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RESEARCH 

Mobius and simple loop strips as 2D topological 
spacetime structures of preonic fermions and bosons 

Jau Tang1,2, Brian Tang3, Qiang Tang2,4 

INTRODUCTION 
elativity and quantum mechanics have been the two major
pillars for modern physics since the dawn of the last century 

[1,2]. They are the most successful physics theories in human history 
and their predictions have been put to test with unprecedented 
accuracy. However, there remain many puzzling mysteries, including 
some counter-intuitive quantum phenomena such as quantum 
entanglement, double-slit self-interference of single particles, the 
collapse of a wave function during measurements absence of right-
hand neutrinos, the mass oscillations of neutrinos, the causes of three 
generations of quarks and leptons, the physical origin of the Standard 
Model, dark matter, dark energy, and quantization of gravity, etc. [3-
15]. In this work, we aim to improve our understanding of the 
spacetime fabric, its topological structures, and their effects on 
relativistic quantum fields and particles. We provide a topological 
analysis of structural deformations as represented by excited quantum 
fields and particles in a 2D Minkowski spacetime [16,17].  

Our analysis is in 2D instead of the actual 4D case, to increase 
mathematical simplicity while still retaining the core concepts of 
physics. We present a dual-component model to describe the 
relativistic quantum dynamics of elementary particles. We will show 
how this model will naturally lead to the existence of only two kinds 

of elementary field excitations: fermions with a Mobius strip 
structure, and bosons with a simple loop structure. We will also 
elucidate the concepts behind Pauli’s exclusion principle, fermionic 
statistics, and bosonic statistics a Mobius strip. 

THEORY 
In Newtonian mechanics or Einstein’s special relativity, the dynamics 
of a particle are vastly different from the motion of electromagnetic 
waves or other types of waves governed by.  

( ) ( )2 2 2 2 2/ / , 0c t x f t x−∂ ∂ + ∂ ∂ =

To unite the realms of particles and waves, a model with a dual-
component real-value wave function is necessary to describe the 
quantum behavior of particles. The model is based on de Broglie’s 
particle-wave duality and Einstein’s mass-energy relation 

( )2 2 2 2
02E c m c p= +

for a particle with a rest mass 𝑚𝑚0. For a massless particle, we first 
consider a wave function of a dual-component wave function 𝛹𝛹(𝑡𝑡, 𝑥𝑥)  
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or equivalently after Fourier transform, 
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ABSTRACT 
This work presents a model to treat the relativistic quantum dynamics 

of particles in a 2D Minkowski spacetime.  Using independent 2x2 real-

value matrices to represent a time-shift operator 𝑬𝑬 , a space-shift 

operator 𝑷𝑷, and a mass operator 𝑴𝑴, we first derive and show these exist 

only two types of operator equations, representing a bosonic preon for 

the symmetric type-I case with commutative 𝑬𝑬 and 𝑷𝑷, and a fermionic 

preon for the anti-symmetric type-II case with an anti-commutative 

relation. We illustrate their topological differences and show that the 

wave during propagation of the type-II preon as a Weyl-fermion exhibits 

a twist like a Mobius strip. In contrast, the type-I bosonic preon behaves 

like a simple loop strip without a twist.  We have also examined the case 

with a rest mass for a 2D particle and a Dirac particle in 4D. Unlike the 

conventional string theories, our model consists of two fundamental 

structures, a Mobius-strip fermionic preon, and a simple-loop bosonic 

preon. These two topological preonic structures can be used as the most 

fundamental building blocks for constructing elementary particles of 

higher dimensions.  
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where a natural unit of 𝑐𝑐 = ℏ = 1 is used in this work [18]. A Fourier 
transform of the above equation leads to𝜔𝜔2 = 𝑘𝑘2, a relation between 
the frequency 𝜔𝜔 and the wave vector𝑘𝑘.  This dispersion relation is 
equivalent to𝜔𝜔2 = 𝐾𝐾2, according to𝐸𝐸 = ℏ𝜔𝜔,𝑃𝑃 = ℏ𝐾𝐾, or𝐸𝐸 = 𝜔𝜔,𝑃𝑃 =
𝐾𝐾 , expressed in natural units, of Einstein’s energy relation to 
momentum for a massless particle, and de Broglie’s particle-wave 
duality postulate [14].  Eq. (1A) can be expressed in an operator form 
as 

( )2 2 0− + Ψ =E P (1C) 

Here we use Dirac’s ket-vector notation |𝛹𝛹⟩  to represent a 2x1 
column vector of the Fourier-transformed wave function𝛹𝛹(𝑡𝑡, 𝑥𝑥). Eq. 
(1B) can be met if 

2 2 2 2, KωΨ = ± Ψ Ψ = ± ΨE P  

After close examination of Eq. (1C) and the requirement of its 
Lorentz invariance, we have found exactly two types of solutions exist. 
For the type-I solution of 

( )2 2 0− Ψ =E P

one has a commutative relation [𝑬𝑬,𝑷𝑷] = 0 and 
2 2 2 2, KωΨ = − Ψ Ψ = − ΨE P       (2A) 

Or 
2 2 2 2, KωΨ = Ψ Ψ = ΨE P       (2B) 

For the type-II solution of (𝑬𝑬2 − 𝑷𝑷2)|𝛹𝛹⟩ = 0 one has a non-
commutative relation with {𝑬𝑬𝑬𝑬} = 0 and 

( ) ( )0, 0or− Ψ = + Ψ =E P E P
These two types of solutions have different physical properties and 
distinctive topological structures. Because ω2 = K2 we can normalize 
E2, P2  to become dimensionless operators and we will use this 
convention for the case of a massless particle.   

