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RESEARCH 

 Numerical-mathematical methods for Hyperbolic-Parabolic 
systems: Investigation of Volter-Gursat equation and 

Green's function in Three-Dimensional spaces 
Elvir Čajić, Maid Omerović , Sead Resic, Elmi Shabani 

INTRODUCTION 
he The research problem of this paper is how partial differential
equations can be solved. Due to the extensiveness of the concept
of partial differential equation, here we will specifically base 

ourselves on partial differential equations that have found application 
in physics specifically in the representation of waves. Therefore, the 
subjects of research in this paper are partial differential equations that 
can be solved using the Fourier series, and they have found their 
application in the equations of mathematical physics. With the help 
of equations, LaPlace, Dirhle, we will examine concreteness for 
solving some physical problems.  

There are several methods for solving partial differential equations, 
namely the numerical method, the Runge angle method, and the 
least squares method. All these methods provide certain solutions 
from the aspect of mathematical provability; however, the method of 
solving using the Fourier series provides the clearest definition for 
solving partial equations of the following problems: 

1. Hyperbolic type equations

• The flickering wire equation

• The wave equation

• The telegraphic equation

2. Parabolic type equations

• The case of the bounded stick

• The case of the unbounded stick

• The case of a three-dimensional environment 

• A special case

3. Elliptic type equations

• Green's function

• Harmonic functions

• Dirichlet problems

All the mentioned methods cannot arrive at the solution of these five 
types of partial differential equations in a clear way. 

The total number of solutions of a partial differential equation is 
generally very large. A unique solution of a partial differential 
equation corresponding to a given physical problem will be obtained 
by using additional information derived from the physical problem. 
In some cases, in this paper, there will be default values of the 
required solution within the limits of the definition area and this will 
represent the boundary conditions. However, when time t is one of 
the variables of the differential equation, and its value is t=0, then it 
will represent the given initial conditions. 

Voltaire's method 
In this part of the work, we will solve the equation: 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2 −

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2 = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧), 

T 

Čajić E, Nićin S, Omerović M, et al. Numerical-mathematical

methods for Hyperbolic-Parabolic systems: Investigation of 

Volter-Gursat equation and Green's function in Three-

Dimensional spaces. J Pure Appl Math. 2024; 8(3):01-08. 

ABSTRACT 
Paper deals with the analysis of hyperbolic-parabolic systems with a 
focus on the Volter-Gursat equation and the application of 
Green's function in three-dimensional spaces. We explore the 
mathematical methods that enable the solution of these equations, 

including theoretical approaches and numerical techniques. Special 
emphasis is placed on the formulation and analysis of three-
dimensional environment problems, where Green's functions are 
used to efficiently solve differential equations. Concrete examples 
and simulation results are presented that confirm the effectiveness of 
the proposed methods. 
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where the function u, together with its derivatives of the first order, is 
given on some surface S. The solving method was given by Volter and 
it represents an extension of the Riemannian method. First, we will 
introduce an integral formula that will be used for proof later. Let it 
be: 

𝑆𝑆(𝑢𝑢) =
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2 −

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2 . 

Then it's obvious: 

𝑣𝑣𝑆𝑆(𝑢𝑢) − 𝑢𝑢𝑆𝑆(𝑣𝑣) = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑣𝑣𝑢𝑢𝜕𝜕 − 𝑢𝑢𝑣𝑣𝜕𝜕) + 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑣𝑣𝑢𝑢𝜕𝜕 − 𝑢𝑢𝑣𝑣𝜕𝜕� −

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑣𝑣𝑢𝑢𝜕𝜕 − 𝑢𝑢𝑣𝑣𝜕𝜕)    (1) 

If the functions u and v together with their derivatives of the first and 
second order are continuous, then in the region V bounded by the 
surface S, it follows directly from formula (1) that: 

��𝑣𝑣𝑆𝑆(𝑢𝑢) − 𝑢𝑢𝑆𝑆(𝑣𝑣)�𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 = �(𝑣𝑣𝑢𝑢𝜕𝜕 − 𝑢𝑢𝑣𝑣𝜕𝜕)𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 +
−

𝑆𝑆

−

𝑉𝑉

�𝑣𝑣𝑢𝑢𝜕𝜕 − 𝑢𝑢𝑣𝑣𝜕𝜕�𝑑𝑑𝑧𝑧𝑑𝑑 − (𝑣𝑣𝑢𝑢𝜕𝜕 − 𝑢𝑢𝑣𝑣𝜕𝜕)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

  (2) 

Let α,β,γ be the angles of the external normal to the surface S and the 
positive directions of the coordinate axes. Then it is: 

�(𝑣𝑣𝑢𝑢𝜕𝜕 − 𝑢𝑢𝑣𝑣𝜕𝜕)𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 +
−

𝑆𝑆

�𝑣𝑣𝑢𝑢𝜕𝜕 − 𝑢𝑢𝑣𝑣𝜕𝜕�𝑑𝑑𝑧𝑧𝑑𝑑𝑥𝑥 − (𝑣𝑣𝑢𝑢𝜕𝜕 − 𝑢𝑢𝑣𝑣𝜕𝜕)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 

=∬ 𝑣𝑣(−
𝑆𝑆 𝑢𝑢𝜕𝜕 cos𝛼𝛼 + 𝑢𝑢𝜕𝜕 cos𝛽𝛽 − 𝑢𝑢𝜕𝜕 cos 𝛾𝛾) 𝑑𝑑𝑆𝑆 

= ∬ 𝑢𝑢(−
𝑆𝑆 𝑣𝑣𝜕𝜕 cos𝛼𝛼 + 𝑣𝑣𝜕𝜕 cos𝛽𝛽 − 𝑣𝑣𝜕𝜕 cos 𝛾𝛾) 𝑑𝑑𝑆𝑆. 

The line n whose direction is determined by the vector (cosα,cosβ,-
cosγ) is called conormal. Formula (2) then becomes: 

∭ �𝑣𝑣𝑆𝑆(𝑢𝑢)− 𝑢𝑢𝑆𝑆(𝑣𝑣)�𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 = ∬ (𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝑆𝑆 − 𝑢𝑢 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)𝑑𝑑𝑆𝑆,−

𝑉𝑉      (3) 

where 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the marked derivative of the function u in the direction n . 

Now let's move on to solving the problem. Let's construct a circular 
cone K with the vertex at a point P(𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1), so that the axis of the 
cone is parallel to the z axis and so that the angle at the vertex P is 
right. For area V we will take that part of the space that is bounded by 
the cone K and the surface S. 

Let the function v be defined by: 

v(x,y,z)=log 𝜕𝜕1−𝜕𝜕+�(𝜕𝜕1−𝜕𝜕)2−(𝜕𝜕1−𝜕𝜕)2−(𝜕𝜕1−𝜕𝜕)2

�(𝜕𝜕1−𝜕𝜕)2+(𝜕𝜕1−𝜕𝜕)2
. 

Obviously, on the cone K, S(v)=0 and v=0. Let's assume that in the 
solution of the posed problem. Formula (3) cannot be directly applied 
to the functions u and v and the region V, because the function v is 
discontinuous along the axis of the cone K, and its derivatives are 
discontinuous on the cone K. 

Therefore, we will extract the axis of the cone using a circular cylinder 
C with a radius η, whose axis coincides with the axis of the cone K, 
and we will replace the cone K with a cone𝐾𝐾 ,, whose vertex is at the 
point P, its axis coincides with the axis of the cone K and the semi-
angle φ at vertex P is given by 𝜑𝜑 = 𝜋𝜋

4
𝜀𝜀.

