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 RESEARCH 

On the infinity of twin primes and other K-tuples 
Jabari Zakiya 

INTRODUCTION 

n number theory Polignac’s Conjecture (1849) states there are 
infinitely many consecutive primes (prime pairs) that differ by any 
even number n. The Twin Prime Conjecture derives from it for 

prime pairs that differ by 2, the so called twin primes, e.g. (11, 13) and 
(101, 103) [1-6]. 

K-tuples are groupings of primes adhering to specific patterns, usually
designated as (k, d) groupings, where k is the number of primes in the
group and d the total spacing between its first and last prime [4]. Thus,
Polignac’s pairs are type (2, n), where n is any even number. Three
named (2, n) tuples are Twin Primes (2, 2), Cousin Primes (2, 4), and
Sexy Primes (2, 6). The paper shows there are many more Sexy Primes
(in fact, always more abundant) than Twins or Cousins, though an
infinity of each, and an infinity of any other (2, n) tuple. 

I begin by presenting the foundation of Prime Generator Theory 
(PGT), through its various components. I start with Prime Generators 
(PG), which as their name implies, generate all the primes. Each larger 
PG is more efficient at identifying primes by reducing the number 
space they can possibly exist within. They thus structurally squeeze the 
primes into a smaller set of integers that contain fewer composites, in 
a very systematic manner. 

Each PG has a characteristic Prime Generator Sequence (PGS), a 
repeating pattern of gaps between the residue elements of its PG. These 
gap patterns illustrate, and adhere to, a deterministic set of properties. 
I use them to systematically show once a PGS gap size between residues 
exists it will be repeated with higher frequency for all larger PGS. I then 
show every residue gap will, with certainty, become a gap strictly 
between prime pairs. This will be used to establish the infinity of twin 
pairs, and other k-tuples. I provide data and graphs to empirically show 
this. 

The epistemological model for developing PGT is highly visual, and 
most easily explained and understood through pictures to establish its 
properties. Some may not find this “rigorous” and insufficient to meet 
its claims. However, it will be seen its foundation provides a consistent 
mathematical framework to qualitatively explain, and quantitatively 

produce, empirically verifiable results derived using other methods and 
techniques. 

At the time of writing, the largest known twin prime is 2996863034895 
· 21290000 ± 1 [5] (2016), which resides on restracks P5[29:31] and
P7[29:31] for those PG. There are an infinity of larger twin primes,
which will reside on some twin pair restracks for every PG. The same
will be true for other k-tuples.

I have previously used Prime Generators to construct and implement 
efficient and very fast prime sieves, to find all the primes up to a finite 
N, or within a finite range, including the fastest and most efficient 
prime sieve methods to find all primes and twin|cousin primes [3]. 

Prime Generators 
A prime generator Pn is composed of a modulus modpn and a set of 
residues ri with residue count rescntpn (determined by Euler’s Totient 
Function, ( ) (1 1/ ),n n p

i
  which have the form:

 (1) 

 (2) 

 (3) 

where pn is the last PG prime. A PG’s residues are the set of integers ri 
ε {1...modpn-1} coprime (no common factors) to its modpn, i.e. their 
greatest common divisor is 1: gcd(ri, modpn) = 1. They exist as modular 
complement pairs, such that modpn = ri + rj and therefore (ri + rj) mod 

modpn ≡  0. Thus, we only need to generate the residues ri < 
modpn/2, and the other half are rj = modpn - ri. 

For P5 then, modp5 = 2 · 3 · 5 = 30, with rescntp5 = 1 · 2 · 4 = 8. P5’s 
8 canonical residues are {1, 7, 11, 13, 17, 19, 23, 29}, which are used 
functionally as {7, 11, 13, 17, 19, 23, 29, 31}, to always have the first 
residue in the sequence be prime pn+1, and permute ri = 1 to be the last 

residue in the sequence, set to (modpn + 1) ≡ 1 mod modpn. Thus 
we have: 

I 
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Pn = modpn · k + {ri}
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∏
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P5 = 30 · k + {7, 11, 13, 17, 19, 23, 29, 31}  (4) 

We can now construct P5’s prime candidates (pcs) table, here up to N 
= 541, the 100th prime, where each k ≥ 0 index residue group 
(resgroup) contains pc values along each residue track (restrack|rt). 

Figure 1) Table of prime candidates can be created for every PG. 

