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INTRODUCTION

Several jellyfish taxa may play a paramount role in marine biological 
processes, because of their potential to undergo seasonal and inter-annual 
fluctuations by alternation of population outbreaks with rarity periods (1). 
Jellyfish proliferations (or ‘’blooms’’) are regarded as natural components of 
healthy pelagic ecosystems (2,3) but, in recent decades, jellyfish are occurring 
at greater frequency and abundance in many coastal areas worldwide (4,5). 
This trend has been related to human-derived, multiple impacts on marine 
ecosystems, including overfishing, eutrophication, and global warming 
(6). When exceedingly abundant, jellyfish can cause substantial ecological 
impacts on marine biodiversity, interfere with economic and recreational 
human activities, and may be harmful to public health (7,8). Due to their 
seasonal high biomass, jellyfish proliferations may represent nutrient-
rich direct food source for fish species (9); also, jellyfish blooms or their 
decaying tissues (jelly-falls) may drive significant changes of the functional 
and structural microbial diversity and impact the food web structure of both 
seafloor and plankton communities (10-15).

Moreover, investigations on the structural and metabolic diversity of jellyfish-
associated microbial communities may increase our understanding of the 
ecological impact of jellyfish on marine ecosystem functioning. The present 
study focuses on the analysis of the abundance and metabolic diversity of 
heterotrophic culturable bacteria isolated from one of the most common 
jellyfish species in the Mediterranean Sea, the scyphomedusa Rhizostoma 
pulmo (Macri, 1778), characterized by seasonal and inter-annual fluctuations 
in population density (16-19). Different body fractions of jellyfish were 
separately investigated, namely two body fractions (the umbrella and the oral 
arms) and the mucus secretion from whole medusa specimens.   

MATERIAL AND METHODS

Rhizostoma pulmo medusae were sampled in Ginosa Marina (Ionian Sea 
40°25.7’ N, 16°53.1’ E; Italy) in July 2016 by scuba diving. The animals were 
transported immediately to the laboratory, were washed in filter-sterilized 
(0.2 μm, Millipore) seawater to remove the mucus layer produced during 
transport and the bacteria settled on surfaces of umbrella and the oral arms. 
The newly secreted mucus was collected in sterile containers. Successively, 
the umbrella was separated from the oral arms using a sterile blade and the 
different fractions were homogenized in a sterile Waring. To enumerate the 
culturable bacteria, 1 mL of each homogenated sample and its appropriate 
decimal dilutions (10-1-10-5) was plated onto Marine Agar 2216. After 
incubation for 7 days at 25 °C the bacteria were counted according to the 
colony forming units (CFU) method (20). The analysis of the metabolic 
profiles was performed by using the Biolog system-EcoplatesTM (BIOLOG 
Inc., Hayward, Calif.). Among the available methods used to identify 

environmental bacteria, the Biolog EcoPlate system offers a standardized 
rapid method for determining bacterial oxidation of 31 ecologically relevant 
carbon substrates (including two synthetic polysorbate polymers, Tween 40, 
Tween 80, and two naturally occurring carbohydrate polymers, α-cyclodextrin 
and glycogen) with a redox-sensitive tetrazolium indicator of microbial 
respiration (21). Three replicas for each homogenate fraction were prepared 
using three BIOLOG ECO plates. The inoculation volume was 150 μL in 
each well. The plates were incubated at 30 °C for 1 week. The optical density 
(OD) values were measured at a wavelength of 590 nm with a plate reader 
(Microplate Reader model 3550; Bio-Rad, Richmond, Calif.). The difference 
between the OD values at the beginning and at the end of incubation was 
regarded as the increase in OD values for the well (22-24).