Using the surfaces thus introduced, let's form the area  𝑉𝑉 , , which 
consists of that part of the area V that is inside the cone 𝐾𝐾 ,, and outside 
the cylinder C. 

The area 𝑉𝑉 ,, is limited by the part of the surface S located inside𝐾𝐾 ,in 
the mark𝑆𝑆 , , by the cylinder C and the cone  𝐾𝐾 ,,. Formula (3) can be 
changed to the functions u and v and the area 𝑉𝑉 ,, which now reads: 

∭ 𝑣𝑣𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 = ∬ �𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑢𝑢 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑆𝑆 + ∬ �𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−−

𝐾𝐾,
−
𝐾𝐾,

−
𝑉𝑉,

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑆𝑆 + ∬ �𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑢𝑢 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑆𝑆,−

𝐶𝐶    (4) 

because S(v) = 0, S(u) = f(x,y,z). 

At an arbitrary point of the cone 𝐾𝐾 ,at the distance l from the vertex P, 

the function values v and  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 are given with:

𝑣𝑣 = log �𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 + �𝑐𝑐𝑐𝑐𝑐𝑐2𝜑𝜑 − 1� ,
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = −

1
𝑙𝑙
�𝑐𝑐𝑐𝑐𝑐𝑐2𝜑𝜑
𝑐𝑐𝑠𝑠𝜕𝜕𝜑𝜑 . 

Therefore when𝜀𝜀 → 0, i.e., when𝜑𝜑 → 𝜋𝜋
4
,  we have that it is: 

lim
𝜀𝜀→0

𝑣𝑣 = lim
𝜀𝜀→0

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = 0. 

Now it is: 

lim
𝜀𝜀→0

��𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 − 𝑢𝑢

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑆𝑆 = 0.

−

𝐾𝐾,

 

We cannot calculate the integral over the cylinder C, because we do 

not know the values of the functions u and  𝜕𝜕𝜕𝜕
 𝜕𝜕𝜕𝜕

  on C. However, the

limiting value of that integral can be found when  𝜂𝜂 → 0. Indeed, we 
can take the surface element of the cylinder C  dS=𝜔𝜔𝑑𝑑𝜂𝜂𝑑𝑑𝑧𝑧,  

where the angle 𝝎𝝎 varies from 0 to 2𝜋𝜋. On C we have : 

𝑣𝑣 = log(𝑧𝑧1 − 𝑧𝑧) + �(𝑧𝑧1 − 𝑧𝑧)2 − 𝜂𝜂2- log 𝜂𝜂, 

and 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
𝜂𝜂

+ 𝜂𝜂
�(𝜕𝜕1−𝜕𝜕)2−𝜂𝜂2(𝜕𝜕1−𝜕𝜕+�(𝜕𝜕1−𝜕𝜕)2−𝜂𝜂2)

. 

Therefore, it is valid 

lim
𝜂𝜂→0

𝜂𝜂𝑣𝑣 = 0, lim
𝜂𝜂→0

𝜂𝜂
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = 1, 

and that's why 

lim
𝜂𝜂→0

��𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕 − 𝑢𝑢

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑆𝑆 = −2𝜋𝜋 � 𝑢𝑢(𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1)𝑑𝑑𝑧𝑧,

𝜕𝜕1

𝜕𝜕0

−

𝐶𝐶

 

where𝑧𝑧0 is the point where the axis of the cylinder penetrates the 
surface S. 

Since it is: 

lim
𝜀𝜀→0
𝜂𝜂→0

�𝑣𝑣𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 = �𝑣𝑣𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧,
−

𝑉𝑉

−

𝑉𝑉 ,

 

taking into account (4) and that 𝜀𝜀 → 0 i 𝜂𝜂 → 0 we get: 

�𝑣𝑣𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 =
−

𝑉𝑉

�(𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

−

𝑆𝑆

− 𝑢𝑢
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕)𝑑𝑑𝑆𝑆 

−2𝜋𝜋 � 𝑢𝑢(𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1)𝑑𝑑𝑧𝑧,

𝜕𝜕1

𝜕𝜕0
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from which, after differentiation, it follows: 

𝑢𝑢(𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) = − 1
2𝜋𝜋

𝜕𝜕
𝜕𝜕𝜕𝜕

(∭ 𝑣𝑣𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧 −−
𝑉𝑉 ∬ (𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−
𝑆𝑆 − 𝑢𝑢 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)𝑑𝑑𝑆𝑆).    
   (5)  

As the function v is known, the function f is given, and the value of u 

and 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 on the surface Sgiven formula (5), gives the value of the 

function u at an arbitrary point (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1), which solved the problem 
[1].

The method for solving the Cauchy problem for hyperbolic equations 
with two variables originates from B. Riemann. Although Riemann 
gave it for some special cases, it is in fact directly extended to the 
most general hyperbolic linear equations with two variables V. 
Voltaire extended the Riemann method, but only for the equation 

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

= 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧). 

Before Voltaire's works, G. Kirchhof solved the same problem for an 
equation with four variables 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2 +

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2 −

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑐𝑐2 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑐𝑐), 

and then O. Tedone gave a solution to the Cauchy problem for n 
variables 

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥12

+ ⋯+
𝜕𝜕2𝑢𝑢

𝜕𝜕𝑥𝑥𝜕𝜕−12
−
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥𝜕𝜕2

= 0. 

All the mentioned extensions of the Riemann method refer to special 
equations of the hyperbolic type with more variables. However, J. 
Hadamard solved the Cauchy problem for an arbitrary hyperbolic 
equation with n variables [2-9]. 

Gursat's method 

As is known, a hyperbolic equation can be represented using certain 
transformations in the form: 

𝑢𝑢𝜕𝜕𝜕𝜕 = 𝑎𝑎(𝑥𝑥,𝑦𝑦)𝑢𝑢𝜕𝜕 + 𝑏𝑏(𝑥𝑥,𝑦𝑦)𝑢𝑢𝜕𝜕 + 𝑐𝑐(𝑥𝑥,𝑦𝑦)𝑢𝑢 + 𝑓𝑓(𝑥𝑥, 𝑦𝑦). (1) 

Solution of equation (1) in the domain 

{(x,y): 0≤ 𝑥𝑥 ≤ 𝐿𝐿, 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿} 

zadovoljava uslove: 

u(x,0)=A(x), u(0,y)=B(y),    (2) 

where A and B are given functions such that A(0)=B(0), is called 
Gursta's solution, while problem (1,2), itself is called Gursta's 
problem [10-15]. 

In the case that a=b=c=0, the solution to problem (1,2) can be 
determined in the final form. Really from 𝑢𝑢𝜕𝜕𝜕𝜕 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) , after 
integration by x we get: 

𝑢𝑢𝜕𝜕 = 𝑢𝑢𝜕𝜕(0,𝑦𝑦) + ∫ 𝑓𝑓(𝜉𝜉, 𝑦𝑦)𝑑𝑑𝜉𝜉,𝜕𝜕
0  (3) 

and integrating (3), over y we have 

𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝑢𝑢(𝑥𝑥, 0) + 𝑢𝑢(0,𝑦𝑦) − 𝑢𝑢(0,0) + �𝑑𝑑𝜂𝜂�𝑓𝑓(𝜉𝜉, 𝜂𝜂)𝑑𝑑𝜉𝜉.
𝜕𝜕

0

𝜕𝜕

0

 

i.e.,

𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝐴𝐴(𝑥𝑥) + 𝐵𝐵(𝑦𝑦)− 𝐴𝐴(0) + �𝑑𝑑𝜂𝜂�𝑓𝑓(𝜉𝜉, 𝜂𝜂)𝑑𝑑𝜉𝜉.
𝜕𝜕