A table of prime candidates can be created for every PG. All the primes 
> pn occur mostly in equal numbers (i.e. statistically uniformly) along
each restracks. The marked cells in Figure 1. Are prime multiples
(composites) of the residue primes, that have been sieved out to
identify the primes within the range [3]. P5 is the largest Pn for which
all its residues are prime. All larger will have residues consisting of
primes and their consecutive coprime multiples < modpn.

Prime generator sequences 
Each prime generator has a characteristic Prime Generator Sequence 
(PGS). This is the sequence of the differences (gaps) between 
consecutive residues defined over the range r0 to r0 + modpn where r0 
is the first residue of Pn, which is the next prime > pn, i.e. pn+1. 

Let’s construct the first prime generator P2, and its PGS. 

For P2: modp2 = 2, with rescntp2 = (2 - 1) = 1, with residue {1}, but use 
its functional value {3}. 

Thus, P2 = 2·k+3, produces the pc sequence: 3 5 7 9 11 13 15 17... ∞
i.e the odd numbers. 

So for P2, its PGS is a single element of gap size (r0 - 1) = (3 - 1) = 2: 
PGS P2: [r0 = 3] 2 | 

Now let’s construct P3: modp3 = 2 · 3 = 6; rescntp3 = (2 - 1) · (3 - 1) = 
2, with residues {1, 5}. 
P3, thus, has the functional form: P3 = 6·k+ {5, 7}. Its pcs table is 
shown below up to k = 16 Figure 2. 

Figure 2) Each resgroup (column) contains prime candidates forming a 
possible twin pair. 

For P3, each resgroup (column) contains prime candidates forming a 
possible twin pair, extending into infinity. Except for (3, 5), every twin 
prime can be written as 6n ± 1 for some n ≥ 1 values. 

The last two residues for all prime generators > P2 are modpn ± 1, thus 
they have at least one twin pair set of residues. For larger prime 
generators there are more twin pair residues, and others. To illustrate 
this, we examine the PGS for increasing prime generators Pn. 

For P3 we see its PGS contains the gaps 2 and 4, which occur one each, 
with the last (r0 - 1) = 4. 

For P5 we see from Figure 1. Its sequence of prime candidates, 
with its PGS spacing. 

PGS P5: 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59 61 67 . . . ∞ 

 (5) 

 (6) 

and PGS P5: [r0 = 7] 4 2 4 2 4 6 2 6 | → modp5 = 30 = (3) · 2 + (3) · 4 

+ (2) · 6

For P7, modp7 = modp5 · 7 = 210, and rescntp7 = rescntp5 · (7 - 1) = 
48, with the residues: 
{11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 
83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 
151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 
197, 199, 209, 211} 

PGS P7: [r0 = 11] 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 
                         4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 10 2 10 | 

With: modp7 = 210 = (15) · 2 + (15) · 4 + (14) · 6 + (2) · 8 + (2) · 10 

Again we see for P7, there are an equal odd number of occurrences for 
gaps 2 and 4. This illustrates a property of every prime generator with 
modulus of pn#, coefficients a1 = a2 have form: 

1 2
( 2) (podd 2) (3 2) (5 2) (7 2) ... ( 2)

n n
a a p p               (7) 

We also see the consistent pattern that the last gap term is (r0 - 1), and 
starting with P5, the last three gaps have the pattern (r0 - 1) 2 (r0 - 1). 
This occurs because the last two residues are always twin pairs of form 
modpn ± 1, and the second from last is the modular complement of 
r0, i.e. (modpn - r0). 

We now also notice that the number of unique gap sizes for each 
generator Pn are of order pn−1. This is observed to be the minimum 
number of gaps for increasing Pn (for nonzero coefficients). Thus the 
PGS for P3 has two (2) gaps, for P5 three (3) gaps, for P7 five (5) gaps 
sizes, and so on. 

PGS P3: 5 7 11 13 17 19 23 25 29 31 35 . . . ∞ 

For P5 we see from Fig 1. its sequence of prime candidates, with 

its PGS spacing.

PGS P5: 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59 61 67 . . . ∞

Again we see the gaps 2 and 4 occurring with the same (odd) 
frequency, with the last three gaps now having the form (r0 - 1) 2 (r0 - 
1), where r0 = 7 is the first residue for P5. 

We are beginning to see some of the inherent properties of 
prime generators emerge. Each larger Pn (P7, P11, P13, P17, etc) will 
conform to these properties, producing an increasing number of 
gaps, with a defined number of specific gap sizes, systematically 
distributed within the sequence. [7-9]. 

