
noting that von Neumann‘s architecture—which is based upon the 
principle of one complex processor that sequentially performs a 
single complex task at a given moment—has dominated computing 
technology for the past 50 years. Recently, however, researchers have 
begun exploring alternative computational systems based on entirely 
different principles. Although emerging from disparate domains, 
the work behind these systems shares a common computational 
philosophy, which can be called as cellular computing (14). Those 
cellular computers are supposed to have three principles in common. 
Combining these three principles results in the definition cellular 
computing = simplicity + vast parallelism + locality. Because the 
three principles are highly interrelated, attaining vast parallelism, for 
example, is facilitated by the cells’ simplicity and local connectivity. 
Changing any single term in the equation results in a different 
computational paradigm. So, for example, foregoing the simplicity 
property results in the distributed computing paradigm. Cellular 
computing has been placed further along the parallelism axis to 
emphasize the “vastness” aspect (14). What specific application areas 
invite a cellular computing approach? Research has raised several 
possibilities: (1) Image processing. Applying cellular computers to 
perform image-processing tasks arises as a natural consequence of 
their architecture. For example, in a two-dimensional grid, a cell (or 
group of cells) can correspond to an image pixel, with the machine’s 
dynamics designed to perform a desired image-processing task. 
Research has shown that cellular image processors can attain high 
performance and exhibit fast operation times for several problems. 
(3) Fast solutions to NP-complete problems. Even if only a few 
such problems can be dealt with, doing so may still prove highly 
worthwhile. NP-completeness implies that a large number of hard 
problems can be efficiently solved, given an efficient solution 
to any one of them. The list of NP-complete problems includes 
hundreds of cases from several domains, such as graph theory, 
network design, logic, program optimization, and scheduling, to 
mention but a few. (4) Generating long sequences of high-quality 
random numbers. This capability is of prime import in domains 
such as computational physics and computational chemistry. 
Cellular computers may prove a good solution to this problem. 
(5) Nanoscale calculating machines. Cellular computing’s 
ability to perform arithmetic operations raises the possibility of 
implementing rapid calculating machines on an incredibly small 
scale. These devices could exceed current models’ speed and memory 
capacity by many orders of magnitude. (6) Novel implementation 
platforms. Such platforms include reconfigurable digital and analog 
processors, molecular devices, and nanomachines (14).

c. Maxwell equations: While X.S. Wang (15) was able to derive 
the above mentioned Maxwell’s equations in vacuum based on a 
continuum mechanics model of vacuum and a singularity model 
of electric charges, in the meantime Krasnoholovets has managed 
to show quite remarkably that the very definition of charge can be 
modelled from the viewpoint of tessellatice space. He argued that 
the Maxwell Equations are the manifestation of hidden dynamics 
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of surface fractals (16). He also concludes that James Clerk Maxwell 
was right when he involved imaginary cogwheels constructing the 
equations of motion of the electromagnetic field (16).

d. Low energy fusion: Since the early years of Condensed Matter 
Nuclear Science (aka. LENR/Cold fusion), Robert W. Bussard 
from Energy/Matter Conversion Corporation has argued in favor 
of internal nuclear fusion in metal lattice to explain the low energy 
reaction as reported by Pons and Fleischmann (17). Subsequently, 
there are a number of researchers who have explored the implications 
of lattice vibration and lattice structure models from solid state 
physics in order to explain CMNS process. Such approaches seem 
to be quite promising and they are worthy to continue further (18-
20). For a recent discussion on discrete and continuum modelling, 
see for instance (21).

e. Cosmology modeling: Many physicists and philosophers alike have 
debated a long standing puzzle: whether the space is continuous or 
discrete. It has been known for long time that most of the existing 
cosmology models rely on pseudo-Riemannian metric as the 
cornerstone of Einsteinian universe. But the metric itself is based 
on continuum theory. It is known that such models have led us 
to too many (monster) problems, including dark matter and dark 
energy etc. Now what if the universe is discrete? Then perhaps 
we can solve these problems naturally. Philosophically speaking, 
the notion of discrete space can be regarded as basic question in 
definition of differential calculus and limit. If it is supposed that 
space is continuous then we can use standard differential calculus, 
but if we assume it is finite and discrete, then we should use 
difference equation or finite difference theories. This problem is 
particularly acute when we want to compute our mathematical 
models in computers, because all computers are based on discrete 
mathematics. Then we can ask: is it possible that the discrete 
mathematics can inspire cosmology theorizing too? Despite majority 
of cosmologists rely on such a Standard Model which is called 
Lambda CDM theory, we will explore here the redshift theory based 
on a few of lattice-cellular models, including Lindquist-Wheeler 
theory and beyond it. We will also touch briefly some peculiar 
models such as Voronoi tessellattice and also Conrad Ranzan’s 
cellular model of the Universe. 

a. Lindquist-Wheeler’s theory: In this model, the matter content 
is assumed to be discrete; identical spherically symmetric islands 
uniformly distributed in a regular lattice. This attempt was first 
introduced in 1957 by Lindquist and Wheeler (LW) in a seminal 
paper. While LW suggested that their global dynamics is similar to 
Friedmann universe for closed dust dominated universe, Shalaby 
has shown that LW-model can be extended to yield a redshift 
equation, as follows: (9)
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It can be shown, that the value of γ approximates geometrically 
to be 2/3, however, numerically its value was estimated to be 7/10. 
Liu (22) also analyzed LW model, and he concludes that the LW 
redshifts can differ from their FLRW counterparts by as much as 
30%, even though they increase linearly with FLRW redshifts, and 
they exhibit a non-zero integrated Sachs-Wolfe effect, something 
which would not be possible in matter-dominated FLRW universes 
without cosmological constant (10).

b. Voronoi Tessellation model: Rien van de Weygaert describes 
a novel model based on Voronoi tessellation. The spatial cosmic 
matter distribution on scales of a few up to more than a hundred 
Megaparsec displays a salient and pervasive foam-like pattern (23). 
Voronoi tessellations are a versatile and flexible mathematical 
model for such weblike spatial patterns. Cellular patterns may be 
the source of an intrinsic geometrically biased clustering. However, 
so far we do not find a redshift equation from this model (24).

c. Non-expanding cellular universe: Conrad Ranzan (25) suggests a 
DSSU cellular cosmology (dynamics steady state universe), which 
he claims to be problem-free. The cosmic redshift is shown to be 
a velocity-differential effect caused by a flow differential of the 
space medium. He obtains the cosmic redshift equation in its 
basic form (8): 

 (1 ) 1N
GCz z= + −                       [2]

There are of course other cellular cosmology models, some of them have been 
reviewed by Marmet, but this paper is not intended for such an exhaustive 
list of redshift models. See Marmet (26).

Concluding remarks

An old question and paradox in Euclidean geometry may be resolved 
consistently, once we accept and assume a discrete space instead of 
continuum model which is full of indeterminacies (27). 

Many implications and further developments can be expected both in 
particle physics realm and also in cosmology theorizing. More observation 
and experiments are recommended to verify whether the space is discrete, 
continuous, or hybrid.

In retrospect, it may offer an alternative of quantum gravity, i.e. by exploring 
discrete gravitational theories. To elucidate our propositions, in the last 
section we discuss some implications of discrete cellular-space model in 
several areas of interest: (a) cell biology, (b) cellular computing, (c) Maxwell 
equations, (d) low energy fusion, and (e) cosmology modelling. 
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