
The use of advanced data analytics and applications 
of statistical and machine learning approaches 

(‘AI’) to materials science is experiencing explosive 
growth recently. In this prospective, we review re-
cent work focusing on generation and application of 
libraries from both experiment and theoretical tools, 
across length scales. The available library data both 
enables classical correlative machine learning, and 
also opens the pathway for exploration of underly-
ing causative physical behaviors. We highlight the 
key advances facilitated by this approach, and illus-
trate how modeling, macroscopic experiments and 
atomic-scale imaging can be combined to dramati-
cally accelerate understanding and development of 
new material systems via a statistical physics frame-
work. These developments point towards a data 
driven future wherein knowledge can be aggregated 
and used collectively, accelerating the advancement 
of materials science. The use of statistical and ma-
chine learning algorithms (broadly characterized as 
‘Artificial Intelligence’ herein) within the materials 
science community has experienced a resurgence 
in recent years. However, AI applications to material 
science have ebbed and flowed through the past few 
decades. For instance, Volume 700 of the Materials 
Research Society’s Symposium Proceedings was enti-
tled “Combinatorial and Artificial Intelligence Meth-
ods in Materials Science,” more than 15 years ago, 
and expounds on much of the same topics as those 
at present, with examples including high-throughput 
screening, application of neural networks to accel-
erate particle simulations, and use of genetic algo-

rithms to find ground states. One may ask the ques-
tion as to what makes this resurgence different, and 
whether the current trends can be sustainable. In 
some ways this mirrors the rises and falls of the field 
of AI, which has had several bursts of intense prog-
ress followed by ‘AI winters’. The initial interest was 
sparked in 1956, where the term was first coined, 
and although interest and funding was available, 
computational power was simply too limited. A re-
kindling began in the late 1980s, as more algorithms 
(such as backpropagation for neural networks, or the 
kernel method for classification) were utilized. The 
recent spike has been driven in large part by the suc-
cess of deep learning, with the parallel rise in GPU 
and general computational power.  The question be-
comes whether the current, dramatic progress in AI 
can translate to the materials science community. In 
fact, the key enabling component of any AI applica-
tion is the availability of large volumes of structured 
labeled data – which we term in this prospective “li-
braries.” The available library data both enables clas-
sical correlative machine learning, and also opens 
a pathway for exploration of underlying causative 
physical behaviors. We argue in this prospective 
that, when done in the appropriate manner, AI can 
be transformative not only in that it can allow for 
acceleration of scientific discoveries, but also that it 
can change the way materials science is conducted.

The recent acceleration of adoption of AI/machine 
learning-based approaches in materials science can 
be traced back to a few key factors. Perhaps most 
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pertinent is the Materials Genome Initiative, which 
was launched in 2011 with an objective to transform 
manufacturing via accelerating materials discovery 
and deployment. This required the advancement of 
high-throughput approaches to both experiments 
and calculations, and the formation of online, acces-
sible repositories to facilitate learning. Such data-
bases have by now have become largely mainstream 
with successful examples of databases including Au-
tomatic Flow for Materials Discovery (AFLOWLIB), 
Joint Automated Repository for Various Integrated 
Simulations (JARVIS-DFT), Polymer Genome, Citri-
nation, Materials Innovation Network, etc. that host 
hundreds of thousands of datapoints from both cal-
culations as well as experiments. The timing of the 
initiative coincided with a rapid increase in machine 
learning across commercial spaces, largely driven by 
the sudden and dramatic improvement in computer 
vision, courtesy of deep neural networks, and the 
availability of free packages in R or python (e.g., scikit-
learn) to apply common machine learning methods 
on acquired datasets. This availability of tools, com-
bined with access to computational resources (e.g., 
through cloud-based services, or internally at large 
institutions) was also involved. It can be argued that 
one of the main driving forces within the materials 
science community was an acknowledgement that 
many grand challenges, such as the materials design 
inverse problem, were not going to be solved with 
conventional approaches. Moreover, the quantities 
of data that were being acquired, particularly at user 
facilities such as synchrotrons or microscopy centers, 
was accelerating exponentially, rendering traditional 
analysis methods that relied heavily on human in-
put unworkable. In the face of the data avalanche, it 
was perhaps inevitable that scientists would turn to 
the methods provided via data science and machine 
learning. Please note commercial software is identi-
fied to specify procedures. Such identification does 
not imply recommendation by the National Institute 
of Standards and Technology.

Thus, the question becomes, how can these newly 
found computational capabilities and ‘big’ data be 
leveraged to gain new insights and predictions for 
materials? There are already some answers. For ex-
ample, the torrent of data from first principles simu-
lations has been used for high throughput screening 
of candidate materials, with notable successes. Natu-
rally, one asks the question as to what insights can be 
gained from similar databases based not on theory, 
but on experimental data, e.g. of atomically resolved 
structures, along with their functional properties. Of 
course, microstructures have long been optimized 
in alloy design. Having libraries (equivalently, data-
bases) of these structures, with explicit mentioning 
of their processing history, can be extremely bene-
ficial not just for alloys but for many other material 
systems, including soft matter. These databases can 
be used for e.g. utilizing known knowledge of simi-
lar systems to accelerate the synthesis optimization 
process, to train models to automatically classifying 
structures and defects, and to identify materials with 
similar behaviors that are exhibited, potentially al-
lowing underlying causal relationships to be estab-
lished.

In this prospective, we focus on the key areas of li-
brary generation of material structures and proper-
ties, through both simulations/theory, and imaging. 
High-throughput approaches enable both simulation 
and experimental databases to be compiled, with 
the data used to build models that enable proper-
ty prediction, determine feature importance, and 
guide experimental design. In contrast, imaging pro-
vides the necessary view of microstates enabling the 
development of statistical mechanical models that 
incorporate both simulations and macroscopic char-
acterization to improve predictions and determine 
underlying driving forces. Combining the available 
experimental and theoretical libraries in a phys-
ics-based framework can accelerate materials discov-
eries, and lead to lasting transformations of the way 
materials science research is approached worldwide.
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