0

𝜕𝜕

0

 

Let us now consider the general equation (1). We can replace 
problem (1,2) with the following equivalent problem. Let's solve the 
integro-differential equation: 

𝑢𝑢(𝑥𝑥,𝑦𝑦) = ∫ ∫ (𝑎𝑎(𝜕𝜕
0

𝜕𝜕
0  𝜉𝜉, 𝜂𝜂)𝑢𝑢𝜉𝜉 + 𝑏𝑏(𝜉𝜉, 𝜂𝜂)𝑢𝑢𝜂𝜂 +

𝑐𝑐(𝜉𝜉, 𝜂𝜂)𝑢𝑢)𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂+A(x)+B(y)-A(0)+∫ ∫ 𝑓𝑓(𝜕𝜕
0

𝜕𝜕
0  𝜉𝜉, 𝜂𝜂) 𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂. (4) 

We will apply the method of successive approximations to equation 
(4). To that end, let's define a series of functions  (𝑢𝑢𝜕𝜕) using: 

𝑢𝑢1(𝑥𝑥,𝑦𝑦) = A(x) + B(y) − A(0) + ��𝑓𝑓(
𝜕𝜕

0

𝜕𝜕

0

 𝜉𝜉, 𝜂𝜂) 𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂, 

𝑢𝑢𝜕𝜕(𝑥𝑥,𝑦𝑦) = 𝑢𝑢1(𝑥𝑥,𝑦𝑦) + ∫ ∫ (𝑎𝑎(𝜕𝜕
0

𝜕𝜕
0  𝜉𝜉, 𝜂𝜂) 𝜕𝜕𝜕𝜕𝑛𝑛−1

𝜕𝜕𝜕𝜕
+ 𝑏𝑏(𝜉𝜉, 𝜂𝜂) 𝜕𝜕𝜕𝜕𝑛𝑛−1

𝜕𝜕𝜕𝜕
+

𝑐𝑐(𝜉𝜉, 𝜂𝜂)𝑢𝑢𝜕𝜕−1) 𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂,     (5) 

where  n= 2,3,... Then it is 

𝜕𝜕𝑢𝑢𝜕𝜕
𝜕𝜕𝑥𝑥 =

𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥 + �(𝑎𝑎(

𝜕𝜕

0

𝑥𝑥, 𝜂𝜂) 
𝜕𝜕𝑢𝑢𝜕𝜕−1
𝜕𝜕𝑥𝑥 + 𝑏𝑏(𝑥𝑥, 𝜂𝜂)

𝜕𝜕𝑢𝑢𝜕𝜕−1
𝜕𝜕𝑥𝑥 + 𝑐𝑐(𝑥𝑥, 𝜂𝜂)𝑢𝑢𝜕𝜕−1)𝑑𝑑𝜂𝜂. 

𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

+ ∫ (𝑎𝑎(𝜕𝜕
0 𝜉𝜉, 𝑦𝑦) 𝜕𝜕𝜕𝜕𝑛𝑛−1

𝜕𝜕𝜕𝜕
+ 𝑏𝑏(𝜉𝜉,𝑦𝑦) 𝜕𝜕𝜕𝜕𝑛𝑛−1

𝜕𝜕𝜕𝜕
+ 𝑐𝑐(𝜉𝜉, 𝑦𝑦)𝑢𝑢𝜕𝜕−1)𝑑𝑑𝜉𝜉

(6) 

Let us prove that they are functional sequences ( 𝑢𝑢𝜕𝜕 ), 

(
𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

),  (𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

) uniformly convergent. As the functions a,b,c are

continuous, there exists a constant M such that 

|𝑎𝑎(𝑥𝑥,𝑦𝑦)| < 𝑀𝑀, |𝑏𝑏(𝑥𝑥,𝑦𝑦)| < 𝑀𝑀, |𝑐𝑐(𝑥𝑥, 𝑦𝑦)| < 𝑀𝑀 

There is also a constant H such that 

|𝑢𝑢1(𝑥𝑥,𝑦𝑦)| < 𝐻𝐻, �𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕
� < 𝐻𝐻, �𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
� < 𝐻𝐻. 

Let the above inequalities hold for 0≤ 𝑥𝑥 ≤ 𝑁𝑁, 0≤ 𝑦𝑦 ≤ 𝑁𝑁. Let it be 
(𝑧𝑧𝜕𝜕) defined by: 

(𝑧𝑧𝜕𝜕(𝑥𝑥,𝑦𝑦) = 𝑢𝑢𝜕𝜕+1(𝑥𝑥,𝑦𝑦) − 𝑢𝑢𝜕𝜕(𝑥𝑥,𝑦𝑦)

= ∫ ∫ (𝑎𝑎(𝜕𝜕
0

𝜕𝜕
0  𝜉𝜉, 𝜂𝜂) 𝜕𝜕𝜕𝜕𝑛𝑛−1

𝜕𝜕 𝜕𝜕
+ 𝑏𝑏(𝜉𝜉, 𝜂𝜂) 𝜕𝜕𝜕𝜕𝑛𝑛−1

𝜕𝜕 𝜕𝜕
+ 𝑐𝑐 (𝜉𝜉, 𝜂𝜂)𝑧𝑧𝜕𝜕−1(𝜉𝜉, 𝜂𝜂))𝑑𝑑 𝜉𝜉𝑑𝑑𝜂𝜂. 

We can directly verify that it is: 
𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

= ∫ (𝜕𝜕0 a(𝑥𝑥, 𝜂𝜂) 𝜕𝜕𝜕𝜕𝑛𝑛−1
𝜕𝜕 𝜕𝜕

+ 𝑏𝑏(𝑥𝑥, 𝜂𝜂) 𝜕𝜕𝜕𝜕𝑛𝑛−1
𝜕𝜕 𝜕𝜕

+ 𝑐𝑐 (𝑥𝑥, 𝜂𝜂)𝑧𝑧𝜕𝜕−1(𝑥𝑥, 𝜂𝜂))𝑑𝑑𝜂𝜂, 

𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

= ∫ (𝜕𝜕0 a 𝜉𝜉,𝑦𝑦) 𝜕𝜕𝜕𝜕𝑛𝑛−1
𝜕𝜕 𝜕𝜕

+ 𝑏𝑏( 𝜉𝜉,𝑦𝑦) 𝜕𝜕𝜕𝜕𝑛𝑛−1
𝜕𝜕 𝜕𝜕

+ 𝑐𝑐 ( 𝜉𝜉, 𝑦𝑦)𝑧𝑧𝜕𝜕−1( 𝜉𝜉,𝑦𝑦))𝑑𝑑 𝜉𝜉
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From these equalities, it follows: 

|𝑧𝑧1(𝑥𝑥, 𝑦𝑦)| < 3𝐻𝐻𝑀𝑀𝑥𝑥𝑦𝑦 <3HM
(𝜕𝜕+𝜕𝜕)2

2!
, 

�
𝜕𝜕𝑧𝑧1
𝜕𝜕𝑥𝑥 � < 3𝐻𝐻𝑀𝑀𝑦𝑦 < 3𝐻𝐻𝑀𝑀(𝑥𝑥 + 𝑦𝑦), 

�
𝜕𝜕𝑧𝑧1
𝜕𝜕𝑦𝑦 � < 3𝐻𝐻𝑀𝑀𝑥𝑥 < 3𝐻𝐻𝑀𝑀(𝑥𝑥 + 𝑦𝑦), 

considering that it is 0 ≤ 𝑥𝑥 ≤ 𝑁𝑁, 0 ≤ 𝑦𝑦 ≤ 𝑁𝑁. Suppose that the 
inequalities hold for some n 

|𝑧𝑧𝜕𝜕(𝑥𝑥, 𝑦𝑦)| < 3𝐻𝐻𝑀𝑀𝜕𝜕𝐾𝐾𝜕𝜕−1 (𝑥𝑥 + 𝑦𝑦)𝜕𝜕+1

(𝜕𝜕 + 1)!

