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 RESEARCH 

ICAR, a categorical framework to connect vulnerability, threat 
and asset management 

Arnaud Valence 

INTRODUCTION 

 hen it comes to cyber systems defense, security operations 
management has long involved separate tasks: vulnerability 

management, cyber threat management, and asset management. 
Today, these disciplines are intended to interoperate within a broader 
framework, supported by public knowledge bases about cyber threats, 
vulnerabilities, and IT assets. This interoperability draws an integral 
and integrated research path, at the interface between ontology 
language, database theory and cybersecurity, in order to understand 
how adversaries use vulnerabilities to achieve their goals. 

From a general perspective, research efforts strive to integrate several 
repositories: the Common Platform Enumeration (CPE) listing IT 
assets, the Common Vulnerabilities and Exposures (CVE) listing 
discovered vulnerabilities, the Common Weakness Enumeration 
(CWE) listing commonly appearing weaknesses, the MITRE 
ATT&CK framework listing Adversary Tactics and Techniques 
(ATT) and the Common Attack Pattern Enumeration and 
Classification (CAPEC) which helps facilitate attack identification 
and understanding. The latter repository thus acts as a bridge 
connecting vulnerability management and threat management. On 
this basis, research work has explored several avenues. 

• Some works propose unified ontologies, more or less
interoperable, such as Kurniawan et al., preceded in this by
partial ontologies such as UCO and SPESES, which do
not yet include the CTI incorporated in the ATT&CK
(even though they can include other vulnerability
repositories, such as the CYBOX, KillChain or STUCCO
standards) [1]. 

• Other research explores the track of domain-specific
languages (DSL), and in essence that of the Meta Attack
Language (MAL) meta-language. This is the case for Xiong
et al.’s EnterpriseLang meta-language and Åberg and
Sparf’s AttackLang meta-language [2,3].

• A third research direction proposes to deepen the graph
visualization aspects of attack paths through a relational 
representation of threats and vulnerabilities. This is the
case in the BRON model of Hemberg et al. [4]. 

The approach proposed here is a new way to deepen the 
mathematical aspects of integrated security operations management. 
This approach combines three advantages in that 

(i) like the first approach mentioned above, it develops a
unified vision of vulnerability and threat repositories;

(ii) like the second approach, it articulate vulnerabilities
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ABSTRACT 
ICAR is a mathematical framework derived from category theory 
for representing cybersecurity NIST and MITRE’s ontologies. 
Designed for cybersecurity, ICAR is a category whose objects are 
cybersecurity knowledge (weakness, vulnerability, impacted 
product, attack technique, etc.) and whose morphisms are relations 
between this knowledge that make sense for cybersecurity. Within 

this rigorous and unified framework, we obtain a knowledge graph capable of 
identifying the attack and weakness structures of an IS, at the interface between 
description logics, database theory and cybersecurity. We then define ten 
cybersecurity queries to help understand the risks incurred by IS and organise 
their defence. ICAR is therefore a vulnerability-oriented OSINT framework. 
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and threats within the framework of a cybersecurity-
oriented meta-language, except that—and this is a 
fundamental point—it is a mathematical 
metalanguage rather than an ontological one. 

(iii) like the third approach, it deepens the study of graph
visualization and structural properties of the unified
cybersecurity ontology, by borrowing the powerful
and rigorous graph-theoretic concepts of category
theory.

We believe that category theory can be put to good use by 
cybersecurity teams. Following the example of a growing number of 
researchers, involved in more and more diverse fields of knowledge, 
we believe that category theory offers important concepts to simplify 
and unify the treatment of security operations. We see category 
theory as the very language of interoperability that enables the 
integrated management of assets, vulnerabilities, and cyber threats.  

The article is organized as follows. The second section discusses the 
construction of the integrated cybersecurity resource, which will lead 
to the knowledge graph called ICAR. Based on this, the third section 
shows how to exploit the knowledge graph to answer different 
concrete cybersecurity queries. We will see how the categorical 
concepts allow handling bottom-up (from assets to defence to 
adversaries) as well as top-down (from adversaries to assets) queries. 
The fourth section concludes. 

BUILDING ICAR 
Data sources 
The data sources are from the knowledge bases provided by NIST 
(National Institute of Standards and Technology) and the MITRE 
Corporation. 

• Common Platform Enumeration (CPE) is a way of
assigning standardized identifiers to classes of IT assets.

• Common Vulnerabilities and Exposures (CVE) is a
knowledge base listing publicly known vulnerabilities.
Each CVE entry contains an identification number, a
description and at least one reference to publicly known
cyber security vulnerabilities. Additional information may
include patch information, severity scores and impact
assessments according to the Common Vulnerability
Scoring System (CVSS), as well as links to exploit
information and advisories.

• Common Weakness Enumeration (CWE) is a knowledge
base listing software and hardware weaknesses: flaws, 
features, breaches, bugs, and other errors in the design,
architecture or implementation of software and hardware
components that, if left unfixed, can make systems and
networks vulnerable to attack. CVE entries have a
relational link to CWE entries, as an example of a
weakness that actually affects a computer system.

• Common Attack Pattern Enumeration and Classification
(CAPEC) enumerates and classifies attack patterns to
facilitate the identification and understanding of attacks.

The attack patterns have a tree structure, i.e. they are 
organised into categories and sub-categories of attacks. 
They allow the ATTs to be linked to CWE weaknesses.  

• MITRE ATT&CK framework abstractly describes cyber
attack techniques organised into twelve sequential tactics.
The framework is presented in a matrix format where the
columns represent tactics and the rows represent
techniques.