Characterizing PGS 
Each prime generator sequence is defined over the range r0 to r  + 
modpn, therefore the number of gaps equals the number of residues, 
and the sum of the gap sizes equals the modulus. Let ai be the 
frequency coefficients (number of occurrences) for each gap of size 2i, 
i ≥ 1, thus: 

modpn =
∑

gapi =
∑

ai · 2i

rescntpn =
∑

ai

Therefore for PGS P3: [r0 = 5] 2 4 | → modp3 = 6 = (1) · 2 + (1) · 4
and PGS P5: [r0 = 7] 4 2 4 2 4 6 2 6 | → modp5 = 30 = (3) · 2 + (3) · 4 + (2) · 6

# podd

4  2  4  2  4  6  2  6  | 4  2  4  2  4  6  2  6 |

2  4 |  2  4 | 2  4 | 2  4 | 2  4 |

0
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PGS symmetry and distribution 
Because the residues exist as modular complement pairs they produce 
a mirror image gap distribution around a midpoint pivot term. The 
PGS pattern up to the pivot will exist as its mirror image after. 

Starting with P5, we know the last 3 gaps for all Pn have the form (r0 - 
1) 2 (r0 - 1), thus their sum is 2r0, and the remaining odd number
(rescntpn - 3) gaps must equal (modpn - 2r0).

This requires for P5, the (8 - 3) = 5 gaps at the front of its PGS must 
sum to (30 - 2·7) = 16. If all the gaps were 2 you would need 8, which 
is too many, if all were 4 you need just 4, which is too few. The gap 
structure is numerically constrained to generate the unique 
combination of gap sizes to satisfy both requirements (5) and (6) that 
represent each Pn. 

In addition, these (rescntpn - 3) odd gaps exist with a symmetric mirror 
image distribution around a mid pivot gap that is always of size 4 for 
pn# moduli. 

To show this, excluding the last 3 term of PGS P5 we have the gap 
sequence: 4 2 2 4 

Here the terms 4 2 are the mirror image of 2 4 and are symmetric 
around midterm . 

4For PGS P7 we get: 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2  
                              2 4 8 6 4 6 2 4 6 2 6 6 4 2 4 6 2 6 4 2 4 2 

and again see a similar mirror image symmetry of each half around the 
midterm 4. 

For P7, in order for the (48 - 3) = 45 gaps in its PGS front to sum to 
(210 - 2·11) = 188 we see new gaps of 8 are introduced (mirrored in 
both halves) close to the middle pivot point. 

As the PG moduli increase, new larger gaps will emerge and be 
included toward the pivot element. This amounts to pushing the 
preexisting gaps toward the front and back. This expansion process 
ensures all preexisting residue gaps will eventually exist for the primes 
< r0

2 for some Pn. 

Each PGS shows a1 = a2 are odd because gap size 4 is the pivot term 
and a gap 2 is part of the last three sequence terms. (I provide the 
numerical basis for this in the Appendix.) Every other gap term is part 
of each mirror image and therefore occur in even numbers. Thus as 
similar to the residues, we only need to (computationally) determine 
the first (rescntpn - 4)/2 gap terms. 

The infinity of primes 
Starting with just the first two primes 2 and 3, we can show the infinite 
progression of primes. 

Using the first two primes we create: P3 = 6·k + {5, 7}, k ≥ 0. 
From Fig 2. the pcs < r0

2 = 52 = 25 are prime, which are the values {5, 
7, 11, 13, 17, 19, 23}. 

We now use the new found primes 5. . . 23 to construct P23, with 
modp23 = 223092870, whose r0 = 29. All the residues between 29 and 
292 = 841 will be primes. The primes counting function π(x) tells us 
there are exactly 137 primes from 29...841, the last being 839. We now 
have a repeatable deterministic process to identify all the primes, into 
infinity. 

Thus, any prime p can be treated as r0 to a Pn modulus composed of 
all the primes < p, whose residues from p to p2 are new primes. We 
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can repeat this progression of primes process forever, to always 
generate new primes. Thus from this exact process, we can 
generate a list of consecutive primes for any Pn, from which we 
can then exactly determine their prime gaps distribution. 