�
𝜕𝜕𝑧𝑧𝜕𝜕
𝜕𝜕𝑥𝑥 � < 3𝐻𝐻𝑀𝑀𝜕𝜕𝐾𝐾𝜕𝜕−1 (𝑥𝑥 + 𝑦𝑦)𝜕𝜕

𝜕𝜕!

�𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕
� < 3𝐻𝐻𝑀𝑀𝜕𝜕𝐾𝐾𝜕𝜕−1 (𝜕𝜕+𝜕𝜕)𝑛𝑛

𝜕𝜕!
, 

where K=N+2≥ 2. For n+1 we have that it is: 

|𝑧𝑧𝜕𝜕+1| < 3𝐻𝐻𝑀𝑀𝜕𝜕+1𝐾𝐾𝜕𝜕−1 (𝑥𝑥 + 𝑦𝑦)𝜕𝜕+2

(𝜕𝜕 + 2)!
�
𝑥𝑥 + 𝑦𝑦
𝜕𝜕 + 3 + 2�

< 3𝐻𝐻𝑀𝑀𝜕𝜕+1𝐾𝐾𝜕𝜕 (𝑥𝑥 + 𝑦𝑦)𝜕𝜕+2

(𝜕𝜕 + 2)!

<
3𝐻𝐻
𝐾𝐾2𝑀𝑀

(2𝐾𝐾𝑁𝑁𝑀𝑀)𝜕𝜕+1

(𝜕𝜕 + 1)! , 1 

�
𝜕𝜕𝑧𝑧𝜕𝜕+1
𝜕𝜕𝑥𝑥 � < 3𝐻𝐻𝑀𝑀𝜕𝜕+1𝐾𝐾𝜕𝜕−1 (𝑥𝑥 + 𝑦𝑦)𝜕𝜕+1

(𝜕𝜕 + 1)!
�
𝑥𝑥 + 𝑦𝑦
𝜕𝜕 + 3 + 2�

3𝐻𝐻𝑀𝑀𝜕𝜕+1𝐾𝐾𝜕𝜕 (𝑥𝑥 + 𝑦𝑦)𝜕𝜕+1

(𝜕𝜕 + 1)! <
3𝐻𝐻
𝐾𝐾

(2𝐾𝐾𝑁𝑁𝑀𝑀)𝜕𝜕+1

(𝜕𝜕 + 1)! . 

On the right-hand side of the above inequalities, the development 
terms appear (with accuracy up to one multiplicative 
constant). 𝑒𝑒2𝐾𝐾𝐾𝐾𝐾𝐾. The proven inequalities show that the sequences 

(𝑢𝑢𝜕𝜕), (
𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

), (𝜕𝜕𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

) 

in the given area converge uniformly to the functions, which we will 
denote by:  

𝑢𝑢(𝑥𝑥,𝑦𝑦) = lim
𝜕𝜕→∞

𝑢𝑢𝜕𝜕(𝑥𝑥,𝑦𝑦),

𝑣𝑣(𝑥𝑥,𝑦𝑦) = lim
𝜕𝜕→∞

𝜕𝜕𝑢𝑢𝜕𝜕
𝜕𝜕𝑥𝑥 , 𝑤𝑤(𝑥𝑥,𝑦𝑦) = lim

𝜕𝜕→∞

𝜕𝜕𝑢𝑢𝜕𝜕
𝜕𝜕𝑦𝑦 . 

If we assume that in (5) and (6) 𝜕𝜕 → ∞, we have that it is: 

𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝑢𝑢1(𝑥𝑥,𝑦𝑦) + ��(𝑎𝑎(
𝜕𝜕

0

𝜕𝜕

0

 𝜉𝜉, 𝜂𝜂) 𝑣𝑣 + 𝑏𝑏(𝜉𝜉, 𝜂𝜂) 𝑤𝑤

+ 𝑐𝑐 (𝜉𝜉, 𝜂𝜂)𝑢𝑢)𝑑𝑑 𝜉𝜉𝑑𝑑𝜂𝜂, 

𝑣𝑣(𝑥𝑥,𝑦𝑦) =  𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

+ ∫ (𝜕𝜕0 a(𝑥𝑥, 𝜂𝜂) 𝑣𝑣 + 𝑏𝑏(𝑥𝑥, 𝜂𝜂) 𝑤𝑤 + 𝑐𝑐 (𝑥𝑥, 𝜂𝜂)𝑢𝑢)𝑑𝑑𝜂𝜂, 

w(𝑥𝑥,𝑦𝑦) =  𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

+ ∫ (𝜕𝜕0 a( 𝜉𝜉, 𝑦𝑦) 𝑣𝑣 + 𝑏𝑏( 𝜉𝜉, 𝑦𝑦) 𝑤𝑤 + 𝑐𝑐 ( 𝜉𝜉,𝑦𝑦)𝑢𝑢)𝑑𝑑 𝜉𝜉     (7) 

From (7) we get v=𝑢𝑢𝜕𝜕 ,  w=𝑢𝑢𝜕𝜕 , from which we conclude that the 
required function u satisfies the integro-differential equation: 

𝑢𝑢(𝑥𝑥,𝑦𝑦) = 𝐴𝐴(𝑥𝑥) + 𝐵𝐵(𝑦𝑦)− 𝐴𝐴(0) + ��𝑓𝑓(𝜉𝜉, 𝜂𝜂)𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂 +
𝜕𝜕

𝜕𝜕

𝜕𝜕

0

 

∫ ∫ (𝑎𝑎(𝜉𝜉, 𝜂𝜂)𝑢𝑢𝜉𝜉 + 𝑏𝑏(𝜉𝜉, 𝜂𝜂)𝑢𝑢𝜂𝜂 + 𝑐𝑐(𝜉𝜉, 𝜂𝜂)𝑢𝑢)𝜕𝜕
𝜕𝜕

𝜕𝜕
0  𝑑𝑑 𝜉𝜉𝑑𝑑𝜂𝜂.      (8) 

That every solution of equation (8) satisfies (1) and (2) is verified 
directly by differentiation [16-19]. 

Let us now prove that the posed Gursta problem has a unique 
solution. Let there be two identical solutions by contrast  

(x,y)→ 𝑈𝑈𝑖𝑖(𝑥𝑥, 𝑦𝑦), 𝑠𝑠 = 1,2, 

of the task set. Let's observe the function: 

(x,y)→ 𝑈𝑈(𝑥𝑥,𝑦𝑦) = 𝑈𝑈1(𝑥𝑥,𝑦𝑦) − 𝑈𝑈2(𝑥𝑥,𝑦𝑦).

