MINI REVIEW

On KC spaces and Wallman compactification

Karim Belaid*

Karim Belaid. On KC spaces and Wallman compactification. J Pure Appl Math. 2025;9(2):1-4.

necessary and sufficient conditions on particular topological spaces to have their Wallman compactification KC-spaces.

Keywords: Clinical; Biochemical; Therapeutic; Goats

ABSTRACT

This article deals with a characterization of spaces with a KC Wallman compactification. A description of a such space is given. We also establish

INTRODUCTION

 $\bf A$ topological space is called a KC-space if every compact set of it is closed. Since Hausdorff spaces are KC-spaces and every KC-space is a T_1 -space, it is natural to see the KC property as a separation axiom.

In Hajek proved that if A is a compact set of the Wallman compactification of a T_3 -space X then $A \cap X$ is a closed set of X.

The characterization of spaces such that their Wallman compactification satisfy a given separation axiom was a subject of several recent research papers (see for example) [1-6]. Hence it is natural to wonder what conditions should check a topological space to have its Wallman compactification a KC-space

The first section of this paper contains some remarks and properties of the Wallman compactification of a T_1 -space.

The second section deals with a characterization of spaces such that their Wallman compactification are KC-spaces.

In the third section (resp. fourth section) we establish a necessary and sufficient conditions on a w-space (resp. space with finite Wallman remainder) in order to have its Wallman compactification a KC-space.

In section five we give some remarks about spaces such that their one-point compactification is KC-space.

Some remarks about the Wallman compactification First, recall that the points of the Wallman compactification wX of a T_1 -space X are the closed ultrafilters on X [7,8]. The base for the open sets of a topology on wX is $\{U^* \mid U \text{ is an open set of } X\}$ with $U^* \{F \in wX \mid F \subseteq U \text{ for some } F \text{ in } F\}$, and $\{D^* \mid D \text{ is a closed set of } X\}$ with $D^*=\{F \in wX \mid D \in F\}$ is a base for closed sets of the topology on the Wallman compactification wX.

In authors called an open cover U of a topological space X a good covering (g-covering, for short) of X if it has a finite subcover, and U is called a bad covering (b-covering, for short) of X if it is not a g-covering [2].

The following remarks are frequently useful.

Remarks 1.1: Let X be a non-compact T₁space.

If U is a g-covering of X and $F \in wX \setminus X$ then there exists $U \in U$ such that $F \in U^*$. In fact, since U is a g-covering of X, there exists a finite subcollection U' of U such that $X=\cup$ (U: $U \in U$ '). Hence $wX=\cup$ (U*: $U \in U$ '). Thus, there exists $U \in U$ ' such that $F \in U^*$.

Let $F \in wX \setminus X$. The collection U of open sets U of X such that $U^* \subseteq wX \setminus \{F\}$ is a b-covering of X and $wX \setminus U \setminus U^* : U \in U = \{F\}$.

We need the following definition to describe a particular class of b-covering of a T_1 -space.

Definition 1.2: Let X be a non-compact T_1 -space. A b-covering U of X is called a 1-b-covering of X if for each two open sets O_1 and O_2 of X such that $U \cup \{O_1, O_2\}$ is a g-covering of X, either $U \cup \{O_1\}$ or $U \cup \{O_2\}$ is a g-covering of X.

Proposition 1.3: Let X be a non-compact T_1 -space. An open cover U of X is a 1-b-covering of X if and only if there exists $F \in wX \setminus X$ such that $wX \setminus U \in U = F$.

