Microwave versus convective processing: Characterization of baking conditions and cake quality
Fatma Boukid1,2, MSc, Narjess Bayar3, MSc, Hajer Debbabi3, MSc, Chokri Demmarg3, MSc, Sihem Bellegha3, MSc

This work purpose was to compare convective and microwave processing effects on cake quality. The centre temperature profile, weight loss, final height, CIE Lab colour, firmness and sensory attributes were determined. Statistical analysis revealed that baking conditions had significant impact on all the studied parameters. Experimental data indicated that microwave power settings increase allowed an important decrease in baking time (85% time reduction). Moreover, baking at 850 W induced high weight loss rate, and it recorded the highest final height. However, microwave baking has no significant difference on cakes color. Firmness was negatively affected by high microwave power level, consistently with sensory results. Although baking cake at 850 W could be considered a good alternative to save time and energy, sensory scores confirmed that panelists appreciated cakes baked at 250 W.

Key Words: Baking; Cake; Microwave; Convective; Quality

Cooking process and quality development need to be understood predicted and controlled [1]. As a matter a fact, conventional baking methods have several downsides on food quality that’s why there is a raising need to more sophisticated alternatives. Microwave heating was emerging [2] to reach high quality requirements. Microwave food processes offer a lot of advantages as compared with conventional surface heating; indeed, microwaves can generally provide less start-up time, faster heating, energy efficiency, space savings, precise process control, selective heating and food with high nutritional quality [3-5].

Microwave is a promising technique in food baking. Recently, the use of microwave energy in baking is of interest [6]. Therefore, quality traits assessment, mainly physical properties (temperature, moisture, color and texture), is crucial. Indeed, changes in one physical property are closely related to changes in others and to the thermal processing condition [7]. The main advantages of microwave baking are shorter drying time and improved product quality [8]. In fact, it seemingly reduces the thermal impact on food functional properties which allows for an overall food quality improvement [9]. The use of microwave heating for baking results in a more uniform moisture distribution than does forced convection [10]. Breads baked in an electrical resistance had interior characteristics and shelf-life superior to those of products baked in a conventional oven [11].

A current challenge facing food technologists and engineers is that of improving the quality of microwave-baked products [12]. Microwave baking quality problems are mainly pale color, temperature non-uniformity and low power efficiency. On one hand, the biggest disadvantage is the inability of the microwave ovens to induce browning [13]. On the other hand, due to inherent nature of standing wave patterns of microwaves inside a cavity and dielectric properties of different components in a food, microwave heating leaves non-uniform distribution of energy inside the food volumetrically [14]. For that reason, to overcome these problems, studies dealing with microwave and the improvement of baking conditions are of a great interest.

In this paper, the main concern is to assess the effect of convective and microwave processes on the major physical, textural and sensory attributes of cake. In furnishing of this purpose, temperature profiles, weight loss rate, final heights, color components, firmness and sensory analysis of cakes baked at microwave and convective ovens were performed.

MATERIAL AND METHODS

Materials
Sugar, eggs, sunflower oil, vanilla yogurt, flour, vanilla sugar and yeast were purchased from a local market in Tunis.

Cake formulation
The cake formulation was a white-layer homemade cake formulation. The batter, which contained (based on a 330 g batch), 132 g sugar and two eggs, was mixed at high speed (level 3) using a standard kitchen mixer (150 W) (Molinex, China) until it became fluffy (approximately 5 min). Then the wet-blended mixture consisting of 5 cl sunflower oil and 32 g vanilla yogurt was added with continued mixing at high speed (level 3 for 3 min). A dry-blended mixture consisting of 234 g flour, 3 g vanilla sugar and 3 g yeast was added, and agitated (level 4) until stiff peaks were formed (approximately 3 min).

Baking process
Convective baking
Convective baking was performed in an electrical oven (AXELL, China) at 180°C. Three samples were baked at a time.

Microwave baking
A domestic microwave (MW86N, China) was used in this study with several output settings (100, 180, 300, 450, 600 and 850 W) at 2450 MHz. A water load (approximately 50 ml) was placed in the microwave cavity to provide a heating load sufficient to protect the magnetron from overheating, especially when samples reached low moisture contents during the latter stages of baking. Energy uniformity was improved by positioning the sample in the centre of the microwave cavity and rotating the load on the turntable [6].