These five knowledge bases (or six including CVSS) thus make up an 
integrated ontological resource for cybersecurity (which we will call 
ICAR). At this point, it is important to note that this resource only 
represents the abstract relationships between the data sources. In the 
database language, we would say that it shows the column headings of 
the primary and secondary keys, but not the column entries 
themselves. 

Ontologies as knowledge graphs 
The integrated ontological resource can be represented more formally 
as a graph. 

Definition 1 
(Graph). A graph G is a sequence G := (V, E, src, tgt), where V et E 
are sets (respectively the set of vertices and the set of arrows of G), 
and src, tgt : E → V are functions (respectively the source and target 
function of G). An arrow e ∈ E with source src(e) = v and target tgt(e) 
= w is represented as follows: 

.
e

 

On this basis, it is possible to represent each dictionary (or ontology) 
by a vertex and each link between dictionaries by an arrow, without 
forgetting that dictionaries can have internal links. This is the case of 
CAPEC patterns. For example, the CAPEC-593 pattern (Session 
Hijacking), linked to the CWE-287 weakness (Improper 
Authentication) and to several techniques, sub-techniques and 
MITRE ATT&CK tactics, has itself children (the CAPEC-60, 
CAPEC-61, CAPEC-102, CAPEC-107 patterns) and is itself linked to 
the CAPEC-21 pattern (Exploitation of Trusted Identifiers). We must 
therefore add to the knowledge graph a loop on CAPEC representing 
the ChildOf dependency relation. It is also possible to add the dual 
relation ParentOf, although redundant, as foreseen by the MITRE 
corporation. This is also the case for weaknesses. For example, the 
aforementioned weakness CWE-287 has children CWE-295, CWE-
306, CWE-645, CWE-1390, and is itself a child of weakness CWE-
284 (Improper Access Control). Finally, it remains to take into 
consideration the internal structure of the ATT&CK framework, 

which is broken down into the dictionaries Tactics, Techniques 

(including sub-techniques) and Procedures. In this article, we will only 
deal with tactics and techniques. Sub-techniques will be assimilated to 
techniques of which they are children. 

Taking into account these additional specifications, we finally obtain 
??the graph depicted in figure 1 , faithful to the structure of the asset, 

attack and weakness ontologies (Figure 1). 

1
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Figure 1) Representation of the security knowledge graph 

Remark the complementarity of the CAPEC and Techniques 
dictionaries in the overall understanding of threat, beyond their 
simple logical link. Techniques and (attack) patterns contextualise 
threat differently. Patterns are intended to focus on the compromise 
of applications in order to understand the path taken by adversaries 
to exploit end-to-end application weaknesses in the information 
system (IS), while techniques describe the concrete dynamics of an 
attack scenario executed step by step to compromise the IS [5]. Thus, 
technique T1528, which describes the theft of application access 
tokens in order to obtain credentials for access to remote systems and 
resources, can be contextualised in two different ways: (i) as a step to 
legitimise application actions under the guise of an authenticated user 
or service by obtaining a trusted identifier, hence its belonging to the 
CAPEC-21 (Exploitation of Trusted Identifiers) pattern, (ii) as a 
strategic step to steal account names and passwords, hence its 
belonging to the TA0006 (Credential Access) tactic. Ultimately, the 
techniques embody attack tactics as the "how" of the attack (where 
tactics characterise the "why"). 

Semantic facts and knowledge schema 
We can do better. What the knowledge graph represents are roughly 
the data tables (the vertices) and the data columns (the arrows).  

However, there is still some information missing which is not made 
explicit in the graph: the path equivalences in G . 

Definition 2 

(Path). Let  , ,src,G V E tgt  be a graph. A  path of length n  in G ,

denoted 
 n

p PathG is a sequence

 31 2

0 1 2

a aa a n
np        

of arrows in G . In particular, 
(0)

G
Path V and 

(1)

G
Path E . The set 

of all paths in G  is denoted. 
 n

G
n G

Path Path




. 
Paths may themselves carry higher level information about the 
knowledge structure. This is the case if constraints are imposed on 
the paths to translate properties that make sense. These constraints 
can then be expressed as path equivalences. 

Definition 3 

(Path equivalence). Let  , ,src,G V E tgt be a graph and

 
, :

n

G
p q b c Path  two paths in G . A categorical path equivalence 

relation in G , or simply a path equivalence in G , is a relation 

denoted such that p q if and only if    src p src q  and 

   tgt p tgt q . Moreover, if :m a b and :n c d are two arrows

in G , then m and n are respectively an epimorphism (a right

simplifiable morphism) and a monomorphism (a left simplifiable 
morphism), i.e. p p  if and only if mp mq and pn qn . 

Following Spivak , we call this equivalence relation facts [6]. 

There are facts in our study. It is indeed natural to ask for a form of 
reciprocity in the links between weaknesses and attack patterns. If an 
attack pattern CAPEC X exploits a weakness CWE Y , it is natural 

that it is part of the patterns referenced by this weakness. We can 
therefore add a path equivalence in the knowledge structure to obtain 
the following fact: 

  .
Has Has

CAPEC X CWE Y CAPEC X    

for all  CAPEC X CAPEC  and CWE Y CWE  . 

Parent/child relations express other facts. It is natural to require that 
a weakness CWE X declaring a child CWE Y is itself declared as 

the parent of the child. We therefore have a constraint such as. 

  .
isParentOf isParentOf

CWE X CWE Y CWE X    

It is also possible to express path equivalences in the more convenient 

algebraic form of path equalities, using composition operator (.). The 
two previous equivalence relations can then be rewritten, for any 

 ,i CWE CAPEC

. . ,

. . ,

. .

i Has Has i

i isChildOf isParentOf i

i isParentOf isParentOf i







 (1) 

Are there other facts? Could we not ask that the child of a weakness 
belong to the same attack pattern as its parent, or one of its children? 
The answer is no. The data structure of the CWE and CAPEC does 
not have this characteristic. No hybrid facts can be derived from the 
two previously defined facts. 