Before we solve the operator equation in Eq. (1B) and assign these 
two operators to 2x2 real-value matrices, or equivalently, converting 
the 2nd-order differential equation in Eq. (1A) involving a dual-
component wave function into a set of linearly coupled 1st order 
differential equations, we shall examine the Lorentz transform 
between a fixed frame and a moving frame. According to special 
relativity theory, the Lorentz boost for a moving reference frame 
traveling along the x-axis is given in natural units by [18,19] 
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(3B) 

From the above equation, the time-shift and space-shift operators 𝑬𝑬�
and 𝑷𝑷� at the moving frame become 

cos sin
sinˆ cos

ˆ h h
h h
ξ ξ
ξ ξ

    
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  (3C) 

Based on Eq. (3C) one obtain 

[ ]

2 2 2 2ˆ ˆ

ˆ ˆ, ,

− = −

  = 

E P E P

E P E P

{ } ( ) { }2 2, sin 2 , cos 2 .ˆ ˆ h hξ ξ= + +E P E P E P    (3D) 

which confirms that 𝑬𝑬2 − 𝑷𝑷2 and [𝑬𝑬,𝑷𝑷]  are Lorentz invariants, but 
{𝑬𝑬,𝑷𝑷} are not. Therefore, for type-I particles, the wave equation 𝑬𝑬2 −
𝑷𝑷2 = 0  and the commutative relation [𝑬𝑬,𝑷𝑷] = 0 are satisfied and 
invariant under a Lorentz boost.  

However, for type-II particles with an anti-commutative relation 
{𝑬𝑬,𝑷𝑷} = 0 , one has [𝑬𝑬,𝑷𝑷]|𝛹𝛹⟩ ≠ 0 . In addition, one also has 

�𝑬𝑬�,𝑷𝑷�� ≠ {𝑬𝑬,𝑷𝑷}  which is not Lorentz invariant if one uses the 

Lorentz boost matrix of Eq. (3C). In order for  {𝑬𝑬,𝑷𝑷} to be Lorentz 
invariant one needs to generalize the transformation matrix for the 
type-II case by  

cos sin
sin coˆ s

ˆ h h
h h
ξ ξ
ξ ξ

  −  
=         

E E
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  (4A) 

From Eq. (4A), one obtains the invariance of the anti-commutator 

{ } ( ) { } { }2 2, sin 2ˆ , ,ˆ h ξ= − + =E P E P E P E P    (4B)

because (𝑬𝑬2 − 𝑷𝑷2)|𝛹𝛹⟩ = 0  for type-II particle. Therefore, both 
(𝑬𝑬2 − 𝑷𝑷2)|𝛹𝛹⟩ = 0  and �𝑬𝑬�,𝑷𝑷��|𝛹𝛹⟩ = 0   are indeed invariant under 

the Lorentz boost using Eq. (4A). Based on the above analysis, we 
conclude an important finding: the Lorentz boost matrix for type-I 
particles in Eq. (3C) are different from that in Eq. (4A) for type-II 
particles, which therefore must be different from type-I particles.  
One can also define time and space operators 𝑻𝑻 and 𝑿𝑿 with𝑻𝑻 

( )) ( )), ,t x t t xΦ = Φ  T and ( )) ( )), ,t x x t xΦ = Φ  X
respectively. 

According to Einstein’s special relativity, 𝑡𝑡2 − 𝑥𝑥2  is an invariant 
under a Lorentz transform?  Likewise, in the operator formalism,𝑻𝑻2 −
𝑿𝑿2 is also an invariant similar to𝑬𝑬2 − 𝑷𝑷2 .  Therefore, one also has 
two solutions – a commutative type-I with[𝑻𝑻,𝑿𝑿] = 0  and an anti-
commutative type-II with {𝑻𝑻,𝑿𝑿} = 0,  just like 𝑬𝑬 and 𝑷𝑷. 

Together with our previous definition of [ ) ( )/ ,t t xΨ = ∂ ∂ ΦE and

[ ) ( )/ ,x t xΨ = ∂ ∂ ΦP , we can express these two types of Lorentz

boosts for the transformation for the (𝑬𝑬,𝑷𝑷) and (𝑻𝑻,𝑿𝑿) pairs using 
2x2 real-value matrices.  For type-I scalar particles, one has  

cos sin 0 1
cos sin ,

sin cos 1 0B x x

h h
h h

h h
ξ ξ

ξ σ ξ σ
ξ ξ

   
≡ = + ≡   
   

L I  

�𝑬𝑬�
𝑷𝑷�
� = 𝑳𝑳𝐵𝐵 �

𝑬𝑬
𝑷𝑷�. (5A) 