Cake quality measurements
Microwave baking was carried out at five power output settings (100, 180, 300, 600, 850 W). As a control baking system, a standard fan assisted convective oven (Genlab, Model MF75) was used. The temperature was measured using a Type ‘K’ thermocouple (1 mm diameter). Experimental baking curves were carried out to determine the effect of baking time on temperature in both baking systems. The internal temperature of the cake was measured three times for each sample. One batter sample (100 g), placed in an aluminium dish (39 mm inside diameter, 109 mm height), and was positioned in the centre of microwave oven under specific conditions. Weight loss measurements were in different times during baking and calculated by subtracting the weight of cake after baking from weight of dough and dividing this term by the weight of dough and given in percentage [15]. The height across the sample cross-section was measured at three locations; the center; the right and the left after baking. Surface color of the cake samples was measured using a Minolta colour reader (CR-10; Japan) using the CIE L*, a* and b* colour scale. Triplet readings were carried out at different positions on the cake surface, and the mean value was recorded. Total colour change (DE) was calculated from Eq. (1) [16].

1Department of Food Science, University of Parma, Italy; 2Plant protection and improvement laboratory, Center of biotechnology of Sfax, University of Sfax, Tunisia; 3Department of Food Technology, Tunisian National Institute of Agronomy 43, Avenue Charles, Nicolle, Tunisia

Correspondence: Fatma Boukid, Department of Food Science, University of Parma, Italy Telephone: +390521902111, email: fatma.boukid@unipr.it
Received: September 26, 2018; Accepted: December 03, 2018; Published: December 10, 2018

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

J Food Drug Res Vol 2 No 1 November 2018
RESULTS AND DISCUSSION

Effect of baking conditions on experimental baking curves

Once the internal cake temperature reached 101-102°C, the baking process was stopped and baking time was recorded [19]. Figure 1 presented the centre temperature profile of cakes baked in convective and microwave ovens (six microwave power outputs and convective oven at 180°C) as a function of baking time. Similar trends in the shape of the experimental thermal curves were observed in microwaves different powers outputs and convective oven. These curves could be divided in three stages; In stage I, temperature increased sharply at the start of baking until approximately 1/3 to halfway through the baking, and then the heating rate started to decrease until a final internal temperature of around 100°C was reached [20]. In stage II, temperature increased linearly with time, independently of the power used up to around 100°C, consistently to Sumnu et al. [15] works. In fact, larger amount of interior heating during microwave baking result in significant internal pressure which increases the loss of moisture from the baked product [24].

Further, ANOVA results revealed a significant effect of baking conditions on baking time. Microwave baking at 850 W enabled a reduction of 85% in the time needed to complete the baking process as compared to convective oven (at 180°C). In fact, heating from the interior of a food product leads to the build-up of an internal vapor pressure that drives the moisture out of the product [22], leading to baking time reduction (Table 1).

TABLE 1

<table>
<thead>
<tr>
<th>Baking condition</th>
<th>Baking time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convective oven 180°C</td>
<td>1285</td>
</tr>
<tr>
<td>100 W</td>
<td>270</td>
</tr>
<tr>
<td>180 W</td>
<td>240</td>
</tr>
<tr>
<td>300 W</td>
<td>180</td>
</tr>
<tr>
<td>450 W</td>
<td>150</td>
</tr>
<tr>
<td>600 W</td>
<td>140</td>
</tr>
<tr>
<td>850 W</td>
<td>110</td>
</tr>
</tbody>
</table>

Data are expressed as mean from three replicates. Means of same column follow by different letters differ significantly (p<0.001).

FIGURE 1 Temperature profiles during microwave (a) and convective baking (b) as a function of baking time.

FIGURE 2 Weight loss rate of cakes baked at different microwave powers (a) and convective baking (b) as function of baking time.
Microwave versus convective processing: Characterization of baking conditions and cake quality

Sensory assessment
Sensory scores were presented in Figure 5. Sensory attributes were color, firmness, tenderness, elasticity, flavor and overall acceptance. Conventionally baked cakes were the most appreciated regarding all attributes. On the other side, microwave baked cakes at 250 W had the highest overall acceptance because panelists did appreciate their tenderness and flavor. However, they assigned the lowest overall acceptance to cakes baked at 100 W for its weak flavor. Besides, no significant differences were observed between microwave color scores. Cakes baked at 450 W had the highest flavor. Baking at maximum power (650 and 850 W) resulted in cakes with high firmness and elasticity which explained its lowest overall acceptance score. Comparing microwaves cakes to the control cake indicated that baking at medium microwave power (250 W) could produce a cake with good flavors and tenderness.

Correlation between sensory and instrumental analyses
Correlation between sensory and instrumental analysis was carried out. In fact, Table 3 presented linear regression models relating sensory scores to instrumental measurements. The sensory firmness and tenderness had high linear correlations with instrumental results (determination coefficients (R²) were 0.829 and 0.895, respectively) confirming that texture can be measured by means of objective (instrumental) and intrinsic subjective (sensory) tests [31-33]. The sensory colour score was also linearly correlated to the instrumental red index (R²=0.886). Hence, it could be concluded that sensory evaluation was efficient differences identification, in consistent with instrumental assessment.