This function satisfies the integro-differential equation: 

𝑈𝑈(𝑥𝑥, 𝑦𝑦) = ���𝑎𝑎𝑈𝑈𝜕𝜕 + 𝑏𝑏𝑈𝑈𝜕𝜕 + 𝑐𝑐𝑈𝑈�𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂.
𝜕𝜕

0

𝜕𝜕

0

 

This equation is homogeneous. Let Q>0 be such a constant that 

|𝑈𝑈(𝑥𝑥,𝑦𝑦)| < 𝑄𝑄, |𝑈𝑈𝜕𝜕(𝑥𝑥, 𝑦𝑦)| < 𝑄𝑄, �𝑈𝑈𝜕𝜕(𝑥𝑥,𝑦𝑦)� < 𝑄𝑄 

for 0 ≤ 𝑥𝑥 ≤ 𝑁𝑁, 0 ≤ 𝑦𝑦 ≤ 𝑁𝑁. Based on the rating we performed for the 
series(𝑧𝑧𝜕𝜕), we have: 

|𝑈𝑈(𝑥𝑥,𝑦𝑦)| < 3𝑄𝑄𝑀𝑀𝜕𝜕+1𝐾𝐾𝜕𝜕 (𝜕𝜕+𝜕𝜕)𝑛𝑛+2

(𝜕𝜕+2)!
< 3𝑄𝑄

𝐾𝐾2𝐾𝐾
(2𝐾𝐾𝐾𝐾𝐾𝐾)𝑛𝑛+2

(𝜕𝜕+2)!
, 

for each n . From there it follows against the assumption: 

U(x,y)=0,i.e.,𝑈𝑈1(𝑥𝑥, 𝑦𝑦) = (𝑥𝑥, 𝑦𝑦). 

The established contraindication proves the uniqueness of Gurst's 
solution to this problem. 

Case of a 3-dimensional environment 

Now let's pose the following problem: 

Determine the solution of the partial equation- 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘2(𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

) (x,y,z∈ 𝑅𝑅, 𝑐𝑐 > 0),  (1) 

which satisfies the initial condition 

U(x,y,z,0)=f(x,y,z) (x,y,z ∈ 𝑅𝑅 ) 
(2) 

where f is the given function. 

Let us now look for the solution of equation (1) in the form: 

𝑈𝑈 = 𝑒𝑒−𝑟𝑟𝜕𝜕 cos𝑎𝑎(𝑥𝑥 − 𝛼𝛼) cos𝑏𝑏(𝑦𝑦 − 𝛽𝛽) cos c(𝑧𝑧 − 𝛾𝛾) .  (3) 

From (3) we get: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑟𝑟𝑈𝑈, 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

= −𝑎𝑎2𝑈𝑈, 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

= −𝑏𝑏2𝑈𝑈, 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

= −𝑐𝑐2𝑈𝑈,  (4) 

and substituting values (4) into (1) we find that: 
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−𝑟𝑟 = −𝑘𝑘2(𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2).

Thus, the solution of equation (1) of the form (3) is: 

𝑈𝑈 = 𝑒𝑒−𝑘𝑘2�𝑎𝑎2+𝑏𝑏2+𝑐𝑐2�𝜕𝜕 cos 𝑎𝑎(𝑥𝑥 − 𝛼𝛼) cos𝑏𝑏(𝑦𝑦 − 𝛽𝛽) cos 𝑐𝑐(𝑧𝑧 − 𝛾𝛾, )

so it is based on the principle of linear superposition, 

𝑈𝑈 = � � � � � � 𝐹𝐹(𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝛼𝛼,𝛽𝛽, 𝛾𝛾)
∞

0

∞

0

∞

0

∞

0

∞

0

∞

0

𝑒𝑒−𝑘𝑘2�𝑎𝑎2+𝑏𝑏2+𝑐𝑐2�𝜕𝜕

× 𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎(𝑥𝑥
− 𝛼𝛼) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏(𝑦𝑦
− 𝛽𝛽) 𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐(𝑧𝑧 − 𝛾𝛾)𝑑𝑑𝑎𝑎𝑑𝑑𝑏𝑏𝑑𝑑𝑐𝑐𝑑𝑑𝛼𝛼𝑑𝑑𝛽𝛽𝑑𝑑𝛾𝛾 

also the solution of equation (1), where F is an arbitrary function with 
6 variables. 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑐𝑐) =
1

𝜋𝜋
3
2
� � � 𝑓𝑓�𝑥𝑥 + 2𝑘𝑘𝜉𝜉√𝑐𝑐,𝑦𝑦 + 2𝑘𝑘𝜂𝜂√𝑐𝑐, 𝑧𝑧

∞

0

∞

0

∞

0

+ 2𝑘𝑘𝑘𝑘√𝑐𝑐�𝑒𝑒−�𝜕𝜕
2+𝜂𝜂2+𝜍𝜍2�𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂𝑑𝑑𝑘𝑘. 2

Numerical solution of partial differential equation of 3-dimensional 
environment: 

For the numerical solution of the partial differential equation of heat 
in three dimensions, we used the finite difference method. This 
method includes the discretization of space and time and the iterative 
calculation of the value of the function U(x,y,z,t) on a grid of points. 
The key steps are as follows: 

1. Discretization of space and time: The spatial domains x,y,z 
are divided into small steps dx,dy,dz, and the time domain
into small steps dt. 

2. Initial condition: We have defined the initial distribution
of the function U in space as f(x,y,z). 

3. Boundary conditions: We applied Dirichlet boundary
conditions, setting the values of the function U at the
edges of the grid to zero.

4. Iteration through time: We used an explicit finite
difference method to update the value of the function U at
each time step. This involves computing new values of U
based on the current values and their spatially adjacent
points (Figure 1). 

Figure 1) Numerical so lution o f the equation at t=1 

Using this method, we obtain a numerical solution of the partial 
differential equation of heat in three-dimensional space for each time 
step 𝑐𝑐t. This solution represents the evolution of temperature (or 
some other distributed quantity) in space and time, which can be 
useful for simulations of thermal processes, diffusion of substances or 
other phenomena described by similar equations. 

Green's formula 

Theorem 1: Let s be a closed surface bounding part of the space V. 
Let the functions P,Q be the functions of the variables x,y,z. Then it 
is: 

∭ (𝑃𝑃∆𝑄𝑄 − 𝑄𝑄∆𝑃𝑃)𝑑𝑑𝑉𝑉 = ∬ (𝑃𝑃 𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑 𝑄𝑄 − 𝑄𝑄 𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑𝑃𝑃)𝑑𝑑𝑆𝑆����⃗−
𝑆𝑆

−
𝑉𝑉    (1) 

where 𝑑𝑑𝑆𝑆����⃗  is the oriented element of the surface S.

Proof: Let's start from Ostrogradski's formula: 

∭ 𝑑𝑑𝑠𝑠𝑣𝑣−
𝑉𝑉 �⃗�𝑎 𝑑𝑑𝑉𝑉 = ∬ �⃗�𝑎𝑑𝑑𝑆𝑆����⃗−

𝑆𝑆 , and let's say it is�⃗�𝑎 = 𝑃𝑃 𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑𝑄𝑄. 

Because it is 

div �⃗�𝑎= div(P gradQ)-P divgradQ+gradQgradP = 𝑃𝑃∆𝑄𝑄+gradQgradP   (*) 

we have that it is: 

∭ (𝑃𝑃∆𝑄𝑄 + 𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑𝑄𝑄𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑𝑃𝑃)𝑑𝑑𝑉𝑉 =−
𝑉𝑉 ∬ (𝑃𝑃 𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑 𝑄𝑄)𝑑𝑑𝑆𝑆����⃗−

𝑆𝑆    (2) 

The permutation of the functions P and Q leads to the formula: 

∭ (𝑃𝑃∆𝑄𝑄 + 𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑𝑄𝑄𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑𝑃𝑃)𝑑𝑑𝑉𝑉 =−
𝑉𝑉 ∬ (𝑄𝑄 𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑 𝑃𝑃)𝑑𝑑𝑆𝑆����⃗−

𝑆𝑆    (3) 

Subtracting (3) from (2), we get formula 1, which completes the proof 
(Figure 2). 