One can show the following commutative relations are invariant 
under the Lorentz boost 𝑳𝑳𝐵𝐵 

2 2 0− =E P
[ ], 0.=E P  (5B) 

As a reminder, in this work we only use real-value operators or wave 
functions, so the appearance of these commutators differ slightly 
from the conventional definition of the operators that involve a pure 
imaginary number. For type-II spinor particles, one has 

cos sin 0 1
cos sin ,

sin cos 1 0F t t

h h
h h

h h
ξ ξ

ξ σ ξ σ
ξ ξ

− −   
≡ = + ≡   
   

L I  

(6A) �𝑬𝑬
𝑷𝑷
�
�� = 𝑳𝑳𝐹𝐹 �

𝑬𝑬
𝑷𝑷�
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The Lorentz boost matrix shown above for type-II particles is different 
from those for type-I particles. The commonly used Lorentz boost 
matrix in literature is only valid for type-I scalar particles where 𝑬𝑬 and 
𝑷𝑷 commute. Such a notion has not been reported in literature. Using 
the above equation one can show the following commutative 
relations are invariant under the Lorentz boost: 

2 2 0E P− =  

, 0.E P =        (6B) 

It is important to point out that if the traditional Lorentz boost 𝑳𝑳𝐹𝐹−1

were used instead of 𝑳𝑳𝐵𝐵−1 for 𝑻𝑻 and 𝑿𝑿,  those commutative relations
would no longer be Lorentz invariant.  

Now we discuss specific assignments for the operators in both type-I 
and type-II cases. For the type-I case with [𝑬𝑬,𝑷𝑷] = 0 and (𝑬𝑬2 −
𝑷𝑷2)|𝛹𝛹⟩ = 0, which are proven to follow the Lorentz boost of Eq. 
(3C), we first consider the choice of 𝑬𝑬2 = 𝑷𝑷2 = −𝑰𝑰 would lead to 
flip-flop oscillations of the f and g components in spacetime. One can 
assign these 2x2 real-value matrix operators to  

2 20 1
, , .

1 0 t tσ σ
− 

= = = − = = − 
 

E P E P I  (7A) 

Using the above operator assignment in the frequency-wave vector 
domain, or the corresponding partial derivatives 𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ,𝜕𝜕 𝜕𝜕𝜕𝜕⁄  in the 
time-space domain, one can express the wave equation explicitly as 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

, , , ,
,

, , , ,

f t x g t x f t x g t x
t x

g t x f t x g t x f t x
t x

∂ ∂ = − =  ∂ ∂
 ∂ ∂ = = −
 ∂ ∂ 

(7B) 

Eq. (3B) exhibits swapping behavior between f and g along both the 
time and space axes. The topological structure of the above coupling 
scheme is illustrated in Figure 1a, displaying clockwise rotation of f 
and g (with red and blue arrows) around four quadrants as time 
evolves. Conversely, as space evolves the rotation is counterclockwise 
originally from the 1st quadrant to the 2nd quadrant. The solution of 
Eq. (3B) with E=σt,P=-σt corresponds to a spiral wave with a right-
hand chirality along the x-axis. If one assigns E=-σt,P=σt with 
governing equation given by 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

, , , ,
,

, , , ,

f t x g t x f t x g t x
t x

g t x f t x g t x f t x
t x

∂ ∂ = = −  ∂ ∂
 ∂ ∂ = − =
 ∂ ∂ 

 (7C) 

one can show both Eqs. (7B) and (7C)  lead to 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

, , , ,
/

, , , ,

f t x f t x f t x f t x
t x

g t x g t x g t x g t x
t x

 ∂ ∂
= − = −∂ ∂


∂ ∂ = − = − ∂ ∂

(7D) 

Both Eqs. (7B) and (7C) satisfy the conservation of the intensity  
𝐼𝐼(𝑡𝑡, 𝑥𝑥) = 𝑓𝑓2(𝑡𝑡, 𝑥𝑥) + 𝑔𝑔2(𝑡𝑡, 𝑥𝑥) in time and space  

( ) ( ) ( ) ( ) ( ), 2 , , , , 0I t x f t x f t x g t x f t x
t t t
∂ ∂ ∂ = + = ∂ ∂ ∂ 

( ) ( ) ( ) ( ) ( ), 2 , , , , 0t x f t x f t x g t x f t x
x x x
∂ ∂ ∂ = + = ∂ ∂ ∂ 

(7E) 

According to Eq. (7C), the quadrant rotates counterclockwise along 
the time axis but clockwise along the x axis as shown in Figure 1b, 
and the spiral wave propagation has a left-hand chirality. For the 
other choice of 𝑬𝑬2 = 𝑷𝑷2 = 𝑰𝑰, there exist two possible assignments, 