CONCLUSION
Based on this work, several conclusions could be drawn. Firstly, microwave baking allowed an important baking time reduction in comparison with convective baking at 180°C. Secondly, temperature profile had similar trends for the six-power settings of microwave. Then, as the microwave power increased, baking time decreased. However, weight loss and final height was adequately increased with microwave power output. Then, it was not possible which might result in a puffing effect and high volume [25]. ANOVA results showed a significant effect of baking conditions on final heights. Microwave baking at 850 W allowed 85% baking time reduction as compared to baking in a convective oven. Thus, microwave baking provided faster processing by accelerated heat transfer and moisture migration [26].

Effect of baking conditions on cake's final colour
ANOVA results revealed that CIE a*, b*, L and ΔE values were significantly (p ≤ 0.001) affected by baking conditions. Although microwave baking increased the yellow index, luminosity and ΔE value, it decreased red index in concordance with correlation matrix results. High correlations between colour components and baking time confirmed that baking time enhanced red index (r=0.990), whereas it worsened yellow index (r = 0.986), luminosity (r=0.974) and ΔE (r=0.970). Thus, long baking time in conventional ovens allowed cakes browning unlike microwave baked cakes. Indeed, during microwave baking, cakes are not heated long enough to proceed to the point where brown pigments and flavor compounds are produced [13]. Consequently, as expected, it was not possible to observe any significant colour change during microwave baking (Table 2). Indeed, Duncan’s test results showed that there was no significant difference in red and yellow indexes of samples baked in microwave oven. According to Agthilin et al. [27], the fundamental decrease in Millard reaction is due to short baking time, and consequently, it does not proceed beyond the initial stages [28]. Further, baking temperature might not be high enough to enhance browning reaction, Maillard and caramelization [29].

Effect of baking conditions on cake’s firmness
Figure 4 presented the influence of baking conditions on the baked cakes firmness. Statistical results revealed that baking conditions had a significant impact on firmness. Firmness values varied from 0.52 N (Oven) to 2.84 N (850 W). In fact, convective cakes showed the lowest firmness due to homogeneous bubble distribution and a finer air cell structure as mentioned by Al-Muhtaseb et al. (2013). Further, it could be explained by the low weight loss and the high moisture. Indeed, a high correlation was found between firmness and weight loss (r=0.95). Regarding microwave baked cakes, firmness was significantly affected by the increase in microwave power setting. Cakes baked at 100 W showed a firmness value (0.63 N) slightly higher than cakes baked in convective oven. However, cakes baked at 850 W had the highest hardness. The increase of hardness could be correlated to baking time. Actually, baking time greatly influenced the firmness of cakes as confirmed by their correlation coefficient (r=0.53). It could be concluded that the increase of baking time allowed an improved texture. Thus, as microwave output power increased, weight loss increased and cakes hardness increased suggesting low microwave power baking as a good option to obtain cake with tender texture. Otherwise, correlation between height and firmness was weak and insignificant (r=0.25). In contrast, Staufffer (1999) suggested that cake with high volume usually had low firmness. Additionally, Demirekler et al. [30] works established that baking time and microwave power were the most significant factors in increasing the firmness.

TABLE 3
Relationships between cake sensory and instrumental attributes.

<table>
<thead>
<tr>
<th>y: Sensory</th>
<th>x: Instrumental</th>
<th>Regression model</th>
<th>Determination coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmness</td>
<td>Firmness</td>
<td>y=1.3514x+6.9381</td>
<td>R²=0.829</td>
</tr>
<tr>
<td>Tenderness</td>
<td>Firmness</td>
<td>y=1.9695x+9.1548</td>
<td>R²=0.895</td>
</tr>
<tr>
<td>Color</td>
<td>Red index</td>
<td>y=0.201x+3.487</td>
<td>R²=0.886</td>
</tr>
</tbody>
</table>
to detect a significant difference in red and yellow indexes of microwaves baked cakes [34-36]. Furthermore, firmness was highly influenced by weight loss, baking time and microwave power setting. Finally, cake sensory attributes were valuable tools for cakes quality assessment that could be instrumentally predicted.

REFERENCES

18. Volpini-Rapina LF, Sokei FR, Conti-Silva AC. Sensory profile and preference mapping of orange cakes with addition of prebiotics inulin and oligofructose. LWT-Food Science and Technology 2012;48:37-42.