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RESEARCH 
Linear map and spin II. Kummer surface and focal error 

Otto Ziep

INTRODUCTION 

rbitrary world point shifts δX= aμμ’Xμ’ - bμμ’Xμ’ require 256

components of a 24∙24 matrix a⊗b. Matrix b measures an 
arbitrary coordinate change. A quadrifocal tensor Q has 34=81 
components in space [1]. A camera matrix P=K[I,0] maps between the 
3D world X, Y and a 2D image x,y.  
A 3∙3 calibration matrix K depends on five parameters. Trifocal or 
quadrifocal geometry allows image calibration. In practice, the over-
constrained system generates a focal error εfocal within a Linear East 
Squares algorithm (LLS). The present calculation shows that arbitrary 
changes δX yield a systematic focal error εfocal which serves as a basis for 
our understanding of spinor matter.  

According to part I a spinor state is connected with a Poncelet 
involution in space of elliptic curves. Information about δX is limited 
by the quadrifocal tensor Q having the highest rank in space, 
introduced only recently. A quadrifocal tensor Q=detK(X) can be 
arranged as a singular matrix determinant detK(X) =0 being a Kummer 
surface [2-4]. Sixteen vanishing first minor of K(X) stand for sixteen 
focal points in between four images x. Shifts δX can be detected via 

image cycles in x. A relation between projective space ℙ3→ ℙ2 and 
Minkowski space is drawn as cycles of a world point δX scanning map 

γ(ϕ3(t)).  

Another interesting equivalence concerns the fundamental or essential 
tensor F=uv’-u’v in epipolar geometry and a hyperbolic form α(u,v)=det 
(u,v) of abelian hyperelliptic surfaces [5]. Here u and v are three-
component image coordinates or three-component number fields, 
respectively. Despite investigation of Jacobi inversion, the direct 
problem of determining period elliptic lattices ωI (I=0,1) via iterating 
a cubic number field 𝕂𝕂[∂] has not been paid much attention.  

In the following calculation hyperelliptic period lattices ω enter as 

unknown variables 𝜔𝜔(𝑃𝑃𝑃𝑃 = 𝑥𝑥,𝑢𝑢,𝑣𝑣, [ 𝜀𝜀𝜀𝜀′]  with 4∙3 projector P from

world point X to image point x. Hyperelliptic characteristics [ 𝜀𝜀𝜀𝜀′]are a

maximally accessible detail of a more general Riemann surface 𝕏𝕏g. This 
can be shown by orthogonal substitutions or the existence of 16 linear 

forms of quaternions. Then world points 𝑋𝑋 = 𝑋𝑋[ 𝜀𝜀𝜀𝜀′]  depend on

sixteen hyperelliptic half-periods. A regular scan of hyperbolic K(X) 
space of an open universe is defined as a map in flat space, i.e. of elliptic 
line bundles.  

Complexity predicts that hyperelliptic details [ 𝜀𝜀𝜀𝜀′] are a maximal and

minimal detail of a general Riemann surface 𝕏𝕏g for obtaining a high 

composite algorithm. Hyperelliptic theta functions ϑ(u±) are Euler 

parameters of exact dynamical equations with uniformization u± as 

rigid body time or fluid time. Jacobi theta functions ϑ1(u) are Euler 

parameters in a Cayley-Klein precession of a spinning top. 

In this paper a bi spinor ψs is extracted from the exact classical solution 

ϑ(u±) by an earlier approach [6]. In distinction, the Euler parameter 

lives in a sextic number field 𝕂𝕂[∂½] with a cubic subfield [∂]. A bi spinor 

ψs is defined as the simplest cyclic map in 𝕂𝕂[∂½] with symmetry k, k+1 
and k+2,k+3 in 𝕂𝕂[∂].  