Let's say it is 

𝑑𝑑𝑆𝑆����⃗ = 𝑑𝑑𝑆𝑆𝑒𝑒𝑠𝑠 𝜕𝜕𝑎𝑎
𝜕𝜕𝜕𝜕

= 𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑𝑎𝑎𝑒𝑒, where 𝑒𝑒 − unit vector normal to the 

surface S directed outwards, formula (1) takes the form: 

� (𝑃𝑃∆𝑄𝑄 − 𝑄𝑄∆𝑃𝑃)𝑑𝑑𝑉𝑉
−

𝑉𝑉

= � (𝑃𝑃𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑𝑄𝑄 − 𝑄𝑄𝑐𝑐𝑟𝑟𝑎𝑎𝑑𝑑𝑃𝑃)𝑒𝑒𝑑𝑑𝑆𝑆����⃗
−

𝑆𝑆

= � �𝑃𝑃
𝜕𝜕𝑄𝑄
𝜕𝜕𝜕𝜕 − 𝑄𝑄

𝜕𝜕𝑃𝑃
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑆𝑆����⃗ .

−

𝑆𝑆

3

Figure 2) Application of Green's fo rmula fo r the numerical so lution 
o f a three-d imensional problem
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In this example of solving a three-dimensional thermal equation, the 
finite difference method was used for the numerical discretization of 
space and time. Parameters include space dimensions, number of 
steps, step sizes, thermal diffusivity, time step, and total simulation 
time. The initial condition is defined by a sinusoidal function, and 
the boundary conditions are set to zero. 

The image shown represents the distribution of temperature in three-
dimensional space on the middle slice of the z-axis, visualizing how 
the temperature changes in relation to the x and y coordinates at a 
selected moment in time. With the finite difference method, we used 
Green's formula to solve the three-dimensional thermal equation. 
Green's formula allows us to calculate the volume integral V using the 
surface integral 𝑆𝑆S, which is useful for numerically solving differential 
equations over a limited domain. 

Using Green's formula, we calculate the integral on the left-hand side 
as the difference between two expressions: 𝑃𝑃P multiplied by the 
Laplace operator applied to Q, and vice versa. The right side of the 
integral represents the surface integral, which can be interpreted as 
the flux of the vector field over the surface S. 

This approach allows us to numerically solve the three-dimensional 
heat equation using Green's formula, which gives us an additional 
perspective and tool for solving these types of problems.. 

Green's function 

Inspired by the case of the sphere, we arrive at the following: 

Let us assume that we know the function H, the variables x,y,z,a,b,c, 
where A=(a,b,c) is a fixed point of the domain v, and that the 
function H has the following properties:  

1. H is the harmonic function in relation to x,y,z. 

2. H is a harmonic function in relation to a,b,c.

3. On the surface S, H takes the value 1/r, where r is the
distance between points M and a, i.e.

𝑟𝑟 = �(𝑥𝑥 − 𝑎𝑎)2 + (𝑦𝑦 − 𝑏𝑏)2 + (𝑧𝑧 − 𝑐𝑐)2. 

Let U be the solution to Dirichlet's interior problem. Based on 
theorem 1 from 8.1. we have it: 

� (𝑈𝑈
𝜕𝜕𝐻𝐻
𝜕𝜕𝜕𝜕 − 𝐻𝐻

𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

−

𝑆𝑆
)𝑑𝑑𝑆𝑆 = 0, 

Or considering the third feature in this chapter we have: 

∬ (𝑓𝑓−
𝑆𝑆

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 1

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)𝑑𝑑𝑆𝑆 = 0.  (1) 

Comparing (1) with (3) from 8.3. we find that it is: 

𝑈𝑈(𝑎𝑎,𝑏𝑏, 𝑐𝑐) = 1
4𝜋𝜋∬ 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝜕𝜕

𝜕𝜕𝜕𝜕
�1
𝑟𝑟
− 𝐻𝐻�𝑑𝑑𝑆𝑆.−

𝑆𝑆    (2) 

Therefore, formula (2) is the solution to the Dirichlet problem, if the 
function H is known. The function G, defined by:  

G=
1
𝑟𝑟
− 𝐻𝐻  (3)

is called Green's function for the region V bounded by the surface S 
in relation to the point (a,b,c). Based on (3) and the properties of the 
function h, we conclude that: 

1. The function G is a harmonic function in the region V in
relation to x,y,z, except at the point (a,b,c).

2. The function G is harmonic in the region V in relation to
a,b,c, except at the point (x,y,z).

3. The function G-1/r is harmonic in all points of the region
V.

4. On the surface S the function G cancels.

This representation simulates the numerical solution of a three-
dimensional heat equation using the Green's function as an initial 
condition and a finite difference method to solve the equation. 
Boundary conditions and other parameters need to be adjusted 
according to your needs and problem specifications (Figure 3). 

Figure 3) Numerical so lution o f the three-dimensional heat equation 
using Green's function 

The figure shows the numerical solution of the three-dimensional 
heat equation by applying numerical methods, especially by using 
Green's function in MATLAB. The Green's function is used to set 
initial conditions within the domain, where the domain is assumed to 
be defined in a three-dimensional space with dimensions 1 × 1 × 1. 

The figure shows the result of solving the thermal equation in the 
form of a three-dimensional section through the center of the 
domain. The color shows the temperature distribution within the 
domain, with heat spreading and being distributed across space over 
time. 

This approach enables the numerical solution of complex thermal 
problems in three-dimensional space using MATLAB and Green's 
function as the basic tool for setting the initial conditions. 

CONCLUSION 

The research of numerical methods for hyperbolic-parabolic systems 
in 3-dimensional spaces provides a deeper understanding of complex 
mathematical models and their applications in various scientific and 
engineering disciplines. Through the analysis of the Volter-Gursat 
equation and the application of the Green's function, researchers are 
able to study the behavior of the system in real spatial domains, using 
numerical simulations to solve differential equations.  
This research enables the development of efficient algorithms for 
predicting the behavior of materials, simulating fluid dynamics or 
modeling electromagnetic fields, taking into account complex 
conditions and initial parameters. Through the integration of 
different disciplines and the application of parallel computing, 
researchers can improve the accuracy and speed of numerical 
simulations, opening up new areas of research and application in 
various scientific and engineering fields. 

After a detailed analysis of the theoretical foundations and the 
application of numerical methods, we observed that Green's 
functions are crucial for setting the initial conditions within the 
domain. By combining these functions with the appropriate 
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differential operators, we successfully modeled the dynamics of the 
system and followed the evolution of the solution over time. 

