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Kisspeptins form a family of related peptides codified by KISS1 gene 
located at chromosome 1q32.1 (1). Their biological actions are carried 
through specific receptor called KISS1R that belongs to G protein-

coupled receptors rhodopsine-like family (2). Isolated mutations in these 
genes cause hypogonadotropic hypogonadism in humans, exposing the role 
of the system in reproductive function (3,4). In this sense, reproductive 
deficiencies in KISS1R and KISS1 knockout mices prove their role in 
maintenance of reproductive axis (5-8). Both humans and modified mice 
do not exist decreases of GnRH content at hypophysary level. These facts 
suggest that KISS1/KISS1R system regulate GnRH release at hypothalamic 
level (9). Two neuronal populations expressing kisspeptins have been 
identified at hypothalamus (10). One of them is present at arcuate nucleus 
(11) and, there, kisspeptin is co-located with neurokinin B and dynorphin, 
creating a neuron population called KND (12,13). The other one appears 
at anteroventricular paraventricular nucleus (14). Nevertheless, KISS1R is 
only expressed in gonadotropin-releasing hormone neurons (15). On the 
other hand, direct neuronal connections have been shown between arcuate 
nucleus and anteroventricular paraventricular neurons and gonadotropin-
releasing homone neurons (16).

Kisspeptins are powerful agonists for releasing gonadotropins (17,18). 
Kisspeptin administration causes FSH and LH secretion in mice, rats, 
monkeys and humans, both males and females. LH release kinetic is faster 
than FSH release kinetic, but this one is longer in time (19-24). Normal 
gonadotropin release needs pulsatile content of kisspeptin, since chronic 
administration of kisspeptin induces a quick but short answer (25). 
Kisspeptin action in gonadotropin-releasing hormone induces a membrane 
depolarization that stimulates PLC-Ca2+ pathway causing changes in 
K+ and Na+ conductivity and subsequent GnRH release (21,26). GnRH 
release kisspeptin-dependent is abolished by GnRH antagonist (19,27). 
Gonadectomy produces an increase of kisspeptin expression at arquate 
nucleus level, inducing a rise of circulating FSH and LH. Female estradiol or 
male testosterone supplementation normalizes kisspeptin and gonadotropin 
levels. This fact displays a sexual hormone negative feedback on GnRH 
release at arquate nucleus level (14,28-31). In contrast, gonadectomy reduces 
kisspeptin expression at anteroventral and paraventricular nucleus, being 
reestablished after sexual homones supplementation, constituting a positive 
feedback in this neuronal population (14,28,32). This function is essential 
in female late follicular phase to trigger LH peak previous ovulation, when 
estradiol levels are high and progesterone is detectable in circulating blood 
(33). KISS1R antagonists prevent preovulatory LH peak (34). In this sense, 
the use of kisspeptins to trigger ovulation in IVF cycles has been reported 
with effective and safe results, especially in women with OHSS risk (35).

Furthermore, isolated mutations in coding genes of NKB and its specific 
receptor NK3R produce hypogonadotropic hypogonadism, with similar 
phenotypes as caused by KISS1 and KISS1R mutations (36). NKB belongs 
to a family of small peptides called tachykinins together with SP and NKA. 
Specific receptors of tackykinins are NK1R, NK2R and NK3R (37). As we 
know, NKB is present in KND neurons at hypothalamic arquate nucleus. 
NK3R also appears in this neuronal population (38-40). These neurons are 
highly interconnected, so NKB is probably released in the same neuronal 
population where is synthetized with a paracrine function that generates an 
increase in kisspeptin exocytosis that finally elevate GnRH secretion (41-44). 

Direct effect of NKB administration over LH release is not clear because it 
could be under specific hormonal milieu control or specie-specific response 
(9). However, FSH is clearly not affected by NKB administration (45). 
Anyway, any possible effect of NKB over GnRH release is produced before 
KISS1R activation, as experiments in KISS1R knockouts mice demonstrate 
(46).
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