This negative result can be attributed to the meaning provided by the 
labelling of arrows. Stress that facts are dependent on the meaning of 
arrows. They are semantic facts. For example, in a bijective data 
structure where each parent has exactly one child and a child exactly 
one parent, there is an equivalence between the path 

   2

0 1
isOnlyParentOf isOnlyChildOf

G
p Path     and the path 

 0

0
'

G
p Path   , but this equivalence no longer holds in a data 

structure with multiple parents and children. 

This is why it is not possible to apply Spivak’s theory of ologs [7]. 
Ologs are elegant categorical frameworks for rigorously representing 
knowledge structures exploiting databases, but are limited to 
structures of functional type. It is inappropriate in this study since the 
vertices of our knowledge graph generally have several arrows, and 
may in some cases have none.  

CV SS

CV E CWE CAPEC Technique

CPE Tactic

Has

Has

Has

isChildOf

isParentOf

Has

isChildOf

isParentOf

Has

Has

isSubTechniqueOf

accomplishesTactic



 Valence

J Pure Appl Math Vol 7 No 4 July 2023

On the other hand, the usual theory of oriented (multi)graphs is too 
broad to capture all the properties present in this study, since we 
added a path equivalence property. If we add the facts  to the 
knowledge graph, we obtain a richer structure called (knowledge) 

schema. 

Definition 4  

(Categorical schema). A categorical schema S  consists of a pair 

 : ,S G where G is a graph and simeq a path equivalence on G . 

In the remainder of this study, we will speak more simply of a 
schema, in the absence of any risk of confusion. 

More about relation CWE CAPEC

It was noted that the CWE and CAPEC dictionaries are linked in 
both directions. This may seem strange, as a mapping can in principle 
be read 7 both ways: if the weaknesses correctly refer to the attack 
patterns, it should be possible to recover the former from the latter. 

 Actually, this is not always the case. Kanakogi et al. report some 
CAPEC-IDs that are not identified by CWE-IDs that fall within their 
attack pattern [8]. As a result, some CVE-IDs would not be correctly 
mapped to their attack pattern(s). The authors give the example of 
the CVE-2018- 18442 vulnerability, which is linked to a weakness due 
to network packet flooding. However, while there is an attack pattern 
for this weakness (the CAPEC-125 pattern), the fact is that the 
vulnerability is also associated with the CWE-20 weakness (incorrect 
input validation) which, according to the authors, prevents the 
vulnerability from being linked to the CAPEC125 pattern, as the 
latter is not referenced by the CWE-20 weakness. This problem then 
motivates the authors to link CVE-IDs directly to CAPEC-IDs. Their 
solution is to use similarity indicators between CVE-IDs and CAPEC-
IDs, using machine learning and natural language processing.  

In fact, the traceability problem discussed by Kanakogi et al. does not 
describe an architectural flaw (since weaknesses can list several attack 
patterns), but reflects the incomplete mapping between dictionaries. 
From this point of view, the strategy of the authors seems to be good, 
even if it consists in directly linking dictionaries that are not 
graphically related. In the end, this direct approach seems to be 
complementary to ours in that it allows to complete the collection of 
arrows that will be used to populate the knowledge schema. This 
remark is also valid for other approaches of direct mapping between 
dictionaries, like the projects of Grigorescu et al. [3], Kuppa et al. [7] 
or Ampel et al. [2], which aim to link CVE-IDs to MITRE ATT&CK 
tactics and techniques [9,10,11]. 

ICAR as schema instance 
The knowledge schema provides an abstract view of cybersecurity data 
ontologies, the "skeleton". It represents the structure of the data in 
the form of a triplet (of vertices, arrows and equivalence relations) in 
exactly the same way as the attributes of database tables present the n-
uplets of the database.  

It is now a question of populating the knowledge schema in such a 
way as to make the knowledge base explicit. This explicitation is in 
fact an instantiation (a "concretisation") of its schema. 

264 

Definition 5 

(Instance). Let  : ,S G a categorical schema where 

: , ,src,G V E tgt is a graph. An instance I on S is given by

1. a set  I   for any vertex V  ;

2. a function      : 'I e I I   for any arrow e : '  ; 

3. the equality    I p I q for any path equivalence p q .

In other words, an instance on S  is a path equivalence preserving 

functor :F S Set .  

Among the infinite number of instances that can be generated by C, 
there is one that interests us the most: the up-to-date resource for 
cybersecurity ontologies. We call this instance ICAR for Integrated 
CAtegorical Resource. To fix ideas, we represent in the tables 1 an 
extract of ICAR, where appear at the time of writing the most salient 
added or updated entries, among more than 20,000 CPE, about 
176,000 CVEs, 668 CWEs, 559 CAPECs, 193 Techniques and 14 
Tactics. 

It is difficult not to make a connection with a database schema, as we 
suggested above. It is indeed possible to see an arrow e E G C    

as a relation linking the table identified by  src e with a table 

identified by  tgt e . For example, the arrow CWE CAPEC

expresses that the table CWE points to the table CAPEC, i.e. entries 
that have a primary key in CWE are related to entries that have a 
primary key in CAPEC, via the secondary keys found in the CAPEC 
column of the table CWE. 

At this point we can see that the database schema is not in normal 
form, since the attribute values are not necessarily atomic (so a 
weakness frequently has several parents and several CAPECs). Strictly 
speaking, we should decompose the database schema so as to express 
it in first normal form. In fact, we do not need such a normalization 
in this study because it would unnecessarily transform the resource 
ICAR by adding redundancy. We do, however, need a normal form 
to check the consistency of ICAR. This leads us to a concept of 
categorical normal form (Table 1).  