Proof: Necessary condition: That $wX\setminus \cup$ (U*: $U\in U$) 6= \varnothing follows immediately from the fact that U is a 1-b-covering of X. Suppose that there exist two distinct elements $F, G\in wX\setminus X$ such that $\{F,G\}\subseteq wX\setminus \cup$ (U*: $U\in U$). Let O_1 be an open set of X such that $F\in O^*_1$ and $G\in O^*_1$. So there exists a closed set $F\in F$ such that $F\subseteq O_1$ and $F\in G$. Set $O_2=X\setminus F$. Since $O_1\cup O_2=X$, $\{O_1,O_2\}$ is a g-covering of X. Hence $U\cup \{O_1,O_2\}$ is a g-covering of X, contradicting the fact that U of X is a 1-b-covering of X, since either $U\cup \{O_1\}$ and $U\cup \{O_2\}$ are a b-covering of X. Thus $wX\setminus \cup$ (U*: $U\in U$) is a singleton.

Sufficient condition: Let O_1 and O_2 be two open sets of X such that $U \cup \{O_1, O_2\}$ is a g-covering of X. Then $F \in O^*_{-1} \cup O^*_{-2}$; so that either $U \cup \{O_1\}$ or $U \cup \{O_2\}$ is a g-covering of X. Therefore, U of is a 1-b-covering of X.

Let X be a non-compact T_1 -space and U be a 1-b-covering of X. The element F of $wX\setminus X$ such that $\{F\}=wX\setminus U$ ($U^*:U\in U$), will be denoted by FU.

The following corollaries are immediate consequences of proposition 1.3 and remarks 1.1.

Corollary 1.4: Let X be a non-compact T1-space. For all $F \in wX \setminus X$, there exists a 1-b-covering U of X such that F=FU.

Corollary 1.5: Let X be a non-compact T_1 -space. For all subset K of $wX\setminus X$, there exists an ordered pair $(A,\ U)$ with A is a subset of X and U is a collection of 1-b-covering of X such that $K=A\cup \{FU\mid U\in U\}$.

Remark 1.6: Let U and V be two 1-b-covering of a non-compact T_1 -space X such that FU=FV. An open set O of X is such that $U \cup \{O\}$ is a g-covering of X if and only if $V \cup \{O\}$ is a g-covering of X.

Definition 1.7. Let X be a non-compact T_1 -space. Two 1-b-covering U and V of X are said w-equivalent, and denoted $U \sim w V$ if for each open set O of X, $U \cup \{O\}$ is a g-covering of X if and only if $V \cup \{O\}$ is a g-covering of X. Two non w-equivalent 1-b-covering U and V of X well be denoted by $U \not\sim w V$.

Department of Mathematics, ESST Tunis, 5 Avenue Taha Hussein, Tunis B.P. 56, Bab Mnara 1008, Tunisia

Correspondence: Karim Belaid, Department of Mathematics, ESST Tunis, 5 Avenue Taha Hussein, Tunis B.P. 56, Bab Mnara 1008, Tunisia; Email: belaid412@yahoo.fr

Received: 06-Jun-2024, Manuscript No. PULJPAM-24-7064; Editor assigned: 10-Jun-2024, PreQC No. PULJPAM-24-7064 (PQ); Reviewed: 24-Jun-2024, QC No. PULJPAM-24-7064; Revised: 05-Apr-2025, Manuscript No. PULJPAM-24-7064 (R); Published: 12-Apr-2025, DOI: 10.37532/2752-8081.25.9(2).01-04

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

LITERATURE REVIEW

Proposition 1.8: Let U and V be two 1-b-covering of a non-compact T_1 -space X. Then U and V are w-equivalent if and only if $wX\setminus U \in U = wX \setminus U \in V$.

Wallman compactification and KC-spaces

Our goal in the present section is to give necessary and sufficient conditions on a T_1 -space in order to have its Wallman compactification a KC-space. First, we need the following definition.

Definition 2.1: Let X be a T_1 -space, A be a subset of X and U be a collection of 1-b-covering of X. The ordered pair (A, U) is said to be w-closed if the following properties hold.

A is a closed set of X.

For all $x \in X \setminus A$, there exists an open set O of X such that $x \in O$ and $U \cup \{O\}$ is a b-covering of X, for each $U \in U$.