RESULTS AND CONCLUSION

Jellyfish specimens of R. pulmo (mean umbrella diameter 25.38 ± 7.41 cm) were 
used for analysis of the associated microbiome. Bacterial concentrations were 
lower in the umbrella (1.3x103 CFU/mL) and the oral arms homogenates 
(5.6x103 CFU/mL) than in the newly secreted mucus fraction (1.21x104 
CFU/mL) (Figure 1). The metabolic activities recorded by 72 h incubation 
BIOLOG ECO plates indicated amino acids, carbohydrates and carboxylic 
acids as preferential categories of carbon sources for the oral arms and mucus 
associated bacteria (Table 1, Figure 2). In addition, mucus associated bacteria 
were also capable to utilize three out of the four BIOLOG ECO polymers 
(Table 1). Preferred categories of carbon sources for the umbrella-associated 
microbes were only polymers and amine/amides (Figure 2). The highest activity 
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Different bacterial metabolic pathways have been identified among the 
above mentioned fractions, with the highest value of abundance and 
metabolic activity in the mucus compared to the umbrella and oral arms. 
These findings are discussed in the framework of the ecology of the species.
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Figure 1) Diversity of culturable heterotrophic bacteria in association with different 
fractions of R. pulmo jellyfish. Data are reported as mean values ± S.E.
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was observed in the mucus-associated heterotrophic bacteria, able to degrade 
16 carbon sources on the total of 31 relevant carbon substrates; differently, 
the umbrella and oral arms associated bacteria degraded only 3 and 6 of the 
total carbon substrates (Table 1, Figure 3). L-phenylalanine and D-galacturonic 
acid were degraded both by the mucus and oral arms associated bacteria; the 
Tween 40 was the only common substrate used by the mucus and umbrella 
associated bacteria. It is worth noting that L-phenylalanine is a common 
amino acid component of living organisms (25,26) used by methylotrophic 
bacteria as carbon, nitrogen and energy sources for their growth (27). In 
particular, a phenylalanine hydroxylase has been identified in Pseudomonas 
species (28). The use of Tween 40 and 80 is considered a key point for the 
identification of highly specialized bacteria involved in hydrocarbon and oil 
degradation (29). D-galacturonic acid results among the utilized carboxylic 
acids by R. pulmo associated bacteria. Notably, carboxylic acids are important 
carbon sources for bacterioplankton (30,31) and are considered part of the 
labile pool of organic matter. Our results suggest that the secreted mucus 
hosts a larger and more diverse bacterial community compared with the 
other fractions. This is consistent with previous studies showing that mucus-
associated microbiota in the scyphozoan Aurelia aurita s.l. is more variable 
than the microbiota of the gastric cavity (32). In the Semeostomeae jellyfish 
Chrysaora quinquecirrha, the highest species richness of the associated bacterial 
community was found on the umbrella surface rather than on mouth arms, 
tentacles, and gonads (33). This can be explained by the different morphology 
of the oral arms between Semeostomeae and Rhizostomeae jellyfish, the 

latter containing a mesh network of small ciliated grooves that may facilitate 
settlement and growth of a richer microbial community. Previous studies 
revealed that corals provide several microbial-specific habitats, such as tissue 
(34), the gastrovascular cavity (35), and the surface mucus layer (36,37). In 
Cnidaria the mucus is secreted by ephitelio-muscular cells of the body wall 
(38,39) and its impressive array of functions plays an important role in the 
biology and survival of organisms. Mucus can be associated to egg-laying and 
may function as protective barrier against infection [40], physical shield (41) 
and slippery coating effective in preventing bacteria and debris accumulation 
on the body surface (42,43). The mechanisms leading to the rapid enrichment 
of newly secreted mucus in R. pulmo is still unknown. However, on account 
of the above mentioned functions, we may speculate that mucus secretion is 
a key mechanism for Rhizostomeae jellyfish to keep clean and open the small 
ciliated grooves of their branched oral arms, to transfer the collected food 
into the gastric cavities.

Further studies are needed to clarify the overall spatial and temporal 
composition of the bacterial communities associated with R. pulmo 
jellyfish as well as their role, the possible origin (lateral transfer, epibiosis, 
gut or food related), their maintenance and change during different 
life stages. Particularly, it will be mandatory to clarify whether there is 
selective enrichment of specific microbial groups or the jellyfish-associated 
microbiome reflects the abundance and diversity of the planktonic bacteria 
in the water column. The next steps of our investigation will be the isolation 

CARBON SOURCES MUCUS UMBRELA ORAL ARMS

AMINES/AMIDES Phenylethyl-amine - - -

Putrescine - + -

AMINO ACIDS L-Arginine + - -

L-Asparagine + - -

L-Phenylalanine + - +

L-Serine + - -

L-Threonine + - -

Glycyl-L-Glutamic Acid + - -

CARBOYDRATES β-Methyl-D-Glucoside + - -

D-Xylose - - +

i-Erythritol + - -

D-Mannitol - - -

N-Acetyl-D-Glucosamine - - -

D-Cellobiose + - -

Glucose-1-Phosphate + - -

α-D-Lactose + - -

D, L-α-Glycerol Phosphate - - -

CARBOXYLIC &ACETIC ACIDS D-Galactonic Acid γ-Lactone - - -

D-Galacturonic Acid + - +

2-Hydroxy Benzoic Acid - - -

4-Hydroxy Benzoic Acid - - -

γ-Hydroxybutyric Acid - - +

D-Glucosaminic Acid - - +

Itaconic Acid - - -

α-Ketobutyric Acid + - -

D-Malic Acid - - -

Pyruvic Acid Methyl Ester - - +

POLYMERS Tween 40 + + -

Tween 80 - + -

α-Cyclodextrin + - -

Glycogen + - -

Table 1 
Utilization of the carbon sources: Results from BIOLOG ECO plate assay indicating the utilization of the 31 substrates by the 
bacterial community on different compartments of R. pulmo jellyfish.
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and characterization of the here investigated jellyfish associated culturable 
bacteria from both a genotypic and phenotypic point of view. Detailed 
knowledge on the composition of bacteria associated with jellyfish might also 
provide insight on the network of interactions between the jellyfish host and 
its associated microbial consortia, and the possible physiological pathways 
that may contribute to the host life history. 
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Figure 2) Scheme of degradation capability of heterotrophic bacteria associated with the oral arms, mucus and umbrella.  
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Figure 3) Carbon sources degraded by R. pulmo associated bacteria: amino acids (a), carbohydrates (b), polymers (c) and carboxylic acids (d). Data are reported as 
mean values ± S.E. 
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