An iterate k corresponds to a Poncelet involution ik(u) where 

ik(u)◦ik+1(u)◦ik+2(u)◦ik+3(u) =identity. A bi spinor results from a square

root of a hyperelliptic theta quadrate for a product of elliptic curves. 
The binary form of the Kummer surface is investigated by transforming 

roots of a cubic invariant equation ϕ3 [2]. 
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ABSTRACT 
World point images and Minkowski coordinates are calculated within 

a quadrifocal configuration. A Kummer surface detail K(X) of a general 

Riemann surface 𝕏𝕏g is highly composite. Accessible with lowest 

complexity spinor matter is defined as a square root of a Kummer 

surface subjected to Hermite substitutions for a cubic invariant 

polynomial. Whereas coordinates ds2 are norms of cubic number field a 

spinor is a sextic number field having a cubic subfield. Despite a linear 

least squares algorithm K(X) yield a systematic focal error εfocal.  
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Having obtained the Dirac equation, the most general form of a 
hyperelliptic detail of a general Riemann surface generalizes the 
Eddington equation for the electron-to-proton mass ratio. 

Invariant surface as one-dimensional map 

The relation drawn between the quadrifocal tensor Q(x1,x2,x3,x4) , the 

Kummer surface K(X) and a binary map γ(ϕ3) relies on a 

parametrization of K(X) by a twisted cubic Ctw [2]. On Ctw a world 

point X=(1,-θ,θ2 ,-θ3) is parametrized by one-dimensional complex 
parameter θ∈ℂ .  

Here θ is identified with algebraic units of a cubic field solving a cubic 
invariant equation ϕ(θ)=0. Then 16 focal points of K(X) correspond 
to vanishing first minors. A vanishing three-dimensional determinant 

corresponds to inflection points on elliptic curves Eλ. 

Then focal points of Q(x1,x2,x3,x4)=0 span an elliptic line bundle L[Eλ] 

or an hyperelliptic line bundle parametrized by products of elliptic 

curves. Epipolar lines get inflection tangents Fμμ’(X,Y)’ as vanishing 2∙2 

minors 𝛿𝛿𝜁𝜁21′ 𝛿𝛿℘31
′ = 𝛿𝛿𝜁𝜁31′ 𝛿𝛿℘21

′ of four points uμ (μ=0,1,2,3 )
measured from u0 on Eλ. Flex tangents appear for class number one 

hΔ=1 fields where ϕ3(θ)=0 is an integer polynomial. 

The Homogeneity of 𝐹𝐹𝜇𝜇𝜇𝜇’  =  (𝑀𝑀, 𝑢𝑢, 𝜁𝜁(𝑢𝑢,𝜔𝜔),℘(𝑢𝑢,𝜔𝜔) ) via ζ(θu,θω) 

and ℘(θu,θω)  of Weierstrass zeta ζ(u,ω)  and Weierstrass ℘- 
functions ℘(u,ω) ) of L[𝐸𝐸𝜆𝜆] scales F(X,Y)=|M, u, ζ, ℘| as (M,θ,θ-1 ,θ-

2). 

For an integer polynomial ϕ3(θ)=0 a Hermite map γ(ϕ3(t)) of a subfield 
𝕂𝕂[∂] covers an infinity of roots of 𝕂𝕂[√∂] if t is viewed as a complex 
root. Inflection tangents scan X-Y geodesics of K(X) starting from 
integer values of 𝜁𝜁(𝑢𝑢,𝜔𝜔) and ℘(𝑢𝑢,𝜔𝜔). 
According to a Hermite map γ3(ϕ3) transforms cubic roots to cubic 
roots of ϕ3 for hΔ=1 [7]. Especially values of the Weber invariant 

𝑓𝑓(𝜔𝜔) = 1
−1
48

𝜂𝜂(𝜔𝜔+12 )

𝜂𝜂𝜂𝜂
 are real where η(ω) is the Dedekind eta 

function η(ω) getting a simple norm Nm(f(√Δ))=2 for ω=√Δ. Real f(ω) 
corresponds to real algebraic units of a simple real cubic field. Complex 
iterates f(√Δ) denote complex conjugated roots of a cubic or a sextic. 
One gets the remarkable result that powers 𝑓𝑓𝑒𝑒�√Δ� 𝑒𝑒 = 1,2,3 … 

remain irrational within [∂] allowing a one-dimensional chaotic map 
on K(X). Equivalences between Kummer surfaces K(X), a quadrifocal 

configuration Q(x1,x2,x3,x4) and a twisted cubic curve Ctw in space 

raises the question about calibration [8]. 