i.e., 𝑬𝑬 = 𝜎𝜎𝑥𝑥 ,𝑷𝑷 = 𝜎𝜎𝑥𝑥  and 𝑬𝑬 = −𝜎𝜎𝑥𝑥 ,𝑷𝑷 = −𝜎𝜎𝑥𝑥 where 𝜎𝜎𝑥𝑥 = 𝜎𝜎1  is the
first Pauli 2x2 matrix where we define  𝜎𝜎𝑡𝑡 = −𝑖𝑖𝜎𝜎2to avoid the use of
an imaginary number, which might cause some confusion.  While
there is an isomorphism between the algebra of the 2-dimensional
vector space and the complex plane, in this work we are dealing with
purely real-value wave functions and 2x2 matrix operators. One can
show that for 𝑬𝑬2 = 𝑷𝑷2 = 𝑰𝑰 , the wave equations governed
by 𝜕𝜕2 𝜕𝜕𝑡𝑡2⁄ 𝑓𝑓(𝑡𝑡, 𝑥𝑥) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥),  𝜕𝜕2 𝜕𝜕𝑥𝑥2⁄ 𝑓𝑓(𝑡𝑡, 𝑥𝑥) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥),  and
𝜕𝜕2 𝜕𝜕𝑡𝑡2⁄ 𝑔𝑔(𝑡𝑡, 𝑥𝑥) = 𝑔𝑔(𝑡𝑡, 𝑥𝑥),𝜕𝜕2 𝜕𝜕𝑥𝑥2⁄ 𝑔𝑔(𝑡𝑡, 𝑥𝑥) = 𝑔𝑔(𝑡𝑡, 𝑥𝑥),  lead to either
an exponentially expanding or contracting amplitude.  The
topological representations of these two cases are illustrated in Figure
1c and Figure 1d, respectively.  Therefore, the unphysical choice of
𝑬𝑬2 = 𝑷𝑷2 = 𝑰𝑰  cannot be used here.

Only Eq. (3B) with 𝑬𝑬2 = 𝑷𝑷2 = −𝑰𝑰 can describe the flip-flop behavior 
for f and g across the lattice plane, as schematically illustrated in 
Figure 1, showing two types of possible flip-flop schemes.  

Figure 1) Topological 2D spacetime structures of the type-I particles. In 

subplot (a) for mode-1, according to the recursive scheme, the quadrant formed 
by 𝑓𝑓  (red arrow) and 𝑔𝑔  (blue arrow) rotates clockwise along the t-axis and 
counter-clockwise along the x-axis, representing left-hand chirality for the 
rotation viewing along the time axis. The diagonal dot line denotes the wave 
propagation along𝑥𝑥 − 𝑐𝑐𝑐𝑐 . For mode-2 in the subplot (b) it shows a reverse 
rotation direction for f and g, representing right-hand chirality. In subplots (c) 
and (d), their specific inversion or reflection exchange schemes between f and g 
lead to either contraction or expansion with exponentially decreasing or 
increasing amplitudes 

One can obtain a plane-wave solution of 𝑓𝑓(𝑡𝑡, 𝑥𝑥), = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 −
𝑡𝑡) ,𝑔𝑔(𝑡𝑡, 𝑥𝑥), = −𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 − 𝑡𝑡)  as illustrated in Figure 2A. If one 
assigns 𝑬𝑬 = 𝜎𝜎𝑡𝑡 = −𝑷𝑷 instead, its plane-wave solution 
becomes 𝑓𝑓(𝑡𝑡, 𝑥𝑥), = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥 − 𝑡𝑡) ,𝑔𝑔(𝑡𝑡, 𝑥𝑥), = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 − 𝑡𝑡) . The 
difference is in the propagation chirality. If one chooses 𝑬𝑬 = 𝑖𝑖𝜎𝜎2 =
𝑷𝑷or 𝑬𝑬 = 𝜎𝜎𝑡𝑡 = 𝑷𝑷, the wave propagates along the reverse direction.   
For the other type-II solution of Eq. (2B) with 𝑬𝑬𝑬𝑬 ≠ 𝑷𝑷𝑷𝑷 one has   

( ) ( )( ) ( )2 2 2 2 2 0KωΨ = + + Ψ = − + Ψ = E P E P EP PE   (8)

For the above equation to be satisfied, one has 𝑬𝑬2|𝛹𝛹⟩ = −𝜔𝜔2|𝛹𝛹⟩ 
and 𝑲𝑲2|𝛹𝛹⟩ = 𝐾𝐾2|𝛹𝛹⟩ .  Because of the special case of a massless 
particle 𝜔𝜔 = 𝐾𝐾 , we normalize the operators 𝑬𝑬  and 𝑷𝑷 to become 
unitlessoperators for simplicity.  Therefore, one must have the 
following constraints 
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( ) ( )0, 0− Ψ = + Ψ =E P or E P

{ }, 0=E P
2 2,|Ψ = Ψ Ψ = Ψ E P (9A) 

The above anti-commutative property between 𝑬𝑬 and 𝑷𝑷 for this type-
II case is characteristically from the type-I case with commutative 𝑬𝑬 
and 𝑷𝑷 .  Based also on the condition of the wave function being 
real, one has the following assignment.