If V is a 1-b-covering of X such that $U \not\sim w V$, for each $U \in U$, then there exists an open set O of X such that $V \cup \{O\}$ is a 1-g-covering V of X, O \cap A= \emptyset and U \cup {O} is a 1-b-covering of X, for each U \in U.

Proposition 2.2: Let X be a T_1 -space. A subset K of wX is closed if and only if $(K \cap X, U)$ is w-closed with U is a collection of 1-b-covering of X such that $K \cap (wX \setminus X) = \{FU \mid U \in U\}$.

Proof: Necessary condition.

Since K is a closed set of wX, $K \cap X$ is a closed set of X.

Let $x \in X \setminus (K \cap X)$. Since K is a closed set of wX, there exists an open set O of X such that $x \in O$ and $O^* \cap K = \emptyset$. Hence $FU \in /O^*$, for each $U \in U$. Thus $U \cup \{O\}$ is a b-covering of X, for each $U \in U$.

Let V be a 1-b-covering V of X such that $U \not\sim w V$, for each $U \in U$. Then FV \in /K . Since K is a closed set of wX, there exists an open set O of X such that FV $\in O^*$ and $O^* \cap K = \emptyset$. Hence $O \cap (K \cap X) = \emptyset$ and FU \in /O^* , for each $U \in U$. Thus $U \cup \{O\}$ is a 1-b-covering of X, for each $U \in U$.

Therefore $(K \cap X, U)$ is w-closed. Sufficient condition. Let K be a subset of wX such that $(K \cap X, U)$ is w-closed with U is a collection of 1-b-covering of X such that $K \cap (wX \setminus X)=\{FU \mid U \in U\}$.

Let $x \in X \setminus (K \cap X)$. Since $(K \cap X, U)$ is w-closed, $K \cap X$ is a closed set of X, so there exists an open set O of X such that $x \in O$ and $O \cap (K \cap X) = \emptyset$, and there exists an open set O of X such that $x \in O$ and $U \cup \{O'\}$ is a b-covering of X, for each $U \in U$. Hence $O'^* \cap (K \cap (wX \setminus X)) = \emptyset$. Thus $(O \cap O')^*$ is an open neighborhood of X such that $(O \cap O')^* \cap K = \emptyset$.

Let $F \in (wX \setminus X) \cap (wX \setminus K)$. Then there exists a b-covering V of X such that F=FV and $U \not\sim w$ V, for each $U \in U$. Since $(K \cap X, U)$ is w-closed, then there exists an open set O of X such that $V \cup \{O\}$ is a g-covering of X, $O \cap (K \cap X) = \emptyset$ and $U \cup \{O\}$ is a 1-b-covering of X, for each $U \in U$. Hence $FV \in O^*$, $O^* \cap (K \cap X) = \emptyset$ and $FU \in O^*$, for each $U \in U$. Thus O is an open neighborhood of X such that $O^* \cap K = \emptyset$. Therefore, X is a closed set of X.

We need the following definitions:

Definition 2.3: Let X be a T_1 -space, A be a subset of X and U be a collection of 1-b-covering of X.

RESULTS AND DISCUSSION

A collection O of open sets X is said to be a w-cover of the ordered pair (A, U) if $A \subseteq \cup$ (O:O \in O) and for each $U \in U$ there exists $O \in O$ such that $U \cup \{O\}$ is a g-covering of X.

The ordered pair (A, U) is said to be w-compact if for each w-cover O of (A, U) there exists a finite subcollection O0 of O such that O' is a w-cover of (A, U).

Proposition 2.4: Let X be a T_1 -space. A subset K of wX is compact if an only if the ordered pair $(K \cap X, U)$ is w-compact with U is a collection of 1-b-covering such that $K \cap (wX \setminus X) = \{FU \mid U \in U\}$.