In fact, an estimate of the number of new primes generated in any 
range p to p2 will be of order: 

2
2

2

( 2)
( , )

log( ) 2 log( )log( )est

p p p p
p p

p pp


 
  


 (8) 

For p = 29, this produces an estimate of 116 primes from 29 to 841, 
compared to the actual of 137. (See Appendix for fuller elaboration.) 

Prime generator properties 
Given what we’ve observed, and now know about prime generators and 
their sequences, we can codify their inherent and immutable 
properties, and use them in a logically consistent manner to empirically 
establish and project the nature, numbers, and distribution of all prime 
gap k-tuples.  

Though mathematically simple expressions, prime generators reveal an 
astounding breadth of knowledge about the nature of prime numbers, 
embedded in their inherent immutable properties. When I refer to 
their properties as being ‘inherent’ these are natural aspects and 
characteristics of their structure that are discernible easily through 
visual observation. Once observed they could be mathematically 
described and characterized to formulate a consistent framework for 
application. 

As an example, it is an inherent property of base ten numbers that the 
least significant digit (lsd) of an even integer must (only) be the digits, 
0, 2, 4, 6, 8, and conversely 1, 3, 5, 7, 9 for odd. However when we 
change the base system, say to a binary (base two) system, even|odd has 
a different expression, i.e. the least significant bit (lsb) of an even 
number is a ‘0’ and a ‘1’ for odd. We performed no calculation to 
determine this, these are observable characteristics that are inherently 
associated with the concepts of even and odd for each base system. 

Using these inherent properties of even|odd for base ten numbers, we 
can apply them through observation to ‘prime’ numbers. It is an 
inherent property of prime numbers that, other than for the prime 2, 
all others are odd, which means their lsd aren’t 0, 2, 4, 6, or 8. So by 
mere observation you know 341786 isn’t prime. You didn’t need to 
perform a calculation to confirm this, if you understood this natural 
inherent property of prime numbers it’s observably obvious. 

Also, other than for the prime 5, all other primes lsd can only be 1, 3, 
7, or 9. This means at minimum 60% of all integers (those with lsd of 
0, 2, 4, 5, 6, and 8) can’t be primes. This is an inherent property of 
numbers. If you know a little bit more number theory, you also know 
that while 11 and 101 could be primes (they are) 111, 1011, and 1101 
observably could not. Why? Because for base ten numbers, if the sum 
of their digits is a multiple of 3 then it’s divisible by 3, and thus not 
prime. 

Thus it is an inherent property of Twin Primes their lsd can only be {1, 
3}, {7, 9}, or {9, 1} e.g. for (11, 13), (17, 19), and (29, 31). It’s also 
inherent for all prime numbers > 2, the gaps between them are even 
because each is odd. You don’t have to ‘prove’ this (though the proof 
is simple), it is an inherent property of odd numbers. 

Thus, when I refer to the inherent properties of prime generators, these 
are observable characteristics and patterns that emerge naturally from 
their structure which I have mathematically codified. They are also 
immutable because they are the same for all generators constructed as 
shown, and can’t change. 

On the infinity of twin primes and other K-tuples
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Constructing the Pn modulus as the primorial of primes pn totally 
determines its structure, as the residues count is determined by the 
Euler Totient Function, their values by the gcd test, and the residue 
values determine their gap sizes, whose distribution is determined by 
the symmetric properties of their modular forms. There is nothing 
random in this process. 

So while there is a clear deterministic numerical foundation for PGT, 
visualization of its elements reveal and explains it best. You have to 
draw pictures, e.g. Figure 1. and generator sequences, and produce 
enough examples to visually reveal their patterns. You cannot 
imagine these properties into existence just from numerical analysis, 
you have to observe them first. 

Now that I have described and given examples of prime generators and 
their sequences, I will list their observable inherent properties, which I 
have codified into a mathematically consistent framework for 
application. 

Major properties of prime generators 

• the modulus of every prime generator with last prime pn

has primorial form: modpn = pn#

• the number of residues are even with form:
rescntpn = (pn -1)#

 the residues occur as modular complement pairs to its
modulus: modpn = ri + rj

 the last two residues of a generator are constructed as: 
(modpn - 1) (modpn + 1)

 the residues include all the coprime primes up to modpn

 the first residue r0 is the next prime > pn

 the residues from r0 to r0
2 are primes

 each prime generator has a characteristic sequence of
even sized residue gaps

 the last 3 sequence gaps have form: (r0 - 1) 2 (r0 - 1)

 the gaps are distributed in a symmetric mirror image
around a pivot gap of size 4

• the residue gaps sum from r0 to r   + modpn equals the  
modulus: modpn = Σai· 2i

• the coefficients ai are the frequency of each gap of size 2i

• the sum of the coefficients ai equal the number of residues: 
rescntpn = Σai

• coefficients a1 = a2 are odd and equal with form: a1 = a2 = 
a1 = a2 = (pn - 2)#

• the coefficients ai are even for i > 2

• the minimum number of nonzero coefficients ai in the 
sequence for Pn is of order pn−1

These inherent and immutable properties form a bounded set of 
constraints which characterize the formation and distribution of 
primes, and thus also the distribution of all their prime k-tuples. 