On a curve with ‘double curvature’ Ctw dangerous projective 

configurations appear. Formulating K(X) and Q(x1,x2,x3,x4) 

uniformized by a generalized Riemann surface u± lines bifurcate on flex 

tangents allowing only a local calibration. In the present paper, a 
conclusion is drawn that a systematic focal error is related to the 
partition function in statistics. 

Connection between invariant theory and one-dimensional maps 
It turns out that a bi spinor is determined by one-dimensional cyclic 
iterates of a sextic invariant polynomial having cubic subfields as 
extracting the square root √K(X) or √d. 

A one-dimensional fractional map as a map of equivalent lattice 

periods ω yields exact solutions, e.g. Jacobi theta functions ϑ1(u,ω) 

which can be classified as an exactly solvable chaos [9]. 

A one-dimensional fractional map γ(ϕ) as a map of complex roots of 
invariant cubic polynomials is classified as a quadratic map. Mapping 
variables of elliptic functions and not periods, Complex Multiplication 
(CM) and modular units can appear. Here bifurcation of lines
transmits to periods and variables which is classified as a hyperelliptic-
elliptic transition of a generalized Riemann surface. Then binary
invariant theory concerns different points as subsequent iterates
𝜃𝜃𝑘𝑘+3 = 𝛾𝛾(𝜙𝜙)°𝜃𝜃𝑘𝑘+2, 𝜃𝜃𝑘𝑘+2 = 𝛾𝛾(𝜙𝜙)°𝜃𝜃𝑘𝑘+1 and 𝜃𝜃𝑘𝑘+1 = 𝛾𝛾(𝜙𝜙)°𝜃𝜃𝑘𝑘
Compared to Lattés maps u→2u as a quartic map a Hermite map γ(ϕ)
as a quadratic map is much simpler. However, the determination of
periods of lattices is left open.

The surface K(X) of world points 
𝑋𝑋 ⋍ (𝑏𝑏2,−𝑏𝑏, 1,1) and, 𝑌𝑌 ⋍ (𝜃𝜃3,−𝜃𝜃2,𝜃𝜃,−1), (𝜙𝜙3,−𝜙𝜙2,𝜙𝜙,−1 yields 
the invariant equation. 
2(𝜃𝜃𝜃𝜃)2(𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏)− 𝑎𝑎𝜃𝜃3𝑎𝑎𝜙𝜙3 = 0   (1) 

in terms of binary (𝑎𝑎𝜃𝜃) = 𝑎𝑎1𝜃𝜃2 − 𝑎𝑎2𝜃𝜃1 ,𝑎𝑎𝑖𝑖 = 𝑎𝑎1𝑛𝑛−1𝑎𝑎2𝑖𝑖 ,𝑎𝑎𝜃𝜃 = 𝑎𝑎1𝜃𝜃2 +
𝑎𝑎2𝜃𝜃1. 
The generating polynomial 𝛷𝛷𝑛𝑛(𝜃𝜃) = ∑ 𝑎𝑎1𝜃𝜃𝑛𝑛−1𝑖𝑖=0,…,𝑛𝑛  is written as

𝛷𝛷6(𝜃𝜃,𝛷𝛷) = 𝑎𝑎𝜃𝜃3𝑎𝑎𝜙𝜙3 . In case of a cubic invariant, one gets two symbolic

cubic invariant polynomials 𝑎𝑎𝜃𝜃3 = 0,𝑎𝑎𝜙𝜙3 = 0 leading to 𝑎𝑎𝜃𝜃3𝑎𝑎𝜙𝜙3 = 0 and 

(𝜃𝜃𝜃𝜃)2(𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏) = 0. 

Kummer surfaces K(X) and Weddle surfaces W(Y) are written in terms 

of second and third u± - derivatives 𝑋𝑋 = (℘±±, 1) and 𝑌𝑌 = (℘±±±) in

ℙ3 which are simply (𝑏𝑏2,−𝑏𝑏,1,1) and (𝜃𝜃3,−𝜃𝜃2,𝜃𝜃,−1). A filter of projective 

line bundles can be given a quantitative form to define massive and 

inert points. First K(X)-W(Y) relations consist of inflection points Fμμ’. 