20 1
,

1 0 tσ
− 

= = = − 
 

E E I

20 1 1 0
, ,

1 0 0 1x zorσ σ
   

= = = = =   −   
P P P I  (9B) 

Using the above operator assignment, the wave equation for 𝑬𝑬 =
−𝑖𝑖𝜎𝜎2,𝑷𝑷 = 𝜎𝜎1 is given by

( ) ( ) ( ) ( ), , , , , ,f t x g t x g t x f t x
t x t x
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

 (10A) 

and for  𝑬𝑬 = 𝜎𝜎𝑡𝑡,𝑷𝑷 = 𝜎𝜎𝑧𝑧

( ) ( ) ( ) ( ), , , , ,f t x g t x g t x f t x
t x t x
∂ ∂ ∂ ∂

= − = −
∂ ∂ ∂ ∂

(10B) 

The coupling scheme can be schematically illustrated in Figure 2, 
showing a binary exchange between the f and g components along the 
𝑥𝑥 − 𝑐𝑐𝑡𝑡  axi s. For  mod e-1, the re is an alt ernate exc hange bet ween 
(𝑓𝑓, 𝑔𝑔)  and (𝑔𝑔, 𝑓𝑓)  like  a Mobius strip15 betw een the f an d g 
components. The topological representation for these two types of 
wave propagation is illustrated in Figure 3. For mode-2, the process 
between (𝑓𝑓, 𝑔𝑔)  and (−𝑔𝑔, −𝑓𝑓)  rese mbles anot her type  of a  Mobius 
strip20 twisting. Both above equations lead to the wave equation for 
each of the dual components. 

( ) ( ) ( ) ( )
2 2 2 2

2 2 2 2, , , , ,f t x f t x g t x g t x
t x t x
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

 (10C) 

Figure 2) The topological structures for type-II spinor particles and their 

wave propagation along  𝑥𝑥 − 𝑐𝑐𝑐𝑐 , exhibiting two modes of the intertwined 
dynamics like the twisting of a Mobius strip. (a) Mode-1 with a swapping 
between (𝐹𝐹,𝐺𝐺), representing partial derivatives in time and space for the top 
row and the bottom row, and (𝐺𝐺,𝐹𝐹).  (b) Mode-2 with an exchange between 
(𝐹𝐹,𝐺𝐺) and (𝐺̄𝐺, 𝐹̄𝐹), meaning an inverse amplitude (−𝐺𝐺,−𝐹𝐹).   (c) Mode-3 
with an exchange between (𝐹𝐹,𝐺𝐺) and (𝐺𝐺,𝐹𝐹). (d) Mode-4 with an exchange 
between (𝐹𝐹,𝐺𝐺)  and (𝐺̄𝐺, 𝐹̄𝐹) . The last two modes correspond to an 
exponentially decreasing or increasing amplitude. 

According to the analysis in this work, both type-I and type-II massless 
particles all travel at the speed of light. For the type-I particle, which 
represents a scalar particle, 𝑬𝑬 and 𝑷𝑷 are commutative; however, for 
the type-II particle, which has an intrinsic structure, 𝑬𝑬 and 𝑷𝑷 are anti-
commutative.  

In the type-I case, the recursive relation does not involve direct 
coupling between time and space, while in the type-II case, the 
recursive relation involves an intertwined coupling between space and 
time like a Mobius strip as shown in Figure 3.  

Figure 3) The topological structure representation of the antisymmetric type-
II fermionic preon vs. the symmetric type-I bosonic preon.  The fermionic 
preon has a topological structure like a Mobius strip, and possesses a half-spin, 
whereas the bosonic preon possesses a simple closed-loop strip. The operators 𝑬𝑬 
and 𝑷𝑷  are time-shift and space-shift operators, respectively, and subscripts 
represent anti-symmetry (A) and symmetry (S) for the fermionic preon and 
bosonic preon, which could be used to construct other operators in 4D 
spacetime. 

The equation of Eq. (4B) with the choice of 𝑬𝑬|𝛹𝛹⟩ = −𝑷𝑷|𝛹𝛹⟩ in the 
continuum limit has a plane-wave solution as 

𝑓𝑓(𝑡𝑡, 𝑥𝑥) = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐�𝑘𝑘(𝑥𝑥 ∓ 𝑡𝑡)� ,𝑔𝑔(𝑡𝑡, 𝑥𝑥) = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠�𝑘𝑘(𝑥𝑥 ∓ 𝑡𝑡)� which is 90-

degrees out of phase as illustrated in Figure 4a.  For the other choice 
of  𝑬𝑬|𝛹𝛹⟩ = 𝑷𝑷|𝛹𝛹⟩, its plane wave solution becomes  

𝑓𝑓(𝑡𝑡, 𝑥𝑥) = 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘(𝑥𝑥 + 𝑐𝑐𝑐𝑐) + 𝜑𝜑),  and 𝑔𝑔(𝑡𝑡, 𝑥𝑥) = −𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠�𝑘𝑘(𝑥𝑥 + 𝑡𝑡)� , 

indicating a wave propagating along the opposite x-axis or t-axis.  The 
wave propagation for the type-I is shown in Figure 4a with the f and g 
components 90-degrees out of phase.  In contrast, for the type-II case, 
the wave propagation is illustrated in Figure 4b, showing the f and g 
components in phase or 180-degrees out of phase. The plane-wave 
solutions of Eq. (6B) are given by  

𝑓𝑓(𝑡𝑡, 𝑥𝑥) = ±𝑔𝑔(𝑡𝑡, 𝑥𝑥) = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠�𝑘𝑘(𝑥𝑥 ∓ 𝑡𝑡)�, 

with the same phase or 180-degrees out of phase.  The subplots 
shown in Figure 4c and 4d represent type-II wave propagation with 𝑓𝑓 
and𝑔𝑔  in-phase or 180-degrees out of phase. There also exist two 
modes, called L- and R-chirality depending on the relative phase 
relation between f and g.   