Definition 6  
(Categorical normal form). A database is said to be in categorical 
normal form if 

1. any table t has a single primary key column IDt fixed at the
beginning;

2. any entry belonging to a column c t  refers to a primary key in

a single table 't , which is denoted by : '
c

p t t ;  

3. any database equivalence between two relations , : '
c c

p q t t

must be declared as a path equivalence in the corresponding

categorical schema, i.e. 
c c

p q .
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TABLE 1 

Extracts of ICAR entries. The CPE dictionary is formatted on the following scheme 

cpe:<cpe_version>:<part>:<vendor>:<product>:<version>:<update>:<edition>:<language>:<sw_edition>:<target_sw>:<target_hw>:<oth

er>. Only the substring <vendor>:<product> is represented here. (* : Non available) 

CPE 

ID 

240.99_kindle_books_project:240.99_kindle_books 

@nubosoftware/node-static_project:@nubosoftware/node-static 

@thi.ng/egf_project:@thi.ng/egf 

gwa_autoresponder_project:gwa_autoresponder 

01org:tpm2.0-tools 

CVE CVSS 

ID CWE CPE CVSS ID 

CVE-2023-1684 CWE-434 NA* 2.1 6.8 

CVE-2023-28371 CWE-22 Stellarium :Stellarium 4.3 6.9 

CVE-2023-21038 NA* NA* 9.5 7.0 

CVE-2023-21039 NA* NA* 2.1 7.1 

CVE-2023-21032 NA* NA* 4.1 7.2 

CWE 

ID ChildOf 

CWE-787 119 

CWE-79 74 

CWE-89 943 

CWE-20 707 

CWE-125 119 

CAPEC 

ID ChildOf ParentOf CWE Techniques 

CAPEC-698 542 '- 507.829 1027,1176,1505,1587 

CAPEC-699 651 '- 1300 1111 

CAPEC-700 161 '- 284 1599 

CAPEC-701 94 '- 294.345 1557 

CAPEC-702 180 '- 1296 1574 

Techniques Tactics 

ID Tactics ID 

T1548 TA0004,TA0005 TA0043 

T1134 TA0004,TA0005 TA0042 

T1531 TA0040 TA0001 

T1087 TA0007 TA0002 

T1098 TA0003 TA0003 

ParentOf 

121-124

80,81,83-87,692 

564 

179,622,1173,1284-1289 

126.127 

CAPEC 

NA* 

63,85,209,588,591,592 

7,66,108-110,470 

3,7-10,13,14,22-24… 

540 
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We check that ICAR actually is in categorical normal form. 
Condition 1 is met because each dictionary has a single primary key 
column. Condition 2 is assumed to be met by the successive updates 
of the dictionaries: if a new entry appears in the foreign key columns, 
it is assumed that it is indexed at the same time in another table as a 

primary key. There are no unreferenced entries in primary key. On the 
other hand, it is possible that no foreign key is associated with the 
entry of a new item as a primary key. This is typically the case when, 
for instance, an asset affected by a vulnerability has not yet been 
found, or the weakness corresponding to this vulnerability is still 
awaiting identification, etc. It is also possible for a primary key 
column to have no foreign key column. In this case (very common in 
databases), the table is limited to a single column. This is the case 
here for the CPE and Tactics tables. In this case, we speak of a leaf 
column. Condition 3 is respected because it is easy to check that the 
facts are translated into relational equivalences in database: the attack 
patterns declared in the weaknesses declare in turn the declaring 
weaknesses, and vice versa, and the children declared by the 
weaknesses or the attack patterns declare in turn their declaring 
parents. 

USING ICAR 
In this section, we illustrate the applicability of ICAR through several 
use cases. First of all, we must start by introducing the assets of the IS 
subject to attack. 

Instantiate ICAR with an IS 
Graph 1 brings together knowledge about vulnerability and threat 
managements in a single categorical schema. But asset management is 
still to be considered. Assets are explicitly taken into account by 
Kiesling et al.  in the SEPSES knowledge graph [12]. Indeed, we find 

there the sub-graph 
Pr

Pr
has oduct

CPE oduct . We take up this idea 

with two differences. Firstly, we consider only a subset of assets. This 
restriction allows us to refer to a concrete entity to be analysed, i.e. an 
IS made up of assets inventoried in a database (to be monitored or 
investigated). This inventory of assets is commonly materialised by a 
Configuration Management Database (CMDB). Secondly, and by 
pure convention, we reverse the arrow formalising the dependency 
between CPEs and assets. This is indeed what CMDBs suggest, which 
normally provide for each component added to the database as a 
primary key a foreign key CPE as illustrated in table 2. 

TABLE 2 
Extract columns ID and CPE from a CMDB 

CMDB 

ID CPE 

A0006 cpe:2.3:a:microsoft:internet_explorer:8.0.6001:beta:*:*:*:*:*:* 

VM008 cpe:2.3:a:vmware:vcenter_server:6.0:3b:*:*:*:*:*:* 

LB001 cpe:2.3:h:f5:big-ip_10250v:-:*:*:*:*:*:*:* 

OS007 cpe:2.3:o:linux:linux_kernel:2.6.39:*:*:*:*:*:*:* 

OS008 cpe:2.3:o:paloaltonetworks:pan-os:8.1.16:*:*:*:*:*:*:* 

CMDB can thus be connected to ICAR via the CPE attribute. It can 

be noted that this correspondance is surjective (each CPE reference 

refers to at least one asset in the CMDB) but not necessarily injective 
since a CMDB can have several assets with the same CPE. And 
finally, it is possible to complete the knowledge schema C of which 
ICAR is the instance, which is represented in figure 2 by noting DBX 
the inventory of assets from the CMDB of SI X. 