These discrete mathematical properties and operations form a striking 
correlation to calculus, where for distance x(t) its first derivative is 
velocity = dx(t)/dt and its second derivative is acceleration = dv(t)/dt. 

For prime generators, distance is the number span covered by modpn, 
and its derivative are the number of residues|gaps. Taking the 
derivative of the number of gaps gives us the actual gap size coefficients. 

1 2

Prime Generators

( ) ( ) mod 2

( ) ( ) ( 1)

( ) ( ) ( 2)

i i

i i

i

x t v t dt pn a i p

v t a t dt rescntpn a p

a t A t dt a a p

   

   

   

 

 


While calculus integration is analogous to discrete summation, it is not 
intuitive that discrete summation correlates to primorial operators for 
prime generators. Or is it? Actually we see a similar relationship with 
the Riemann Zeta series and its equivalent Euler primes product form. 

s s
1s

8 8s

mod1
(1 )

( 1)

p p
p

p rescntpn

   



 


 (9) 

Proof of the infinity of twin primes and other k-tuples 
Theory of proof 
For every Pn with largest modulus primorial prime pn, its residues 
contain the consecutive primes pi from r0 ≤ pi ≤ pn# + 1, and their 
coprime composites, whose total is (pn − 1)#. In general, we don’t know 
which residues are primes over the whole range. However, if we limit 
the range of interest to r0 to r0

2 we know those residues are consecutive 
primes (as r0 = pn+1 is the first prime > pn, the residues from pn+1 to p2

n+1 
are the consecutive primes > pn and < p2

n+1 coprime to pn#). Thus the 
gaps between these prime residues constitute the distribution of their 
prime pair k-tuples. Since we know the residue gap distribution over 
the whole range, we can estimate with high accuracy their distribution 
in this range. We find as the residue gaps increase in size and frequency 
as pn increases, the prime gaps from pn+1 to p2

n+1 similarly increase, for 

any gap size n as pn → ∞. Thus, for the infinity of residue gaps sizes n 
there are an infinity of (2, n) prime tuples. 

Thus the simplest and elementary proof of the infinity of k-tuples 
establishes their endless progression in the range r0 to r0

2, for as 
Pn increases: 1) the residue gaps coefficients ai (for gap sizes n = 2i) 
increase for size and frequency, without end, and 2) as there are an 
infinity of r0 = p primes, and ranges p to p2, they will contain an 
increasing 

number of prime pairs for any gap size n, without end, as pn → ∞. 

We start by noting again for all Pn: 

 (10) 

 (11) 

Proposition 1 
As Pn increases, residue gap coefficients ai increase infinitely in size and 
frequency. 

Proof. From (11) as modpn increases by pn the number of residues 
increase by (pn − 1), which equal the number of residue gaps. From (10) 
we also know the sum of occurrences for each gap size equals the 
modulus value. The smaller ai gaps occur first, and in highest 
frequency, as a function of increasing pn, while larger gap sizes ak are 
functions of the smaller ones, and also systematically increase in 
frequency with pn. Thus as Pn increases by pn, the number of unique 
residues gap sizes and their frequency of occurrence increase, without 

end as pn → ∞. 

s s

n

modpn = pn# =
∑

ai · 2i

rescntpn = (pn − 1)# =
∑

ai

0

Calculus
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· (p − 2)/2 · log(p), for a weaker estimate.

 (12)

If we substitute the expressions for a1, rescntpn, and πest(p, p2) we get: 

 (13) 

To verify it works, let’s first use the parameters for P7, with r0 = p = 
11, rescntp7 = 48, and a1= 15. The actual primes count π(11,121) = 
26, thus: Twins|Cousins count ≃ ⌈15 · 26/48⌉ = 9. Using the weaker 
primes estimate of ⌈(11)(11 - 2) / 2·log(11)⌉, we get ⌈(15)(11)(9) / 
96·log(11)⌉ = 7 Twins|Cousins primes. We see previously for P7 (and 
Fig 5.) the actual Twins|Cousins counts are 8|9 in the range 11 to 
121, thus we get accurate estimates from both calculations. 