The type-II particle described above represents a 2D half-spin massless 
particle, which is a 2D analogy of a 4D Weyl particle [20,21]. If one 
uses angular momentum operators of spin-1 particles instead of 
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Pauli’s matrices in the treatment, the wave propagation of in-phase f 
and g components appear to be like the electric and magnetic field of 
a photon wave.  

Figure 4) Two types of wave propagation for the f and g components, each 

with two modes. (a) The wave propagation of the type-I waves with a chirality 
model L. The wave oscillations for f and g, 90-degrees out of phase, are along 
the x-axis.  They are plotted orthogonal to each other for a better view, unlike 
an EM wave with the electric and magnetic fields along x and y.   Depending 
on the recursive scheme, there exists a left-hand chirality and a right-hand 
chirality mode as shown in subplot (b).  The subplots in (c) and (d) represent 
type-II wave propagation with 𝑓𝑓 and 𝑔𝑔 in-phase or 180-degrees out of phase. 
There also exist two modes, called L- and R-chirality depending on the relative 
phase relation between f and g.   

So far, we have considered type-I and type-II quantum lattice 
dynamics for massless particles. Let us now extend the treatment to 
particles with a rest mass.  We first consider the rest frame, where 
there exists an internal oscillation with a frequency 𝑚𝑚0𝑐𝑐2 ℏ⁄  dictated
by its rest mass energy. 

The wave equation in Eq. (1A) for a massless particle needs to be 
replaced by  

( ) ( )
2 22 2

0
2 2 , ,m Ct x t x

t x
 ∂ ∂  − + Ψ = Ψ    ∂ ∂    

  (11) 

which is the Klein-Gordon equation in a discrete lattice. The above 
equation can be expressed in an operator form like Eq. (1B) but now 
with a mass term as 

( )2 2 2 2 2 2
0E K mΨ = + ΨE P M (12) 

Eq. (7B) in natural units is equivalent to the de Broglie-Einstein 

relation of ( )2 2 2 2 2
0E c m c p= + or ( )( )222 2 2

0 /c m c Kω = + to

satisfy the Pythagorean Theorem for ( )2 2 2
0m Kω = +

Here we seek a solution for the type-II case that satisfies

( )2 2 2
0m Kω = + as an eigenvalue result of

( ) ( )2 2 2 2 2 2 2 2 2
0 0 0K m K mω ω− + + Ψ = − + + Ψ =E P M  

One can obtain a solution with (𝜔𝜔𝑬𝑬 + 𝐾𝐾𝑷𝑷+ 𝑚𝑚0𝑴𝑴)|𝛹𝛹⟩ = 0 if these
operators satisfy 

{ } { } { }, , , 0,= = =E P E M P M

( ) ( )2 2 2 2 2 2
0 0K m K mω ω+ + Ψ Ψ = + + ΨE P M E P M

( )2 2 2
0 0K mω= − + + Ψ = (13) 

0 1 0 1 1 0
, ,

1 0 1 0 0 1t x zσ σ σ
− −     

= = = = = − =     
     

E P M  

2 2 2 ,t x x x t t x zσ σ σ σ σ σ σ σ− = = = = − =I  

,t z z t x x t z x tσ σ σ σ σ σ σ σ σ σ= − = = − =  (14A)

and−𝑬𝑬2 = 𝑷𝑷2 = 𝑴𝑴2 = 𝑰𝑰 .  To satisfy (𝜔𝜔𝑬𝑬 + 𝐾𝐾𝑷𝑷 + 𝑚𝑚0𝑴𝑴)|𝛹𝛹⟩ = 0,
we can assign these operators to three anti-commutative 2x2 matrices 
as 

0 1 0 1 1 0
, ,

1 0 1 0 0 1t x zσ σ σ
− −     

= = = = = − =     
     

E P M  

2 2 2 , , ,t x x x t t x z t z z t xσ σ σ σ σ σ σ σ σ σ σ σ σ− = = = = − = = − =I
,x t z x tσ σ σ σ σ= − =  (14A) 

Where 
2 2 2 , , , .t x x x t t x z t z z t x x t z x tσ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ− = = = = − = = − = = − =I

The wave equation (𝜔𝜔𝑬𝑬 + 𝐾𝐾𝑷𝑷 + 𝑚𝑚0𝑴𝑴)|𝛹𝛹⟩ = 0, based on the above
assigned operators, can be expressed explicitly by 

( ) ( ) ( )

( ) ( ) ( )

0

0

, , ,

, , , .

f t x f t x m g t x
t x

g t x g t x m f t x
t x

∂ ∂ = − − ∂ ∂
 ∂ ∂ = − −
∂ ∂

(14B) 

A 2nd kind of operator assignment of 𝑬𝑬 = 𝜎𝜎𝑡𝑡,𝑷𝑷 = −𝜎𝜎𝜎𝜎,𝑴𝑴 = −𝜎𝜎𝑧𝑧 
leads to 

( ) ( ) ( )