Figure 2) Knowledge schema with inventory of assets 

We therefore have the following Q1 query: 

Query 1 (Q1). Instantiate an inventory of assets XDB Product . 
We start by noting that the instantiation already referred to here is 
different from the instantiation of the knowledge schema. The idea 

now is to instantiate an object which already has the database structure 
(ICAR), in other words to populate ICAR (where ICAR instantiates 
the knowledge schema as a "concretisation"). In category theory, this 
notion of instantiation can be approached in many ways. In fact, 
there are at least two ways of dealing with Q1, either by first 
"connecting" table Product to table CPE and then filtering on the 

assets 
X

DB Product , or by directly connecting DBX and CPE tables. 

In the first case, a filtering operation must be added to the asset 
connection operation. This operation is not trivial in category theory. 
Moreover, it implies adding ex post the quantitative aspect induced 
by the potential presence of more assets with same CPE reference. 
This is why we will apply the second method, which is easier and 
more direct. The idea of filtering will nevertheless be discussed later 
in order to answer query Q6. 

In pratical terms, if we think in terms of database management, the 
addition of DBX to ICAR can be understood as a database migration, 
and more precisely as a database union. This intuition can be 
translated into terms of "categorical data". The idea of "migration" 
finds a natural translation in category theory with the concept of 
functor. Let S  be the (categorical) schema associated with Figure 1 

(i.e. devoid of assets) and T  the schema associated with Figure 2 (i.e. 
enriched with an inventory of assets). Following the example of 
Spivak, we can then define a schema morphism (i.e. a functor) 

:F S T . Migration functors follow [6,13]. 

Definition 7 
(Migration functors). Let S  and T  be two schemas, S Inst and 

T Inst instances on S  and T  respectively, :F S T a schema 

morphism and :I T Inst T Set   . Then the composite functor 
F I

S T Set  lives in the S -instance  I F S Inst  and we define 

the functor 
F

 such that.

:
F

T Inst S Inst     (2) 

I I F  (3) 

as well as the functors , :
F F

S Inst T Inst     as adjoint functors of
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F
 , respectively on the left and on the right.

In the language of category theory, 
F

  , 
F

  and 
F

 are called

pullback , left pushforward and right pushforward respectively. 

Intuitively, 
F

 can be understood as a projection operator in the

sense that data (tables, columns) is duplicated. In contrast, 
F

 is

interpreted in terms of unifying tables, and 
F

 in terms of joining

tables. This difference between left and right pushforwards (between 
unification and junction) is important. When the tables to be joined 
have no common key, the merging operation can take place in one of 
two ways: 

• either by adding the rows of the second table to those of
the first, which has the effect of creating Skolem variables
in the unfilled "foreign" columns (in this case we reason on
the sum of the primary key spaces);

• either by multiplying the rows of the second table with
those of the first, which has the effect of duplicating the
rows of the first table as many times as there are rows in
the second (in this case we reason on the product of the
primary key spaces).

But the situation is simplified if tables have a common key. In this 
case, left pushforward and right pushforward are equivalent and there 
is no duplication of rows or new variables created. This is exactly 
what happens in our case since asset inventories are supposed to 
include CPE IDs. Table reconciliation therefore occurs naturally by 
matching the foreign keys of the inventories with the primary keys of 
the CPE dictionary. 

List all vulnerable assets 
For a CISO or security analyst, one of the most natural queries is to 
list the vulnerable assets of the IS. 

Query 2 (Q2). List all vulnerable assets of a given IS  
To process this query, one must first list the entries in the CMDB 
whose foreign key (i.e. the CPE attribute) also appears as a foreign key 
in the CVE table. In category theory terminology, we say that we use a 
pullback (or fiber product), which is one of the many variations of the 
categorical concept of limit.  

Definition 8  
(Pullback). Let be the dictionaries CVE and CPE, DBX the inventory 

of the IS X, and the relations 
has

X
DB CPE and  has

CVE CPE . 

The pullback of the cospan
has has

X
DB CVE CPE  , denoted

X CPE
DB CVE , is defined by the set. 

     
,

: , | ,
X XCPE

DB CVE x y x DB y CVE has x has y    

respecting the commutative diagram (Figure 3) 

Figure 3) Pullback od DBX and CPE 

To obtain the only vulnerable assets (dissociated from their 
vulnerabilities), it is sufficient to retain only the left projection of the 
pullback. For assets affected by several vulnerabilities, an additional 
projection morphism is necessary. We then obtain the set of 
vulnerable assets denoted by AffectedAssetsX. 

List all vulnerabilities of the IS 
In the same way, it is also useful to list all vulnerabilities affecting a 
given IS.  

Query 3 (Q3). List all vulnerabilities of a given IS  
This query, which is a dual of the previous one, consists in keeping 
only the vulnerabilities from the pullback [3]. This list is obtained by 

using the right projection of
X CPE

DB CVE . The resulting set is 

denoted VulnX. 

List the vulnerabilities affecting an asset  
Similarly, it is natural to ask for a list of vulnerabilities affecting a 
particular asset in the IS.  

Query 4 (Q4). List the vulnerabilities affecting an asset 
X

x DB . 

x

To process this query, we have to isolate the pairs (asset, vulnerability) 

of the same asset  in the pullback [8]. We therefore need to reason 

about the following commutative diagram (Figure 4, 5): 

Figure 4) It turns out that this diagram also defines a pullback, by virtue of 
the pullback propagation theorem. Consider the following diagram: 

Figure 5) It follows that that of the left-hand side is also a pullback, and 

consequently the entire commutative diagram  

such that the commutative square on the right-hand side is a 
pullback. It follows that that of the left-hand side is also a pullback, 

x×CPE CVE DBX ×CPE CVE

x DBX

isIn

has has

isIn

x ×CPE CVE DBX ×CPE CVE CVE

x DBX CPE

isIn

has

has

has has

isIn has

DBX ×
CP E

CVE has

has

CVE

has

CPE
��

DBX
has
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and consequently the entire commutative diagram. The set 

CPE
x CVE thus satisfies Q4 by providing all vulnerabilities impacting 

asset x . 