Proof: Necessary condition. Let O be a w-cover of $(K \cap X, U)$ with U is a collection of 1-b-covering such that $K \cap (wX \setminus X) = \{FU \mid U \in U\}$. Then $K \cap X \subseteq \cup$ (O: $O \in O$) and for each $U \in U$ there exists $O \in O$ such that $U \cup \{O\}$ is a g-covering of X, so that $FU \in O^*$. Since for each $F \in K \cap (wX \setminus X)$, there exists $U \in U$ such that F = FU, $K \subseteq \cup$ ($O^* : O \in O$). Then there exists a finite subset O0 of O such that $K \subseteq \cup$ ($O^* : O \in O$), since K is compact. Hence $K \cap X \subseteq \cup$ ($O : O \in O$) and for each $U \in U$ there exists $O \in OO$ such that $U \cup \{O\}$ is a g-covering of X. Thus $(K \cap X, U)$ is w-compact.

Now, we are in position to give a characterization of spaces such that their Wallman compactification is a KC-space.

Proposition 2.5: Let X be a T_1 -space. Then the following statements are equivalent:

wX is a KC-space.

For each subset A of X and each collection U of 1-b-covering of X such that (A, U) is w-compact, (A, U) is w-closed.

Proof: (1) => (2) Let A be a subset of X and U be a collection of 1-b-covering of X such that (A,U) is w-closed. Set K=A \cup {FU \in wX\X | U \in U}. Since (A,U) is w-compact, K is compact, by Proposition 2.4. Hence K is closed. Thus (A, U) is w-closed by Proposition 2.2.

(2) => (1) Let K be a closed set of wX. By Proposition 2.4, (K \cap X,U) is closed with U is a collection of 1-b-covering such that K \cap (wX\X)={FU | U \in U}. Then (K \cap X,U) is w-compact. Hence (K \cap X,U) is w-compact. Therefore, wX is a KC-space.

Case of w-spaces

The goal of the present section is to give a characterization of w-spaces such that their Wallman compactification are KC-spaces.

First, let us recall that in order to give a characterization of T_1 -spaces such that there Wallman compactification is a Whyburn space, authors of [3] introduced the notion of 1-closed set and a class of w-spaces as follows:

A subset C of a topological space X is called a 1-closed set if every two non-compact closed sets F_1 and F_2 of C meets.

A T1-space X is said to be a w-space if for each collection C of non-compact closed sets of X with the FIP there exists a 1-closed set N of X such that $C \cup \{N\}$ has also the FIP.

Authors of proved that every closed ultrafilter of a w-spaces contains 1-closed set, and that spaces with finite Wallman remainder are w-spaces. We adopt notations of, two subsets A and B of a T1-space X are said to be of w-intersection nonempty, and we denote $A \sqcap B \neq \emptyset$, if there exists a non-compact closed set N of X such that $N \subseteq A \cap B$. It is immediate that if $F \in wX \setminus X$, $F \in F$ and O is an open set of X such that $F \in O \times$ then there exists a non-compact closed set F 0 of X such that $F \in F$ and $F \in F$ and $F \in F$ and $F \in F$. Then

The following proposition highlights the very close relationship between covering and 1-closed of w-spaces.

Proposition 3.1: Let X be a w-space and U be a b-covering of X. The following statements are equivalent:

U is a 1-b-covering of X.

There exists a 1-closed set F such that $U \cup \{O\}$ is a g-covering, for each open set O of X such that $O \cap F \neq \emptyset$.

Proof. (i) \Rightarrow (ii) Since U is a 1-b-covering of X, there exists a unique $F \in wX \setminus X$ such that $wX \setminus U \in U$ =F. Then there exists a 1-closed set F of X such that $F \in F$, since X is a w-space. Let O be an open set of X such that $O \cap F \neq \emptyset$. Hence $F \in O^*$. Thus $U \cup \{O\}$ is a g-covering of X.