Coordinates of Kummer and Weddle surfaces are second and third u± 

- derivatives. An alternate view of K(X) coordinates are characteristics

dependent squared theta functions  𝜗𝜗2[ 𝜀𝜀𝜀𝜀′] . Degrees of freedom of

orthogonal substitutions are dealt with in the following section. 
Fortunately, the second and fourth derivatives of hyperelliptic sigma 
functions σ(u) obey a differential invariant. 

2
4 ' 4 2 2 2 4 2 'det ( ) ( ) ( ) [( ) det ( ) ( ) ] ( ) ( )

3 c c c cD u u ab a b a aD u uγ φ σ σ γ φ σ σ= −

(2) 

where (aD) = a1D_a2D+ and 𝐷𝐷± = 𝜕𝜕
𝜕𝜕𝑢𝑢±

− 𝜕𝜕
𝜕𝜕𝑢𝑢±′

. A form capable of (1) 

appears for cubic invariants 𝑎𝑎𝜃𝜃3 = 0, 𝑎𝑎𝜙𝜙3 = 0. In this case the solution 

is 𝐷𝐷𝑐𝑐4𝜎𝜎(𝑢𝑢)𝜎𝜎(𝑢𝑢′) = 0 and (𝑎𝑎𝑎𝑎)2𝑎𝑎𝑐𝑐𝑏𝑏𝑐𝑐 = 0.
Next the differential invariant of the hyperelliptic sigma function σ(u) 
simplifies in case of cubic invariants on K(X) as (𝑎𝑎𝑎𝑎)2𝑎𝑎𝑐𝑐𝑏𝑏𝑐𝑐 = 0 for a
point 𝑎𝑎 = (−ℎ2,ℎ1) to 

4 ' 4 2 ' 4 2 '1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 c c hD u u a aD u u ch D u uσ σ σ σ σ σ= = (3)

Extracting a square root of an invariant form introduces an error. 

However, the next section supports (3) for second derivatives d2. The 

invariant (ch) can be understood as one of four basis vectors in 
determining a discriminant of a 2∙2 matrix as detq where a four-



dimensional matrix q is defined on skew basis vectors 𝛹𝛹𝑠𝑠 = (𝑐𝑐ℎ) [9-
10]. 
Owing that 16 linear forms (ab) are equivalent to half-periods and 

characteristics[ 𝜀𝜀𝜀𝜀′] 16 ψ-values determine the vicinity of tangent cones 
𝑑𝑑𝑢𝑢+
𝑑𝑑𝑢𝑢−

= 1. 

The aim is to find a representation 2 2( ( ))hD Aµ
µ µγ= ∂ −  connecting 

differences of u± in the vicinity of half-periods. As known K(X) is 
independent on the differentials du± in the vicinity of half-periods. 

The surface K(X) is equivalent to binary invariants (ab)2 (ac)(bc) where 

a, b and c are three points subjected to a cycle of point h. Points a,b,c,h 
in binary invariants are viewed as a subsequent fractional substitution 
𝜃𝜃𝑘𝑘+3 = 𝛾𝛾(𝜙𝜙) ∘ 𝜃𝜃𝑘𝑘+2,𝜃𝜃𝑘𝑘+2 = 𝛾𝛾(𝜙𝜙) ∘ 𝜃𝜃𝑘𝑘+1 and 𝜃𝜃𝑘𝑘+1 = 𝛾𝛾(𝜙𝜙) ∘ 𝜃𝜃𝑘𝑘  for

an interval θk-θk’. 

 A fractional substitution as a linear map is a trivial iterated function. 