These investigations not only contribute to the understanding of 
fundamental processes such as heat propagation, but also provide 
useful tools for solving a wide range of problems in scientific and 
engineering disciplines. Through the application of numerical 
methods to complex mathematical models, we open the door to new 
knowledge and opportunities for further research. 
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	Let α,β,γ be the angles of the external normal to the surface S and the positive directions of the coordinate axes. Then it is:
	,𝑆-−-,𝑣,𝑢-𝑥.−𝑢,𝑣-𝑥..𝑑𝑦𝑑𝑧+.,𝑣,𝑢-𝑦.−𝑢,𝑣-𝑦..𝑑𝑧𝑑𝑥−,𝑣,𝑢-𝑧.−𝑢,𝑣-𝑧..𝑑𝑥𝑑𝑦
	=,𝑆-−-𝑣(.,𝑢-𝑥.,cos-𝛼.+,𝑢-𝑦.,cos-𝛽.−,𝑢-𝑧.,cos-𝛾) 𝑑𝑆.
	= ,𝑆-−-𝑢(.,𝑣-𝑥.,cos-𝛼.+,𝑣-𝑦.,cos-𝛽.−,𝑣-𝑧.,cos-𝛾) 𝑑𝑆..
	The line n whose direction is determined by the vector (cosα,cosβ,-cosγ) is called conormal. Formula (2) then becomes:
	where ,𝜕𝑢-𝜕𝑛. is the marked derivative of the function u in the direction n. Now let's move on to solving the problem. Let's construct a circular cone K with the vertex at a point P(,𝑥-1.,,𝑦-1.,,𝑧-1.), so that the axis of the cone is parallel t...
	Let the function v be defined by:
	v(x,y,z)=,log-,,𝑧-1.−𝑧+,,(,𝑧-1.−𝑧)-2.−,,,𝑥-1.−𝑥.-2.−,(,𝑦-1.−𝑦)-2..-,,(,𝑥-1.−𝑥)-2.+,(,𝑦-1.−𝑦)-2.....
	Obviously, on the cone K, S(v)=0 and v=0. Let's assume that in the solution of the posed problem. Formula (3) cannot be directly applied to the functions u and v and the region V, because the function v is discontinuous along the axis of the cone K, a...
	Therefore, we will extract the axis of the cone using a circular cylinder C with a radius η, whose axis coincides with the axis of the cone K, and we will replace the cone K with a cone,𝐾-,., whose vertex is at the point P, its axis coincides with th...
	Using the surfaces thus introduced, let's form the area ,𝑉-,., which consists of that part of the area V that is inside the cone, 𝐾-,., and outside the cylinder C.
	The area ,𝑉-,., is limited by the part of the surface S located inside,𝐾-,.in the mark,𝑆-,. , by the cylinder C and the cone,  𝐾-,.,. Formula (3) can be changed to the functions u and v and the area ,𝑉-,., which now reads:
	because S(v) = 0, S(u) = f(x,y,z).
	At an arbitrary point of the cone, 𝐾-,.at the distance l from the vertex P, the function values v and  ,𝜕𝑣-𝜕𝑛. are given with:
	𝑣=,log-,𝑐𝑡𝑔 𝜑+,,𝑐𝑡𝑔-2.𝜑−1..,  ,𝜕𝑣-𝜕𝑛.=−,1-𝑙.,,𝑐𝑜𝑠2𝜑.-𝑠𝑖𝑛𝜑...
	Therefore when𝜀→0, i.e., when𝜑→,𝜋-4.,  we have that it is:
	,,lim-𝜀→0.𝑣-=,,lim-𝜀→0.-,𝜕𝑣-𝜕𝑛..=0..
	Now it is:
	,lim-𝜀→0.,,𝐾-,.-−-,𝑣,𝜕𝑢-𝜕𝑛.−𝑢,𝜕𝑣-𝜕𝑛..𝑑𝑆=0..
	We cannot calculate the integral over the cylinder C, because we do not know the values of the functions u and  ,𝜕𝑢- 𝜕𝑛.  on C. However, the limiting value of that integral can be found when  𝜂→0. Indeed, we can take the surface element of the cy...
	where the angle 𝝎 varies from 0 to 2𝜋. On C we have :
	𝑣=,log-(,𝑧-1.−𝑧)+,,(,𝑧-1.−𝑧)-2.−,𝜂-2...- ,log-𝜂,.
	and
	,𝜕𝑣-𝜕𝑛.=,1-𝜂.+,𝜂-,,,,𝑧-1.−𝑧.-2.−,𝜂-2..(,𝑧-1.−𝑧+,,(,𝑧-1.−𝑧)-2.−,𝜂-2..)..
	Therefore, it is valid
	,,lim-𝜂→0.-𝜂𝑣=0, ,,lim-𝜂→0.-𝜂..,𝜕𝑣-𝜕𝑛.=1,
	and that's why
	,lim-𝜂→0.,𝐶-−-,𝑣,𝜕𝑢-𝜕𝑛.−𝑢,𝜕𝑣-𝜕𝑛..𝑑𝑆=−2𝜋,,𝑧-0.-,𝑧-1.-𝑢,,𝑥-1.,,𝑦-1.,,𝑧-1..𝑑𝑧,..
	where,𝑧-0.is the point where the axis of the cylinder penetrates the surface S.
	Since it is:
	,,lim-,𝜀→0-𝜂→0..-,,𝑉-,.-−-𝑣𝑓,𝑥,𝑦,𝑧.𝑑𝑥𝑑𝑦𝑑𝑧=,𝑉-−-𝑣𝑓,𝑥,𝑦,𝑧.𝑑𝑥𝑑𝑦𝑑𝑧,...
	taking into account (4) and that 𝜀→0 i 𝜂→0 we get:
	,𝑉-−-𝑣𝑓,𝑥,𝑦,𝑧.𝑑𝑥𝑑𝑦𝑑𝑧=.,𝑆-−-(𝑣,𝜕𝑢-𝜕𝑛..−𝑢,𝜕𝑣-𝜕𝑛.)𝑑𝑆
	−2𝜋,,𝑧-0.-,𝑧-1.-𝑢,,𝑥-1.,,𝑦-1.,,𝑧-1..𝑑𝑧,.
	from which, after differentiation, it follows:
	As the function v is known, the function f is given, and the value of u and  ,𝜕𝑢-𝜕𝑛.  on the surface Sgiven formula (5), gives the value of the function u at an arbitrary point (,𝑥-1.,,𝑦-1.,,𝑧-1.), which solved the problem [1].
	The method for solving the Cauchy problem for hyperbolic equations with two variables originates from B. Riemann. Although Riemann gave it for some special cases, it is in fact directly extended to the most general hyperbolic linear equations with two...
	,,𝜕-2.𝑢-𝜕,𝑥-2..+,,𝜕-2.𝑢-𝜕,𝑦-2..−,,𝜕-2.𝑢-𝜕,𝑧-2..=𝑓,𝑥,𝑦,𝑧..
	Before Voltaire's works, G. Kirchhof solved the same problem for an equation with four variables
	,,𝜕-2.𝑢-𝜕,𝑥-2..+,,𝜕-2.𝑢-𝜕,𝑦-2..+,,𝜕-2.𝑢-𝜕,𝑧-2..−,,𝜕-2.𝑢-𝜕,𝑡-2..=𝑓,𝑥,𝑦,𝑧,𝑡.,
	and then O. Tedone gave a solution to the Cauchy problem for n variables
	,,𝜕-2.𝑢-𝜕,,𝑥-1.-2..+…+,,𝜕-2.𝑢-𝜕,,𝑥-𝑛−1.-2..−,,𝜕-2.𝑢-𝜕,,𝑥-𝑛.-2..=0.
	As is known, a hyperbolic equation can be represented using certain transformations in the form:
	Solution of equation (1) in the domain
	{(x,y): 0≤𝑥≤𝐿,0≤𝑦≤𝐿}
	zadovoljava uslove:
	u(x,0)=A(x), u(0,y)=B(y),       (2)
	where A and B are given functions such that A(0)=B(0), is called Gursta's solution, while problem (1,2), itself is called Gursta's problem [10-15].
	In the case that a=b=c=0, the solution to problem (1,2) can be determined in the final form. Really from,𝑢-𝑥𝑦.=𝑓(𝑥,𝑦), after integration by x we get:
	Let us now consider the general equation (1). We can replace problem (1,2) with the following equivalent problem. Let's solve the integro-differential equation:
	We will apply the method of successive approximations to equation (4). To that end, let's define a series of functions  (,𝑢-𝑛.) using:
	where  n= 2,3,... Then it is
	Let us prove that they are functional sequences (,𝑢-𝑛.), (,𝜕,𝑢-𝑛.-𝜕𝑥.), (,𝜕,𝑢-𝑛.-𝜕𝑦.)uniformly convergent. As the functions a,b,c are continuous, there exists a constant M such that
	,𝑎(𝑥,𝑦).<𝑀,,𝑏(𝑥,𝑦).<𝑀,,𝑐(𝑥,𝑦).<𝑀
	There is also a constant H such that
	,,𝑢-1.(𝑥,𝑦).<𝐻, ,,,𝜕𝑢-1.-𝜕𝑥..<𝐻,,,,𝜕𝑢-1.-𝜕𝑦..<𝐻.
	Let the above inequalities hold for 0≤𝑥≤𝑁, 0≤𝑦≤𝑁. Let it be (,𝑧-𝑛.) defined by:
	We can directly verify that it is:
	From these equalities, it follows:
	considering that it is 0≤𝑥≤𝑁, 0≤𝑦≤𝑁. Suppose that the inequalities hold for some n
	where K=N+2≥2. For n+1 we have that it is:
	On the right-hand side of the above inequalities, the development terms appear (with accuracy up to one multiplicative constant)., 𝑒-2𝐾𝑁𝑀.. The proven inequalities show that the sequences
	(,𝑢-𝑛.), (,𝜕,𝑢-𝑛.-𝜕𝑥.), (,𝜕,𝑢-𝑛.-𝜕𝑦.)
	in the given area converge uniformly to the functions, which we will denote by:
	If we assume that in (5) and (6) 𝑛→∞, we have that it is:
	From (7) we get v=,𝑢-𝑥., w=,𝑢-𝑦., from which we conclude that the required function u satisfies the integro-differential equation:
	That every solution of equation (8) satisfies (1) and (2) is verified directly by differentiation [16-19].
	Let us now prove that the posed Gursta problem has a unique solution. Let there be two identical solutions by contrast
	(x,y)→,𝑈-𝑖.,𝑥,𝑦., 𝑖=1,2,
	of the task set. Let's observe the function:
	This function satisfies the integro-differential equation:
	This equation is homogeneous. Let Q>0 be such a constant that
	,𝑈(𝑥,𝑦).<𝑄,  ,,𝑈-𝑥.(𝑥,𝑦).<𝑄,  ,,𝑈-𝑦.(𝑥,𝑦).<𝑄
	for 0 ≤𝑥≤𝑁,0≤𝑦≤𝑁. Based on the rating we performed for the series,(𝑧-𝑛.), we have:
	for each n. From there it follows against the assumption:
	The established contraindication proves the uniqueness of Gurst's solution to this problem.
	Case of a 3-dimensional environment
	Now let's pose the following problem:
	Determine the solution of the partial equation-
	which satisfies the initial condition
	where f is the given function.
	Let us now look for the solution of equation (1) in the form:
	From (3) we get:
	and substituting values (4) into (1) we find that:
	Thus, the solution of equation (1) of the form (3) is:
	so it is based on the principle of linear superposition,
	also the solution of equation (1), where F is an arbitrary function with 6 variables.
	Numerical solution of partial differential equation of 3-dimensional environment:
	For the numerical solution of the partial differential equation of heat in three dimensions, we used the finite difference method. This method includes the discretization of space and time and the iterative calculation of the value of the function U(x...
	1. Discretization of space and time: The spatial domains x,y,z are divided into small steps dx,dy,dz, and the time domain into small steps dt.
	2. Initial condition: We have defined the initial distribution of the function U in space as f(x,y,z).
	3. Boundary conditions: We applied Dirichlet boundary conditions, setting the values of the function U at the edges of the grid to zero.
	4. Iteration through time: We used an explicit finite difference method to update the value of the function U at each time step. This involves computing new values of U based on the current values and their spatially adjacent points (Figure 1).
	Using this method, we obtain a numerical solution of the partial differential equation of heat in three-dimensional space for each time step 𝑡t. This solution represents the evolution of temperature (or some other distributed quantity) in space and t...
	Green's formula