(ii) = \Rightarrow (i) Let F be a 1-closed set of X such that $U \cup \{O\}$ is a g-covering of X, for each open set O of X such that $O \sqcap F \neq \emptyset$. Set F be the unique element of wX–X such that $F \in F$ (that F is unique is immediate from [3]). Since $O \sqcap F \neq \emptyset$, $F \in O^*$.

Suppose that there exists $U \in U$ such that $F \in U^*$. Since U is a b-covering of X, there exists $G \in wX - X$ such that $G \in wX \setminus U$ ($U*: U \in U$). Hence $F \neq G$. Thus there exists an open set O of X such that $F \in O^*$ and $G \in O^*$. Then $F \cap O \neq \emptyset$ and $U \cup \{O\}$ is a b-covering, contradicting hypothesis. So that $F \in /U^*$, for all $U \in U$. Let O_1 and O_2 open sets of X such that $U \cup \{O1, O2\}$ is a g-covering of X. Then U ($U*: U \in U$) $U \in V^*$. Then either U0 of U1 or U2. Without loss of generality, we consider that U3 of U3. Hence U4 of U5 of U6 of U7 is a g-covering of U8. Thus $U \cup \{O_1\}$ 9 is a g-covering of U8. Therefore, U9 is a 1-b-covering of U8.

Now, we are in position to give a characterization of w-spaces such that their Wallman compactification is a KC-space.

Proposition 3.2: Let X be a w-space. Then the following statements are equivalent:

wX is a KC-space.

If A is a subset of X and F is a collection of 1-closed sets of X satisfying the following properties.

If U is an open cover of A such that, for each $F \in F$, there exists $U \in U$ such that $F \sqcap U \neq \emptyset$, then there exists a finite subcollection U' of U such that U' is a cover of A and, for each $F \in F$, there exists $U \in U'$ such that U $\sqcap F \neq \emptyset$.

Then

For each $x \in X \setminus A$ there exists an open neighborhood O of x such that $A \cap O = \emptyset$ and $F \cap O \neq \emptyset$, for each $F \in F$.

For each 1-closed set H of X such that H \sqcap F= \varnothing , for each F \in F, there exists a open set O of X such that H \sqcap O 6= \varnothing , A \cap O= \varnothing and F u O= \varnothing , for each F \in F.

Proof. (i) \Rightarrow (ii) Let A be a subset of X and F be a collection of 1-closed sets of X satisfying the following properties.

If U is an open cover of A such that, for each $F \in F$, there exists $U \in U$ such that $F \sqcap U \neq \emptyset$, then there exists a finite subcollection U' of U such that U' is a cover of A and, for each $F \in F$, there exists $U \in U'$ such that $U \sqcap F \neq \emptyset$.

Set K=A \cup {F \in wX\X | \exists F \in F and F \in F}. Then K is a compact set of wX. In fact, let V be an open cover of K. Hence V is an open cover of A such that, for all F \in F, there exists V \in V such that F \sqcap V \neq Ø. Thus there exists a finite subcollection V' of V such that V' is a cover of A and, for each F \in F, there exists V \in V0 such that V \sqcap F \neq Ø. Then V' is a finite subcover of K, so K is compact.

Now, since wX is a KC-space, K is a closed set of wX. Let $x \in X \setminus A$. Then $x \in X \setminus A$. Hence there exists an open neighborhood O of x such that $K \cap O^* = \emptyset$. Thus $A \cap O^* = \emptyset$ and $F \cap O = \emptyset$, for each $F \in F$.

Let H be a 1-closed set of X such that $H \sqcap F = \emptyset$, for each $F \in F$. Set H be the element of wX\X such that $H \in H$. Then $H \notin K$. Hence there exists an open set O of X such that $H \in O^*$ and $O^* \cap K = \emptyset$. Thus $H \sqcap O = \emptyset$, A $\cap O = \emptyset$ and $F \sqcap O = \emptyset$, for each $F \in F$.

