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Marine microorganisms: Evolution and solution to pollution 
Fu L Li1, Wang B1,2

Once ocean nurtured life, now she needs our care. Marine microorganism 
is the host of ocean in all ages. We should learn from them humbly. 

Marine microorganism is tightly bond with human during the history of 
evolution and nowadays’ environment pollution.

Although the topic is still in debate, life is probably originated from 
submarine in hydrothermal vent systems (1). In the journey of evolution, our 
biosphere was completely dominated by microbes for a very long time (Figure 
1A). Human being evolves with those microorganisms. Consequently, 
the influences of microorganisms can be found in all aspects of human 
biology. More than 65% of our genes originated with bacteria, archaea, and 
unicellular eukaryotes, including those genes responsible for host-microbe 
interactions. Recently, the microbiota has been regarded as a new organ of 
human being (2). Cross-talk between us and gut microbiota affects both our 
physical and psychological health (3,4).

Although evolution makes us to be immune to many pathogens, till now 
humans and animals still suffer from many old infections. For example, 
Helicobacter pylori have coevolved with us for at least 50,000 years (5,6). 
Studying the physiological-biochemical properties of ancient marine bacteria 

will be an opportunity to further understand ourselves and to seek for new 
methods of fighting old infections.

Along with industrial revolution, our marine ecosystem suffered serious 
pollutions. Microplastics are tiny plastic particles (<5 mm) (Figure 1B), 
which poison marine lives. Because these microplastics are very hard to be 
degraded, it is predicted that there will be more microplastics than fish in 
ocean by the year 2050 (7). Since marine sediments are considered as the sink 
of microplastics and marine microbes are key dwellers of marine sediments, 
more attention should be paid on the interactions between microplastics 
and marine microbes. Actually, a call for this has been published in 2011 
(8). Searching for marine bacteria which can digest microplastics is one of 
the solutions to clean marine environments. For example, a polyethylene 
terephthalate (PET) utilization bacterium Ideonella sakaiensis was isolated. It 
can adhere to PET and secretes PET hydrolase (PETase) to target ester bonds. 
Then mono-(2-hydroxyethyl) terephthalic acid (MHET) is produced, which 
will be rapidly hydrolyzed by MHET hydrolase to monomers, terephthalic 
acid and ethylene glycol (9). Recently, the structure of a PETase from I. 
sakaiensis was solved, and a catalytic mechanism was proposed (10). Getting 
insight into the catalytic mechanism of plastic-degrading enzymes helps us 
to engineer novel enzymes (Figure 1C). Except bacteria, many fungi which 
can degrade polyethylene microplastics were also isolated and characterized 
(11,12). Study dynamics of microbial communities is essential. A study 
found that the biofilm formation of a bacterial and fungal community on 
plastic debris could be hampered in natural environment (13). As knowledge 
increases, we could build a microbial platform for biological recycling of PET.

Marine macroalgae, fixing abundant CO
2
, is a promising feedstock for 

biofuel production. Our lab isolated a novel thermophilic bacterium 
Defluviitalea phaphyphila Alg1 from coastal sediments, and the brown alga-
degradation systems of Alg1 was analyzed (14). Alg1 is able to directly 
ferment 5% unpretreated seaweed powder to produce 10 g/L ethanol at 
60°C (15). Alginate is one of the three main sugars of brown algae (the 
other two are mannitol and laminarin), which can be depolymerized by 
polysaccharides lyases via β-elimination reaction. Although many alginate 
lyases have been characterized, a few of them are thermophilic (16). A 
thermophilic polysaccharide lyase family 6 alginate lyase from Alg1 was very 
intriguing. And we found that one substitution of aspartate for glutamate in 
the calcium-binding sites led to enhanced substrate affinity (17), which might 
be a result of thermophilic adaption.

The increased partial pressure of CO
2
 (pCO

2
) leads to global warming not 

only, but also the acidification of ocean. By the end of 21st century, H+ 
concentration of surface oceans will be as twice as those of the preindustrial 
ocean. How acidification of ocean affects the evolution of marine microbes 
is still lack of solid evidences (18,19). For now, only a few biomineralizing 
microbes have deep-time studies of evolutionary responses to global climate 
changes. However, this acidification has complex effects on ocean cycles of 
carbon, nitrogen, phosphorus, and silicon through changing the microbial 
physiology (Figure 1D) (20). For example, nitrogen fixation and growth of 
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Figure 1: (A) Timeline of life evolution. (B) Size of different kinds of plastic debris. (C) 
Structure of complex of cutinase with phenylmethylsulfonyl fluoride (PMSF) from soil 
bacterium Thermobifida fusca (PDB code: 4CG2) (25). The catalytic triad S130-
D176-H208 and the oxyanion-hole-forming residues Y60-M131 are shown in sticks. 
(D) Influences of elevated pCO

2
.
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cyanobacterium Trichodesmium spp. decreased under acidified environment, 
though they could be enhanced by high pCO

2
 (21,22). Although 

phytoplankton was likely to accumulate more biomass, they would undergo 
iron stress caused by ocean acidification (23). Thus the influences of ocean 
acidification are very uncertain. In the future, we should keep observing the 
effects of ocean acidification on marine life. Meanwhile, because algae can 
sever as CO

2
 sink, developing algae industry will be one way to decrease 

pCO
2
.

Microbiome is a rising star today. Many related projects have been launched, 
for example, the Earth Microbiome Project (24, 25). Using this powerful 
tool, we can rapidly analyze the structure of marine microbial ecosystems 
and the influence of human activities on these ecosystems. Besides, the 
metagenome data will speed up the isolation of novel microbes and genes, 
which help us to deeply understand and friendly live with the ocean.
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