( ) ( ) ( )

0

0

, , , ,

, , , .

f t x f t x m g t x
t x

g t x g t x m f t x
t x

∂ ∂ = − ∂ ∂
 ∂ ∂ = − −
∂ ∂

(14C) 

A 3rd kind of operator assignment of 𝑬𝑬 = 𝜎𝜎𝑧𝑧,𝑷𝑷 = −𝜎𝜎𝑧𝑧,𝑴𝑴 = −𝜎𝜎𝑥𝑥 , 
leads to 

( ) ( ) ( )

( ) ( ) ( )

0

0

, , , ,

, , , .

f t x g t x m f t x
t x

g t x f t x m g t x
t x

∂ ∂ = − −∂ ∂
 ∂ ∂ = − −
 ∂ ∂

(14D) 

A 4th kind of operator assignment of 𝑬𝑬 = 𝜎𝜎𝑡𝑡,𝑷𝑷 = 𝜎𝜎𝑧𝑧,𝑴𝑴 = −𝜎𝜎𝑥𝑥 leads 
to 

( ) ( ) ( )

( ) ( ) ( )

0

0

, , , ,

, , , .

f t x g t x m f t x
t x

g t x f t x m g t x
t x

∂ ∂ = −∂ ∂
 ∂ ∂ = −
 ∂ ∂

(14 E) 

Both above equations represent a massive half-spin particle, as a 2D 
analogy of Dirac’s equation for an electron in 4D spacetime. 
According to our analysis, there are four possible coupling schemes as 
illustrated in Figure 5, showing how the original massless spinor 
structures are coupled to the 2D Higgs fields with an attached spring. 
Such coupling leads to the spinless fermion acquiring its mass, 
slowing down the wave propagation from the speed of light.  
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Figure 5) Topological structures of spinor particles with a rest mass. There 

are four different coupling schemes between F and G, representing the dual-
component wave function of type-2 particles. f and g represent the dual-
component wave function of the spacetime fabric. The coupling of type-2 
particles to the adjacent spacetime fabric causes the particles to acquire mass 
through the Higgs mechanism, but in 2D. Such couplings lead to a slower 
propagation velocity than the speed of light, owing to the nonlinear dispersion 
relation between the frequency and the wave vector. 

The second possible solution, as an extension of the massless particle 
in the type-I case for a boson can be obtained if  

{ } [ ] [ ] 2 2 2, 0, , , 0,= = = = = − =E M P E P E E P M I

( )0 0,mω − Ψ =E M

( ) { }( )2 2 2 2 2
0 0 0 ,m m mω ω ω− Ψ = + − ΨE M E M E M  

( ) ( )2 2 2 2 2 2
0 0 ,m E mω= + Ψ = − ΨE M

2 ,Ψ = − ΨP
Where, 

0 00
, , ,

0 00
x tz

x tz

σ σσ
σ σσ

−    
= = =    −     

E M P
 (15A)

In the above equation we need to use a tensor product of another 2x2 
matrix to satisfy the constraints of [𝑷𝑷,𝑬𝑬] = [𝑷𝑷,𝑴𝑴] = 0,  and 
𝑴𝑴2|𝛹𝛹⟩ = −|𝛹𝛹⟩. The above equations describe separate oscillations 
in time and space, unlike Eq. (8) which describes an intertwined link 
between partial differentials with respect to time and space. The third 
possible solution can be obtained if  

{ } [ ] ( )2 2 2
0, 0, , 0, 0K m= + = = = = + Ψ =P M E P M E P M I P M

( ) { }( )2 2 2 2 2
0 0 0 ,K m K m Km+ Ψ = + + ΨP M P M P M

( )2 2
0K m== + Ψ  (15B) 

Where 

2

2

00 0
, ,

00 0
x z

x z

σ σ
σ σ

−     
= = =    − −    

I
E M P

I
   (15C) 

Direct-products of two 2x2 matrices are required in order to satisfy 

the Klein-Gordon equation and ( )2 2 2 2 2
0E c m c p= +  these types of

wave equations and solutions do not meet the constraints of the dual-
component model with two real-value functions. Strictly speaking, 

Eq. (15B) with (𝑬𝑬 + 𝑷𝑷 + 𝑴𝑴)|𝛹𝛹⟩ = 0,  is the only qualified wave 
equation for a particle with a rest mass.  
Before making a conclusion, it is worth pointing out the extension of 
our preon model to a Dirac electron. According to Dirac’s theory for 
the electron, using the gamma matrices, one has 

( ) 0, 0,1,2,3i mµ
µγ µ∂ − Ψ = =  

0 0,k kp i p i= − ∂ = ∂

20

2

0 0
, ,

0 0
kk

k

σ
γ γ

σ
   

= =   − −  

I
I

   (16) 

where the natural unit is used.  Equivalently, using the matrices  
𝜶𝜶𝑘𝑘 = 𝛾𝛾0𝛾𝛾𝑘𝑘   and  𝜷𝜷 = 𝛾𝛾0  , it can be expressed as𝐸𝐸𝐸𝐸 = (𝜶𝜶 ⋅ 𝑷𝑷 +
𝜷𝜷𝑚𝑚)𝛹𝛹. Dirac’s1st-order differential equation in spacetime leads to 
Einstein’s relativistic mass-energy relation𝐸𝐸2 = 𝑚𝑚2 + 𝑝𝑝2   in a natural 
unit.  In Figure 6, we illustrate the topological structure of the 
antisymmetric type-II fermionic preon operators vs. the symmetric 
type-I bosonic preon in 4D spacetime.  Unlike the 2D case with only 
one way to pair up the time and the space-derivatives, for a Dirac 
electron in 4D spacetime, the Dirac equation involves four gamma 
matrices, including a time-like operator and three space-like 
operators.  