(ii) = \Rightarrow (i) Let K be a compact subset of wX. Set A=K \(\cap X\) and \(F\) a collection of 1-closed sets of X such that for each \(F \in K\) \((wX \X)\) there exists \(F \in F\) and \(F \in F\).

Let U be an open cover of A such that such that, for each $F \in F$, there exists $U \in U$ such that $F \cap U \neq \emptyset$. Then $\{U^* \mid U \in U\}$ is an open cover of K.

Since K is compact, there exists a finite sub collection U' of U such that $\{U^* \mid U \in U'\}$ is an open cover of K. Hence U' is a cover of A and for each $F \in K \cap (wX \setminus X)$ there exists $U \in U'$ such that $F \in U^*$. Thus for each $F \in F$, there exists $U \in U_0$ such that $U \cap F \neq \emptyset$.

Let $x \in wX \setminus K$. We discuss two cases:

Case 1: $x \in X \setminus K$, so $x \in X \setminus A$. Then there exists an open neighborhood O of x such that $A \cap O = \emptyset$ and $F \cap O = \emptyset$, for each $F \in F$. Hence $O^* \cap K = \emptyset$.

Case 2: $x \in (wX \setminus X) \setminus K$, so there exists $H \in wX \setminus X$ such that x=H. Since X is a w-space there exists a 1-closed set such that H such that $H \in H$. Since $H \neq K$, $H \cap F = \emptyset$, for each $F \in F$. Hence there exists a open set O of X such that $H \cap O \neq \emptyset$, $A \cap O = \emptyset$ and F u $O = \emptyset$, for each $F \in F$. Thus O^* is an open neighborhood of H such that $O^* \cap K = \emptyset$.

Therefore, K is a closed set of X.

Case of spaces with finite Wallman remainder

The goal of this section is to give a necessary and sufficient conditions on a T_1 -space X with a finite Wallman remainder (that is, wX\X is finite) in order to get its Wallman compactification a KC-space. First recall that, Kovar [5] has proved that a T_1 -space X has a finite Wallman remainder if and only if there exists $n\in N$ such that every family of non-compact pairwise disjoint closed sets of X contains at most n elements, and X has a collection of n pairwise disjoint non-compact closed sets.

The following remarks give relationships between a collection of non-compact pairwise disjoint closed sets and 1-b-covering of a T_1 -space with a finite Wallman remainder. We use notations adopted in the first section.

Remarks 4.1. Let X be a T1-space such that Card ($wX\setminus X$)=n and F be a collection of n non-compact pairwise disjoint closed sets of X. Then the following statements hold.

For each $F \in wX \setminus X$, there exists a unique $F \in F$ such that $F \in F$.

For each subset K of wX there exist a subset A of X and a subcollection F' of F such that $K=A \cup \{F \in wX \setminus X \mid \exists F \in F, \text{ and } F \in F\}$.

An open cover U of X is a 1-b-covering of X if and only if there exists unique $FU \in F$ such that $\{F\}=wX\setminus U$ ($U^*:U\in U$) with F is the unique $F\in wX\setminus X$ such that $FU\in F$

If U and V are two 1-b-covering of X such that FU=FU then FU=FV.

For each $F \in F$ there exists a 1-b-covering U of X such that F=FU.

Let $A \subseteq X$, $F \cap G \subseteq F$ and $G \cap G$ be collection of 1-b-covering of $G \cap G$ such that $G \cap G$ of if and only if there exists $G \cap G \cap G$ with $G \cap G$. Then the ordered pairs $G \cap G$ and $G \cap G$ is a w-cover of $G \cap G$ of is a w-cover of $G \cap G$ of is a w-cover of $G \cap G$ of is a w-cover of $G \cap G$ is a w-cover of $G \cap G$ of its w-closed if $G \cap G$ of its w-closed.

Proposition 4.2: Let X be a T1-space such that Card (wX\X)=n, F be a collection of n non-compact pairwise disjoint closed sets of X and O be a collection of open sets of X. Then for each $A \subseteq X$ and F $0 \subseteq F$, the following statements are equivalent.