However, as a Hermite map, θk exhibits Sharkovskii’s ordering. The 

point a= (-h2, h1) represents a rotation of an interval by π leading to 

θk+3. Accordingly, one gets four basis vectors ψk,ψk+1,ψk+2 and ψk+3. An 
invariant (3) implies the existence of the simplest cycle of four 
points a,b,c,h with rotated h= (-a2, a1) of four iterates 
k,k+1,k+2,k+3. Iterates k are reflected as a path u{k0,…,kN}<ω 

Then an invariant equation of four points a,b,c,h can describe a 
bifurcating chaotic one-dimensional map as the simplest cycle of 

iterates. In simplest cycles, Hermite maps γ(ϕ3) of an integer invariant 

cubic polynomial ϕ3 and a cubic number field 𝕂𝕂[∂] are connected. The 

map γ(ϕ3) extended to ℂ describes algebraic units of a cubic number 
field 𝕂𝕂[∂] and leaves (ab)2(ac)(bc)=0 and 𝐷𝐷ℎ2 invariant. Its square root- 

the invariant differential ( ) ( )1 2hD γ φ γ φ+
 lives in a sextic

number field 𝕂𝕂[∂½] of a cubic subfield [∂]. The simplest case ∂=2⅓ and

Nm(f(√Δ))=2 is able to generate powers of fe(√Δ) e=1,2,3,.. within 

𝕂𝕂[∂½]. 

Differentiable surface of orthogonal substitutions 
Coordinates are defined as indices of smooth fields as infinitely 
differentiable manifolds. For the time being times u± of exact ϑ-
dynamics suffering discrete iterations k are not differentiable on path 
u{k0,…,kN}. 

Uniformization differentials 
𝑑𝑑𝑢𝑢+
𝑑𝑑𝑢𝑢−

= 𝜃𝜃  [2] suffer steps at θk=f(√Δk) 

where 

( ) 1

0
1 1[ ( 3) /18) ( , )]3 9Inf dz z vζ ζ∆ = ∆ + − ∆∫        (4) 

depends on iterated sequences of vertical lattice axes √Δk. Formerly v-

path independent on the interval [0,1] iterated discriminants Δk set ζ(u) 

singularities. Thus, iteration changes allowed paths which must 
surround singularities. Mathematically the task is unusual but develops 
a low-complexity algorithm. 

Despite 
𝑑𝑑𝑢𝑢+
𝑑𝑑𝑢𝑢−

 jumps the whole system is differentiable. Unfortunately,

the differential properties of a Kummer surface K(X) as characteristics 

[ 𝜀𝜀𝜀𝜀′] dependent surfaces of squared hyperelliptic theta functions ϑ2 (u±)

are rarely investigated.  

The present paper aims to unify 
𝑑𝑑𝑢𝑢+
𝑑𝑑𝑢𝑢−

 tangent planes and orthogonal 

substitutions. We aim to show that ℙ3 lines in tangent planes of 
Kummer surface K(X) consist of ∞ differentiable image points which 
are not reducible to one-dimensional differentials [3] [11]. 

Uniformization parameter u± of K(X)- tangents satisfy 
𝑑𝑑𝑢𝑢+
𝑑𝑑𝑢𝑢−

= θ =

𝑓𝑓(√∆) but K(X) is d2- differentiable. A world point X indexed rational 

by 𝑋𝑋≃(𝜃𝜃2,−𝜃𝜃,1,1) suffers discontinuities. A differential dv of elliptic 

uniformization in (4) exists for piecewise continuous paths. A v-path 
surrounds ζ(v,ω)- lattice singularities. Then the Weber- Schlaefli 

invariant f(√Δ) is well defined because η(ω) = 1
√3
𝜗𝜗1(1

3
,𝜔𝜔
3

) with Jacobi 

function ϑ1. A discovery [3] that all 2n-th order differential 

2
' '( ) ( )nd u v u v
ε ε

ϑ ϑ
ε ε
   

+ −   
   

constitute orthogonal

substitutions g(e,e’) remains valid if 
' ( )u v
ε

ϑ
ε
 
 
 



 is replaced by an

arbitrary sum of theta functions. A system of four characteristics 

constitutes an Euler parameter eμ [3]. Via Cayley’s map 𝑔𝑔(𝑒𝑒, 𝑒𝑒′) = 1+ℸ
1−ℸ

an orthogonal substitution g(e,e’) corresponds to a four-dimensional 

rotation with skew matrix Γ if a local scale change by the factor 1/e0 

with detg(e,e’)=1 corresponds to a local rotation in space with Euler 

parameter eμ/e0. 