List the assets affected by a vulnerability 

From the pullback 
X CPE

DB CVE , we see that it is also possible to

filter the resulting pairs by CVE rather than by asset. This filtering 
fulfils another mission of the CISO (or of any administrator or 
analyst whether or not they have been mandated to do so): that of 
monitoring the changes needed to guarantee the logical and physical 
security of the IS for which he is responsible. This task includes 
monitoring vulnerabilities likely to affect the IS, and in practice 
begins by consulting the security alerts issued by the CERT (to which 
every CISO is in principle a subscriber). Each alert contains one or 
more CVE entries on a given subject. When a CISO becomes aware 
of a vulnerability, s/he has to ask her/himself whether the IS is 
affected, with the level of attention weighted by its CVSS score. 
Assuming that the new vulnerability is added to ICAR, we therefore 
have the following Q5 query, dual to Q4: 

Query 5 (Q5). List the assets affected by a vulnerability y CVE . 

This query is processed by choosing from 
X CPE

DB CVE the pairs 

corresponding to the vulnerability y we are looking for, which we 

note 
X CPE

DB y (i.e. as many pairs as assets impacted by y ). The same 

applies to the resulting commutative diagram, which is a pullback, 

and by combining Q4 with Q5 we obtain the pair  ,x y  giving the 

vulnerability y  of the asset x , that is useful for consulting the 

remediation status of a vulnerability to be treated (is it fixed, in 
progress, scheduled...) in figure 6. 

Figure 6) Consequently the entire commutative diagram 

List vulnerabilities by criticality 
In cybersecurity, vulnerabilities are not of equal importance. There is 
a tendency to focus on the most severe vulnerabilities. It is not 
uncommon for a CISO to plan enhanced monitoring for critical 
vulnerabilities. Typically, s/he may request a regular report on 
vulnerabilities with a score of 9 or more (in CVSS v3.0 notation), or 
more generally with a score within a range S   [0.0, 10.0]. Query Q6 

follows. 

Query 6 (Q6).  

List vulnerabilities by CVSS score s S  [0.0, 10.0]. 

As we saw with Q1, pullback can be used to assign a set of row-IDs to 
a schema element, which seems to do the trick. However, we need an 

additional ingredient to filter on the values taken by the entries in the 
CVSS score column. Indeed, migration functors defined above do 

not operate in the context of schema morphism, but in that of type 
morphism. We therefore need a notion of typing. 

Definition 9 

(Typing). Let S  be a schema and A  a discrete category (i.e. a category 

containing only objects and identity morphisms) composed of attribute names. 

A typing for S  is a triplet  , ,A i  where i  is a functor from A  to S  

mapping each attribute to its vertex, and   is a functor from A  to Set, 

mapping each attribute to its type. 

Then, i  reflects the pairing of the knowledge graph’s vertices with 

the attributes of A  and   reflects the assignment of the attributes of 

A to their type. Consequently, we call a typed instance a pair  ,I 

where :I S Set is an instance together with a natural 

transformation : I i  (Figure 7). 

Figure 7) Typing 

Intuitively,   reflects the assignment of a type to each ID in I . 

Typically, this could be the assignment of a string type or a float type, 
but more generally it can be any type.  

Now, as Spivak points out, if we go back to pulback, we see that it is 

possible to adapt migration functors to type-change functors [6]. 

Definition 10 
(Type-change functor). Let S  be a schema and :k A B a morphism of 

typing instances. We refer to the induced functors 

/ /
ˆ :

k A B
S Inst S Inst    and

/ /
ˆ ˆ, :

k k A B
S Inst S Inst     as type-

change functors. ˆ
k

 , ˆ
k

 and ˆ
k

 are respectively called the pullback, the left 

pushforward and the right pushforward type-change functor. 

In the context of Q8, we are therefore dealing with a morphism of 
typing instances which associates a subtype B with the predefined 

type 0.0,10.0A B    . 

Measuring the attack surface of an IS 
The attack surface is a summary of the weak points in a IS that an 
attacker can exploit to gain access and carry out malicious actions. 
The more weak points there are, the greater the attack surface and the 
greater the risk of being attacked. Measuring the attack surface 
therefore makes it possible to assess the barriers an attacker needs to 
overcome to exploit the weakness. 

Query 7 (Q7).  
Measuring the attack surface of an IS X.  
There are myriad ways of defining the attack surface of an IS, and just 

x × y DBX ×CPE y y

x ×CPE CVE DBX ×CPE CVE CVE

x DBX CPE

isIn

isIn

has

isIn isIn

isIn

has

has

has has

isIn has

A S

Set

i

γ

A S

Set

i

γ Iδ

(a) Typed schema (b) Typed instance
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as many ways of measuring it once it has been defined. One of the 
simplest definitions is based on the CVSS scores of the vulnerabilities 
present in the IS. From that point on, the attack surface can be 
measured in different ways, bearing in mind that the CVSS standard 
is itself a system of metrics based on three metric groups [14] .  

The simplest indicators are : 
1. the list of assets affected by a vulnerability with their

associated CVSS score (as many weak points exploitable by
an attacker) ;

2. the sum of the assets affected by a vulnerability weighted
by their CVSS score.