(1) O is a w-cover of (A, F').

(2) $A \subseteq \cup$ (O: O \in O) and for each $F \in F$ 0 there exists $O \in O$ such that $O \sqcap F \neq \emptyset$.

Proof. (1) = \Rightarrow (2) Since O is a w-cover of (A, F'), A \cup {F \in wX\X | \exists F \in F 0 and F \in F} \subseteq \cup (O*: O \in O). Hence A \subseteq \cup (O: O \in O) and for each F \in wX\X such that there exists F \in F o and F \in F, there exists O \in O such that F \in O*. Thus there exists F' \in F such that F' \subseteq O. So O \sqcap F \neq \emptyset .

(2) => (1) Let O be a collection of open sets of X such that $A \subseteq \cup$ (O: $O \in O$) and for each $F \in F$ ' there exists $O \in O$ such that $O \cap F \neq \emptyset$. Then for each $F \in wX \setminus X$ such that $F \in F \cap A$ and $F \in F \cap A$ and $F \in F \cap A$ and $F \in A$. Therefore, $F \in A$ is a w-cover of $F \in A$.

Proposition 4.3: Let X be a T_1 -space such that Card (wX\X)=n, F be a collection of n non-compact pairwise disjoint closed sets of X and G be a collection of open sets of G. Then for each G and G is G, the following statements are equivalent.

(1) (A, F') is w-closed.

(2) A is a closed set of X and for each $F \in F \setminus F'$, there exists an open set O of X such that $F \sqcap O \neq \emptyset$ and $O \cap A = \emptyset$.

Proof. (1) = \Rightarrow (2) Since (A, F') is w-closed, A \cup {F \in wX\X | \exists F \in F' and F \in F} is a closed set of wX. Hence A is a closed set of X and clwX (A)\X \subseteq {F \in wX\X | \exists F \in F 0 and F \in F}. Thus for each F \in wX\X such that there exists F \in F with F \in F\F', F \in / clwX(A). Then there exists an open set O of X such that F \in O* and O \cap A= \emptyset . So F \cap O \neq \emptyset and O \cap A= \emptyset .

Now, we are in position to give a characterization of spaces with finite Wallman remainder such that their wallman compactification is a KC-space.

Proposition 4.4: Let X be a T_1 -space such that Card (wX\X)=n and F be a collection of n non-compact pairwise disjoint closed sets of X. Then the following statements are equivalent.

(1) wX is a KC-space.

(2) For each F $0 \subseteq F$ and $A \subseteq X$ such that (A, F) is w-compact, (A, F) is w closed.

Proposition 4.5: Let X be a T1-space such that Card (wX\X)=n. Then the following statements are equivalent.

wX is a KC-space.

If A is a subset of X such that $A \cap (X \setminus O)$ is compact for each open neighborhood O of \cup (F: $F \in F$) with F is a collection of n disjoint noncompact closed sets of X, then A is closed.

Proof: (i) \Rightarrow (ii) Let A be a subset of X such that $A \cap (X \setminus O)$ is compact for each open neighborhood O of \cup (F: $F \in F$) with F is a collection of n disjoint non-compact closed sets of X. Set $K=A \cup (wX \setminus X)$ and let U be a collection of open sets of X such that $K \subseteq \cup (U^*: U \in U)$. Since for all $F \in wX \setminus X$ there exists $U \in U$ such that $F \in U^*$, there exists a collection of n disjoint non-compact closed sets G of X such that for each $G \in G$ there exists $UG \in U$ such that $G \subseteq UG$. Set $O=\cup (UG: G \in G)$. Hence $A \cap (X \setminus O)$ is compact. Since $A \cap (X \setminus O) \subseteq \cup (U: U \in U)$, there exists a finite sub collection U' of U such that $A \cap (X \setminus O) \subseteq \cup (U: U \in U')$. Then $A \subseteq \cup (U: U \in U') \cup (\cup (UG: G \in G))$, so K is a compact of X. Since wX is a KC-space, K is a closed set of wX. Therefore, A is a closed set of X.