Now we built an exponential map exp(d2) subjected to an orthogonal 
substitution g(e,e’). One has g(e,e)= a(e) and g(e’,e’)=a(e’) showing that 
SO(4) is isomorphic to SO(3) × SO(3) where the three-dimensional 

substitution corresponds to rotation matrix R for eμ/e0. 

The two-dimensional differential d2 should correspond to the invariant 

differential (ch)4𝐷𝐷ℎ2. If d2 acts on one factor 
' ( )u v
ε

ϑ
ε
 

+ 
 

 

all even derivatives d2n and exp(d2) are again orthogonal substitutions 

[3]. Rational points on K(X) with 

0 30,tX jX j σ σ= = ⊗         (5) 

are related to discrete SE(3) steps k for rotation R=Rk. Rational points 

obey congruences with respect to an invariant absolute quadric  
2 2 2
1 2 3absQ x x x= + +  establishing the correspondence to n-focal

geometry. The absolute quadric Qabs relates to kinetic energy of 
precession of a one spinning top 

2 21 1mdet ( )2 2
v

ck fv fu fv
v v

d dT m e m e e g
dt dt

µ

µ µ

γ= → →∑ ∑  

If precession determining Cayley-Klein parameter γCK obey fixed points 
where 𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑣𝑣𝑣𝑣𝑣𝑣𝛾𝛾𝐶𝐶𝐶𝐶 = (𝑒𝑒𝑓𝑓1, 0, 𝑒𝑒𝑓𝑓3, 0)  a quadrifocal image 

(μ=1,2,3,4) sum behaves relativistic. If, fixed points efμ of Euler 

parameter allow a radix-4 discrete Fourier transform (DFT) the 

Euclidean vierbein efμ being an Euler parameter is multiplied by a 

twiddle factor 1¼ giving a metric tensor 𝑔𝑔𝜇𝜇𝜇𝜇=𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓.  

3 J Mod Appl Phy Vol 7 No 1 March 2024 

Linear map and spin II. Kummer surface and focal error 



Ziep 

4     J Mod Appl Phy Vol 7 No 1 March 2024 

As a result Minkowski metric diag (1,1,1,−1) = diag(1¼𝜇𝜇)2 is set in 

context to a squared tensor of twiddle factors of DFT-4. Then the 

apparent relativistic kinetic energy ( ) ( )2 21
2 fu fvv

d dm e e
dt dtµ∑

depends on the differentiated square of a Jacobi theta function 

efμ=vecγCK. 

The linear forms ψs=(ch) of four points k,k+1,k+3,k+4 are related to 

half-periods and to 5 linear forms (ξη) expressing a general theta 
function [12].  

The invariant expression ( )
1 1 1 2 1 2 1 2

4 2
' ' ' 'h s s s s s s s sch D ψ ψ ψ ψ= Γ is 

approximated by a sextic norm 𝕂𝕂[∂½] where 

1 2 1 2' ' ( )( )v
s s s s v

v

A A
x x

µ
µ

µ

γ γ ∂ ∂
Γ = − −

∂ ∂
carries real 𝕂𝕂[∂½] 

conjugates. 

Owing to s-(ch)- [ 𝜀𝜀𝜀𝜀′] relations Γ is formulated in terms of 15 syzygetic

(Göpel) quadruples which are vectorized two dimensional minors of 
g(e,e’). Additionally Γ depends on 80(120) azygetic (Rosenhain) 

quadruples which are columns or rows of g(e,e’). Here coordinates xμ 
are understood as images (K(X) roots) μ=1,2,3,4. Rational K(X) points 
are SE (3) steps 

𝑋𝑋 = 𝑀𝑀(𝐴𝐴,𝑎𝑎)𝑋𝑋 = 𝑒𝑒 𝑆𝑆(𝐴𝐴,𝑎𝑎)𝑋𝑋. where i-components are diagonalized by 

, , ' ' ' '( , )ii ss i s ii isS A a mµ
µ γ ψ δ ψ=   (6) 

where the mass m is proportional to algebraic units of 𝕂𝕂[∂] and 
depends on f(√Δ) fluctuations.  