It is obtained from the schema morphism has
CVE CVSS and the 

pullback 
X CPE

DB CVE previously defined as follows: 

Figure 8) The product summarises 

The product 
X CPE

DB CVSS summarises as a simple list the mapping 

of possible entry points for a potential attacker, with their associated 

criticality. Seen as the product of 
X

DB and CVSS , 
X CPE

DB CVSS can 

then be used to define the synthetic indicator (ii). Assuming that the 
assets affected are of equal importance, the synthetic attack surface 
indicator, AttackSurface, is easily obtained as the sum of the CVSS 
scores projected into the list on the right: 

 
 

,
: ,

x y DB CVSSX
CPE

AttackSurface right x y
 

 

We note that, despite their equal importance, vulnerable assets do 
not involve equally important threats (such as attack media). Not only 
do the assets affected differ in the severity of their vulnerabilities, but 
they can also differ in the + of vulnerabilities affecting them, and it is 
not uncommon for an asset to accumulate vulnerabilities. For 
example, Gitlab 15.8.0 has vulnerabilities CVE-2022-3411, CVE-
2022-4138, CVE-2022-3759 and CVE2023-0518, the last three of 
which are of high severity. 

These indicators obviously give a simplistic view of attack surfaces as 
they actually characterise IT systems. In reality, the assets of an IS do 
not have the same sensitivity for a variety of reasons: some assets are 
exposed to the Internet, others are not; some are in production, 
others in pre-production, development, decommissioning, etc.; some 
are constrained to high availability, others are not, etc. However, it is 
possible to take into account the importance of assets by adding a 

sensitivity criterion. This criterion is generally incorporated into 
CMDBs, which include a "CI Importance" property for this purpose, 
in line with ITIL architecture. If affected assets are of unequal 
importance, then each asset must be weighted by an importance 

indicator, i.e. a new 
X

IMPT data set connected to 
X

DB must be added 

to ICAR. In this case, it is sufficient to repeat the previous

developments by reasoning about the pullback 
X CPE

IMPT CVSS : 

Figure 9) The product summarises 

Note that an attack surface cannot be interpreted as measures of risk; 
as the NVD points out, "CVSS is not a measure of risk". In risk 
analysis, risk is always the product of a threat, a vulnerability and a 
severity [14]. ICAR lacks far too much information to be used as a 
basis for risk analysis, both in terms of business analysis (business 
values, feared events, impact of damage suffered) and threat analysis 
(sources of risk, attractiveness of the IT target, etc.). CVSS metrics can 
only measure the severity of vulnerabilities, which is only one 
component of risk. 

List vulnerabilities that can be exploited by a technique or tact 
We now turn to the long paths to examine how vulnerability 
management is linked to threat management. This link is 
bidirectional: top-down and bottom-up. We start with the top-down 
approach. It is natural to ask what vulnerabilities can be exploited by 
a given technique pursuing a given tactic. This approach makes it 
possible to map the dangers corresponding to the different tactical 
stages of the kill chain, which is useful for organisations’ defenders, 
who can prioritise vulnerabilities to be remedied, and for its 
adversaries, who can investigate their attacks. For example, at the start 
of an attack, the adversaries apply one or more reconnaissance 
techniques. They may, for example, target a website or an active 
directory with the aim of compromising accounts, creating accounts, 
obtaining capabilities (resource development tactics) or even taking 
their attack a step further with initial access tactics (remote access to 
the network, installation of a passive listening system, etc.). The list of 
vulnerabilities that can be exploited by this tactic can then enable the 
defender to be more vigilant about the assets that could be targeted 
by the adversary (i.e. a Wordpress application, an LDAP server, etc.). 
This knowledge is also useful to the adversaries because it tells them 
what they should be looking for, an asset or a version number if they 
already know an asset. So we have request Q8. 

Query 8 (Q8).  

List vulnerabilities that can be exploited by a technique or tactic. 

There are several ways of dealing with this query. The simplest is 

   ,DB ID CVSS ID
X

DB ID

Formally, indicator (i) corresponds to the set of pairs 

for any asset  and for any scoreX

vulnerability CVSS ID (Figure 8,9). 

(1)

DBX ×CPE CVSS CVSS

DBX ×CPE CVE CVE

DBX CPE

has

has

has

has

has

has

has

IMP TX ×CPE CVSS DBX ×CPE CVSS CVSS

IMP TX ×CPE CVE DBX ×CPE CVE CV E

IMP TX DBX CPE

has has

has

has

has has

has

has

has

has

has has
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probably to observe techniques and tactics as sieves. 

Definition 11  
(Sieve). Let   be a technique or a tactic. A sieve on   is a collection S  of 
morphisms such that: 

1. ( ) ,e S cod e   

2.      .e S cod f dom e e f S    

In other words, a sieve on an object A  in ICAR is a collection of 
arrows of codomain v closed by precomposition of morphisms in 
ICAR. However, this definition does not correspond exactly to Q8. 
On the one hand, the universal aspect of the collection of arrows is 
missing, as we are looking for the list of all vulnerabilities that can be 
exploited by a technique or tactic. This universality property is 
provided by the notion of maximal sieve. 

Definition 12  
(Maximal sieve). A  sieve S  on   is said to be maximal (or principal) if it 
contains all the arrows of codomain  . It is denoted  . 

On the other hand, the resulting sieve has too many arrows, since it 
includes all the precompositions of  -target morphisms. However, 
what counts for Q8 are only the CVE-domain arrows. To subtract the 
other arrows (i.e. arrows of CWE, CAPEC or Sub-technique 
domain), we need a notion of differential sieve. Let S  be a sieve on 
 in ICAR and S  a sieve on   in ICAR’, where ICAR’ is the
subcategory of ICAR without CVEs.