(ii) = \Rightarrow (i) Let K be a compact set of wX. Set A=K \cap X and let O be an open neighborhood of \cup (F: F \in F) with F is a collection of n disjoint non-compact closed sets of X. Then wX\X \subseteq O^*. Let V be a collection of open sets of X such that A \cap (X\O) \subseteq \cup (V: V \in V). Hence K \subseteq O^* \cup (\cup (V: V \in V)). Since K is a compact set of wX, there exists a finite subcollection V' of V such that K \subseteq O^* \cup (\cup (V: V \in V0)). Thus A \cap (X\O) \subseteq \cup (V: V \in V_0), so A is compact. Then A is closed set of X and K is a closed set of wX.

Space such that its one-point compactification is a KC-space

It is immediate that if Card ($wX\X$)=1 then wX coincide with the one-point compactification. The following result is immediate consequence of Proposition 4.5.

Corollary 5.1. Let X be a T_1 -space such that each two non-compact closed sets meet. Then the following statements are equivalent.

The one-point compactification of X is a KC-space.

If A is a subset of X such that $A \cap (X \setminus O)$ is compact for each open neighborhood O of a non-compact closed sets of X, then A is closed.

In Wilansky proved that the one-point compactification X of X is a KC-space if and only if X is a KC-space and for each $S \subseteq X$, if $S \cap K$ is closed, for all closed compact K, then S is closed.

CONCLUSION

Proposition 5.2: Let X be a topological space. Then the following statements are equivalent.

The one-point compactification of X is a KC-space.

X is a KC-space and if A is a subset of X such that $A \cap C$ is compact, for all compact closed set C of X, then A is compact.

Proof. (i) \Rightarrow (ii) That X is a KC-space is immediate, since compact subsets of X are compact subset of X. Let A be a subset of X such that $A \cap C$ is compact, for each compact closed set C of X. Let U be an open cover of K=A \cup { ∞ }. Hence there exists U \in U such that $\infty \in$ U. Thus X\U is a compact closed set of X, so $A \cap (X \setminus U)$ is a compact set. Then K is a compact set of X. Now, since Xe is a KC-space, K is a closed set of X, so that A is a closed set of X.

 \Rightarrow (i) Let K be a compact set of X. We discuss two cases.

Case 1: $\infty \in /$ K. Then K is a compact set of X. Thus K is a compact closed set of X. Hence K is a closed set of X.

Case $2: \infty \in K$. Let C be compact closed set of X. Then C is a closed set of Xe. Hence $K \cap C$ is compact set of Xe and of X. Thus $K \cap X$ is a compact set of X. Since X is a KC-space, $K \cap X$ is a closed set of X. Therefore, X is a KC-space.

REFERENCE

- Belaid K, Dridi L, Echi O. Submaximal and door compactifications. Topology Appl. 2011;158:1969-75.
- 2. Belaid K, Dridi L. I-spaces, nodec spaces and compactifications. Topology Appl. 2014;161:196-205.
- 3. Belaid K, Lazaar S, Nacib S. Whyburn spaces and compactifications.
- 4. Hajek DW, Jiménez AE. A note on KC Wallman compactifications. 1976;61(1):176-8.
- Kovár MM. Which topological spaces have a weak reflection in compact spaces?. 1995;36(3):529-36.
- Künzi HP, McCluskey AE, Richmond TA. Ordered separation axioms and the Wallman ordered compactification. Publ Math Debrecen 2008;73:361-77.
- 7. Wallman H. Lattices and topological spaces. Ann Math. 1938;39(1): 112-26.
- 8. Wilansky A. Between T_1 and T_2 . Amer Math Monthly. 1967;74(3):261-6.