Short Communication

ICG with Firefly Fluorescence Imaging used in Robotic surgery for the identification of Vascularity, Ureter, Sentinel Lymph node & CBD.

Dr.T.K.Rajesh

ABSTRACT: ICG with Firefly Fluorescence Imaging used in Robotic surgery for the identification of Vascularity, Ureter, Sentinel Lymph node & CBD.

AIMS

Certain key structures in a Colorectal cancer resection would be difficult to identify and are often missed. This study aims To evaluate the potential application of the use of Indocyanine green dye along with Firefly® Fluorescence Imaging technology in Robotic surgery.

METHODS

ICG and Firefly technology was applied in a series of colorectal cancer

surgeries operated using the Da Vinci Robot and evaluated the potential application in identifying and demarcating internal tissues and organs.

RESULTS

The use of ICG and Firefly technology-enabled successful identification of Vascularity, Ureters, Sentinel lymph nodes & Common Bile Duct (CBD) leading to lower blood loss, faster operative time and better dissection of the sentinel nodes.

CONCLUSION

The use of ICG and Fireflytechnology during Colorectal cancer resection has the potential to more accurately and more frequently identify the key tissues during dissection. This would be a valuable tool for the operating surgeon sparing intraoperative time.

Biography:-

Dr T K Rajesh Since 1994 has been working in general surgery and have completed FRCS (Gen Sur/Colorectal) and EBSQ (Coloproctology). He is a Robotic and Colorectal Surgeon. Email: vtkr0705@gmail.com

Citation: Dr.T.K.Rajesh, ICG with Firefly Fluorescence Imaging used in Robotic surgery for the identification of Vascularity, Ureter, Sentinel Lymph node & CBD, Webinar on Surgical Science, March 26, 2021.

University Hospital of Plymouth & Gem hospital, Chennai

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com