	Theorem 1: Let s be a closed surface bounding part of the space V. Let the functions P,Q be the functions of the variables x,y,z. Then it is:
	where ,𝑑𝑆. is the oriented element of the surface S.
	Proof: Let's start from Ostrogradski's formula:
	Because it is
	we have that it is:
	The permutation of the functions P and Q leads to the formula:
	,𝑉-−-,𝑃∆𝑄+𝑔𝑟𝑎𝑑𝑄𝑔𝑟𝑎𝑑𝑃.𝑑𝑉=.,𝑆-−-(𝑄 𝑔𝑟𝑎𝑑 𝑃),𝑑𝑆..                    (3)
	Subtracting (3) from (2), we get formula 1, which completes the proof (Figure 2).
	Let's say it is
	,𝑑𝑆.=𝑑𝑆,𝑒.𝑖,𝜕𝑎-𝜕𝑛.=𝑔𝑟𝑎𝑑𝑎,𝑒., where ,𝑒.−unit vector normal to the surface S directed outwards, formula (1) takes the form:
	,𝑉-−-,𝑃∆𝑄−𝑄∆𝑃.𝑑𝑉=,𝑆-−-,𝑃𝑔𝑟𝑎𝑑𝑄−𝑄𝑔𝑟𝑎𝑑𝑃.,𝑒.,𝑑𝑆.=,𝑆-−-,𝑃,𝜕𝑄-𝜕𝑛. −𝑄,𝜕𝑃-𝜕𝑛..,𝑑𝑆.....
	In this example of solving a three-dimensional thermal equation, the finite difference method was used for the numerical discretization of space and time. Parameters include space dimensions, number of steps, step sizes, thermal diffusivity, time step...
	The image shown represents the distribution of temperature in three-dimensional space on the middle slice of the z-axis, visualizing how the temperature changes in relation to the x and y coordinates at a selected moment in time. With the finite diffe...
	Using Green's formula, we calculate the integral on the left-hand side as the difference between two expressions: 𝑃P multiplied by the Laplace operator applied to Q, and vice versa. The right side of the integral represents the surface integral, whic...
	This approach allows us to numerically solve the three-dimensional heat equation using Green's formula, which gives us an additional perspective and tool for solving these types of problems..
	Green's function

	Inspired by the case of the sphere, we arrive at the following:
	Let us assume that we know the function H, the variables x,y,z,a,b,c, where A=(a,b,c) is a fixed point of the domain v, and that the function H has the following properties:
	1. H is the harmonic function in relation to x,y,z.
	2. H is a harmonic function in relation to a,b,c.
	3. On the surface S, H takes the value 1/r, where r is the distance between points M and a, i.e.
	Let U be the solution to Dirichlet's interior problem. Based on theorem 1 from 8.1. we have it:
	Or considering the third feature in this chapter we have:
	Comparing (1) with (3) from 8.3. we find that it is:
	Therefore, formula (2) is the solution to the Dirichlet problem, if the function H is known. The function G, defined by:
	is called Green's function for the region V bounded by the surface S in relation to the point (a,b,c). Based on (3) and the properties of the function h, we conclude that:
	1. The function G is a harmonic function in the region V in relation to x,y,z, except at the point (a,b,c).
	2. The function G is harmonic in the region V in relation to a,b,c, except at the point (x,y,z).
	3. The function G-1/r is harmonic in all points of the region V.
	4. On the surface S the function G cancels.
	This representation simulates the numerical solution of a three-dimensional heat equation using the Green's function as an initial condition and a finite difference method to solve the equation. Boundary conditions and other parameters need to be adju...