Accordingly rational points of K(X) should result in rational points of 
W(Y) which requires. 

' ' ' ' 'ii ss i s ii isdF mµ
µ γ ψ δ ψ=   (7) 

with inflection tangents as four first minors of Fμii’=(M,u,ζ(u),℘(u)) 

with ℙ3 index i, image index μ and cyclic iteration index s. 

Statistical properties of K(X) 
Iterates u{..k} on K(X) satisfy the hyperelliptic addition theorem 

( ) ( )
2 2 ( ) ( )u v u v

u v

X u jX v
σ σ

σ σ
−+ =  (8) 

Where X(u)=d2σ(u) is defined up to an orthogonal substitution 

𝑒𝑒𝑑𝑑2𝑋𝑋(𝑢𝑢)  .
An addition step is defined as orthogonalizing d2 which yields σ(u+v) 
σ(u-v)=0 whereas X=M(A,a)X is a SE(3) joint in x,y,z space surrounded 
by complex itera-tions. The vanishing of σ(u) defines the Kummer 
surface K(X) by a point ϑ’(u) ϑ(v) as [4] 

[ ] [ ] [ ]
1 2 32 3 3 1 1 2 0ε ε εε ε ϑ ε ε ϑ ε ε ϑ+ + =  (9) 

Where 𝜀𝜀 ≜ [ 𝜀𝜀𝜀𝜀′] and [𝜀𝜀𝜀𝜀] = 𝜕𝜕
𝜕𝜕𝜇𝜇
𝜗𝜗Λ 𝜕𝜕

𝜕𝜕𝜇𝜇
𝜗𝜗. Starting from a point x0,y0z0

addition is mainly performed on x,y plane within a quasi-two 

dimensional configuration where one has 
𝑑𝑑𝑢𝑢+
𝑑𝑑𝑢𝑢−

= 𝜃𝜃 = 𝑓𝑓(√∆) . The

bitangent condition (9) is viewed as a detail of a sixth degree product 

of a complex function ϕ3
k(z) of roots (z-z1)(z-z2) viewed as a Kummer 

surface.  

The number of combinations [𝜀𝜀1𝜀𝜀2] of nontrivial even functions is 

1,10,10∙10+6∙6 for a sixth-degree polynomial and 1,10,22g-1(22g+1) for 

a polynomial of genus g having 2g-1(2g+1) even and 2g-1(2g-1) odd theta 

functions. Cycle relations (6) and (7) for two SE(3) joints with masses 

m1 and m2 inserted into (4.2) yield a quadratic equation (αβγ)m2=0 

where coefficients are proportional to the number of even function 
combinations. For (1,10,136) one recovers Eddington’s equation of 
the electron-to-proton- mass ratio [13,14]. 

CONCLUSION 
Lattice periods ω of hyperelliptic and elliptic theta functions ϑ(u,ω) 
are determined by an inverse process via iterates k of algebraic units 

with 𝑓𝑓(√Δ). As a result, a line bundle appears around a discriminant

Δ. An algorithm of fractional substitution γ(ϕ3) of binary invariants 

greatly simplifies if iterates are accompanied by simplest cycles k, k+1, 
k+3, k+4. Δk values are determined by a six-component and three-
component number field.  

Number- theoretically a bi spinor ψs is a sextic number field 𝕂𝕂[∂½]

with cubic sub-field [∂ ] where ∂  is a simple cubic irrationality.

Algorithmically a bi spinor ψs reflects the simplest cycle of a period-
doubling bifurcation process.  

Observables ar field-norms Nm(𝕂𝕂[∂½]) and Nm(𝕂𝕂[∂]) as a sum over

all iterates. Thus, a normal field ℕ[√Δ] = 𝕂𝕂[∂] 𝕂𝕂’[∂] 𝕂𝕂’’[∂] is a field 

extension in quantum statistical equations which has been so far 
neglected.  
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