In other words, ICAR’ consists of the sub-collection of objects from 

ICAR such that      Ob ICAR Ob ICAR w CVE    , and the 

subcollection of morphisms of ICAR such that

        |Mor ICAR Mor ICAR e Mor ICAR src e CVE     . In this

context, the object satisfying Q8 for techniques is the differential 

sieve \ .
T T

S S S S therefore contains all the arrows whose domain 
is the set Techniques and whose codomain is the set CVE. To give a 
clearer idea, figure 5 represents the construction stages of Q8 for 
technique T1499 (Endpoint Denial of Service), from the subcategory 
extracted "under technique T1499" (a), to the maximum sieve on 
T1499 (b), and finally to the differential sieve (c) answering to Q8 
(Figure 10). 

Figure 10) Construction stages of Q8 

Obviously, the reasoning is the same for the list of vulnerabilities that 
can be exploited by a tactic. All we have to do is point the sieve 

construction 
TA

S  to the tactic(s) we want, for example to tactic 

TA0040 (Impact), which is the tactic performed by technique T1499. 

List techniques and tactics related to a vulnerability 
We now turn our attention to the bottom-up approach. From the 
point of view of the defender, it is natural to ask what attack 
techniques (and therefore tactics) are associated with its 
vulnerabilities. This knowledge enables him to focus on the 
vulnerabilities deemed most dangerous from the point of view of 
their tactical exploitation. This knowledge is also useful for the 
adversary if he knows some of the targeted assets or even in the 
absence of any information about the attacked IS. We therefore have 
query Q9: 

Query 9 (Q9). List techniques and tactics related to a vulnerability  
This is essentially the dual request of Q8. Since category theory is an 
ideal framework for studying all kinds of dualities, we just have to do 
use the dual notions of the two notions defined previously. We thus 
introduce a notion of cosieve. 

Definition 13  
(Cosieve). Let   be a vulnerability. A  cosieve on   is a collection coS of 
morphisms such that: 

1.  e coS dom e    ,

2.      .e coS dom f cod e f e coS    

We then define the notions of maximal cosieve and differential 

cosieve as before. The differential cosieve 
TA

coS corresponding to Q8 

is then given by the complement of the cosieve on v whose target is 

not a tactic: \ coS
TA

coS
coS C coS coS   , where coS and coS are

cosieve on a vulnerability   in ICAR and ICAR’ respectively. 
TA

coS

is the collection of arrows with source   and target T  actics. The 

(Figure 10).

CWE-770 CAPEC-125

CWE-1325 CAPEC-130 T1499.003 T1499

CWE-404 CAPEC-131

CVE-2023-1544

CVE-2023-20047

CVE-2023-20067

CVE-2023-22323

CVE-2021-43174

CVE-2023-28968

CVE-2023-0412

CVE-2023-0413

CVE-2023-0907

CVE-2023-0936

(a) Subcategory extracted under technique T1499.
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(b) Maximum sieve ↑ T1499 containing all arrows e ∈ ICAR/T1499 such that
cod(e) = T1499 and all arrows f ◦ e such that e ∈ S and f ∈ cod(f) = dom(e).

11
**
44
++ // -- 33
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CVE-2023-0936

(c) Differential sieve ST on technique T1499. The CWE, CAPEC and Sub-
technique-domain arrows have disappeared.
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construction is the same for techniques. Simply define the set 

ICAR ICAR Techniques   and repeat the reasoning from the cosieves 

in ICAR’ and ICAR”. Figure 6 depict the construction of the 
differential cosieve on vulnerability CVE-2006-5268 (administrative 
access to the RPC interface) for techniques, from (a) the sub-category 
of objects and morphisms above CVE-2006-5268 to (b) the final 
differential cosieve on CVE-2006-5268 satisfying Q9 (Figure 11). 

Figure 11) Construction of Q9 for techniques associated with vulnerability 

CVE2006-5268 

Measuring the threat surface of an IS 
The "threat surface" is the set of techniques (or tactics) that an 
attacker can use to exploit the vulnerabilities of an IS. The threat 
surface is the counterpart of the attack surface on threat 
management. 

Query 10 (Q10). Measuring the threat surface of IS X Formally, the 
threat surface is a simple extension of the differential cosieve used to 
list the techniques and tactics associated with a vulnerability. We 
just need to apply the differential cosieve to all the vulnerabilities 
in the IS, i.e. to the set VulnX 

CONCLUSIONS 
The aim of this article was to provide a mathematical foundation 
for common queries in cybersecurity management. The proposed 
ICAR categorical model thus covers vulnerability management, 
threat management and asset management in a unified 
framework. However, ICAR is not a method for enriching 
cybersecurity ontologies. In particular, it does not allow the 
investigation of relations between vulnerability management and 
threat management. In this sense, the empirical results of the 
queries examined here are dependent on the quality of the data 
they use. Our model therefore underlines the importance of work 
aimed at more finely meshing the various dictionaries of the 
NIST and the MITRE corporation. Generally speaking, it is clear 

that query and visualisation models will be enhanced by AI-based 
works mentioned above.  

This article only gives an overview of possible queries for 
cybersecurity operations. Others could naturally have been envisaged, 
such as the search for the shortest attack path (i.e. the path with the 
fewest breaches to exploit). Other queries will be considered later on. 
Future work will also address the algorithmic design of queries. In 
this sense, ICAR model should also be seen as a mathematical 
foundation for establishing a database schema compatible with the 

J Pure Appl Math Vol 7 No 4 July 2023 

defined categorical schema and associated categorical notions. In 
other words, the queries dealt with in this article will subsequently be 
extended in terms of query language (SQL), with the aim of 
providing a bidirectional dictionary between conceptual 
categorical queries and database queries. 
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