Figure 6) The topological structure representation of the antisymmetric type-

II fermionic preon operators vs. the symmetric type-I bosonic preon in 4D 
spacetime.  Unlike the 2D case in which  there is only one way to pair up the 
time-derivative and the space-derivative, for a Dirac electron in 4D spacetime, 
the Dirac equation involves four gamma matrices, including a time-like 
operator and three space-like operators.  Therefore, an electron has a high-
dimensional topological structure pf a fiber-bundle, with intertwined Mobius 
strips. The fermion-type preon operator has a topological structure like a 
Mobius strip, and possesses a spinor structure, whereas the boson-type preon 
operator possesses a simple closed-loop strip. 

Therefore, an electron has a high-dimensional topological structure of 
a fiber-bundle, with intertwined Mobius strips , The fermionic preon 
operators has a topological structure like a Mobius strip, and 
possesses a spinor structure, whereas the bosonic preon possesses a 
simple closed-loop strip.  One can generalize Dirac’s equation using 
hyper complex operators such as octonions to incorporate the extra 
degrees of freedom for leptons or quarks, which are assumed in the 
Standard Model to be a point-like object without a size. In the hyper 
complex operator formalism, such as quaternions, octonions or 
sedenions, all other operators are anti-commutative with each other, 
except the identity unit operator [22-23].  And all leptons or quarks 
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should be regarded as particles with an internal structure and a finite 
size. Therefore, each pair of these operators could be regarded as a 
Mobius strip, and an elementary particle could be viewed as having a 
fiber-bundle structure like a higher dimensional Mobius structure 
[24]. 

CONCLUSION 

In summary, we presented a dual-component model with two real-
value wave functions f and g to describe the relativistic quantum 
dynamics of fields/particles in a 2D Minkowski spacetime.  Using an 
operator algebra approach with a time-shift operator 𝑬𝑬 and a space-
shift operator 𝑷𝑷, together with another mass operator represented by 
three independent 2x2 real-value matrices, we can construct linearly 
coupled 1st-order partial differential equations to describe the 
excitation and propagation of these quantum fields and their 
associated particles. We systematically analyzed all possible excitations 
of the 2D Minkowski spacetime fabric sheet that satisfy the de 
Broglie-Einstein relations between mass energy, frequency, and wave 
vector. From our analysis of all possible structural deformations, we 
have identified two types of solutions that satisfy the Lorentz 
invariance of(𝑬𝑬2 − 𝑷𝑷2)|𝛹𝛹⟩.  

For a type-I massless bosonic preon, one has commutative relations of 
[𝑬𝑬,𝑷𝑷] = 0, and for a type-II massless fermionic preon, one has anti-
commutative relations of  {𝑯𝑯,𝑷𝑷} = 0.  This model leads naturally to 
only two kinds of field excitations and their associated particles as 
bosons and fermions.  We shed light on the concepts behind Pauli’s 
exclusion principle, fermionic statistics, and bosonic statistics. We 
point out that spacetime itself consists of a dual-component fabric to 
allow the excitation and propagation of type-I bosonic preons and 
type-II fermionic preons. Unlike the conventional preon modes that 
encounter the mass paradox22, we have only two types of preons, anti-
symmetric fermionic and symmetric bosonic preons, both of which 
are massless.  Our model also differs from the conventional string 
theory that invokes 1D string. Our model invokes the most 
fundamental unit with time-like and space-like 2D Mobius strips and 
simple-loop strips as building blocks of the actual elementary 
particles.  

 According to the history of the development of the conventional 
string theories, only 1D vibrating strings were considered, which 
could only account for boson excitations. The extension to fermionic 
excitation was made a decade later with the inclusion of super-
symmetry.   In contrast, our model consists of two most fundamental 
2D spacetime structures, a Mobius-strip fermioni preon, and a simple-
loop bosonic preon.  

These two topological preonic structures can be used as the building 
blocks for construct of the known elementary particles of higher 
dimensions, in conjunction of the use of hyper-complex operators for 
the higher-dimensional spacetime.  The Mobius strip and simple loop 
structures, which arise naturally from the wave equation as prescribed 
by Einstein’s special relativity and de Broglie’s wave-particle duality, 
could potentially be used as building blocks to construct actual 
particles in 4D, and to investigate the topological properties of 
elementary particles in the Standard Model. The extension of this 2D 
model to 4D spacetime and an inclusion of hyper complex operators 
as potential building blocks to construct elementary particles deserve 

further studies. 
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