To test for a larger range, let’s use P97, whose r0 = p = 101. 

97 1 2 1 · 3 1 · 5 1 ·...· 97 1 27739969042( ) ( ) ( ) ( 7737839953078806118400000) ( )rescntp p
i

       

12|
2 3 2 · 5 2 · 7 2 ·...· 97 2 44148215542( ) ( ) ( ) ( ) 94015162( 8274967912609375)a podd       

is an estimable increasing large number of pairs for every Pn as 

pn → ∞. 

The computational forms for gap coefficients a3 to a34 (see Appendix) 
have also been determined, and reveal the structured 
deterministic relationship between all gap sizes. Each larger gap size 
frequency is a function of all smaller gaps. Thus their values can also 
be calculated for all Pn, and estimated within the range r0 to r0

2 for 
them. Once an ai comes into existence it can not then vanish (go to 
0), or even decrease, as that would violate the constraints on the PGS 
gap structure. 

Thus we’ve established with certainty, prime gaps will always increase 
in frequency and size, precluding a last prime pair for any gap n as 

→∞. Thus there are an infinity of all k-tuples.

Proof by contradiction 
To say there are not an infinity of all k-tuples (i.e. a finite number) 
means empirically for all ai they become and remain zero (0) starting 
with some Pn. This mathematically requires the residues structure 
starting with this Pn to change in a mathematically permissible 
manner. Is this possible? 

The structure of this proof is applicable for every gap coefficient ai, but 
I need only demonstrate it for a1 = a2, as all other gaps are numerically 
related to them. 

Let’s imagine for some unknown Pn? with modulus pn?#, a1 = a2 reach 
some constant value, as pn increases. Under this scenario we know 
there still would be an infinity of Twins|Cousins, because all there 
needs to be at minimum is one additional larger pair continually found 

for just some Pn (let alone every Pn) as pn → ∞. 

Thus for there to be a finite number of Twins|Cousins, et al, we must 
have a1 = a2 = 0 starting with some Pn, and remaining so forever. But 
we know (see Appendix) that a3 is a function of a1|2, a4 a function of a3, 
etc, etc, thus it’s mathematically impermissible for this scenario to 
occur. It’s a mathematical absurdity for all the gap coefficients be zero, 
as there would be no residue gaps. 

Thus we have a clear contradiction. In addition, a1 = a2 conform to a 
deterministic relationship solely based on the modulus primes, and 

rapidly increase as pn → ∞. Thus a1 = a2 are never zero, and in fact 
increase within the range r0 to r0

2 for every Pn, precluding a last 
Twin|Cousin prime. 

To require an existing ai to permanently vanish creates a set of 
mathematically contradictory scenarios. For some Pn, its residues 
count would no longer be determined by the Euler Totient Function 
(so there are either more|fewer residues per modulus), and|or the 
residues are no longer modular complements (so their residues gaps 
distribution symmetry has changed). But the residue gaps cannot 
change without the residue values changing, which are the coprimes to 
modpn. 

Every conceivable scenario to establish a finite number for any gap size 
requires mathematical contradictions or absurdities. In fact, it’s easier 
to imagine by intuition alone there must be an infinity of k-tuples, than 
somehow mathematically envision and numerically establish their 
finality. 

Thus, to have a finite number for any prime gap requires its ai to 
become and remain zero, requiring a Pn’s structure to change in 
multiple impossible ways, which will affect every other gap. 

Proposition 2 

As pn → ∞, within r0 to r0
2 the ai gaps increase infinitely in size and 

frequency. 

Proof. Because the residues exist as modular complement pairs, they 
have a mirror image symmetry distribution. Smaller residue gaps 
generally occur with much higher frequency, and large gaps 
systematically lower, among their total, and sub ranges. As pnn increases, 
the residues become less dense and have more separation, and thus 
larger gaps, in higher frequencies, will be reflected within the primes r0 
to r0

2. As the range grows by p2 the number of primes grows : p2/log(p2) 
and contain proportionally more k-tuples, which increase without end 

as pn → ∞. 

Figure 3. empirically shows the systematic increase in the size and 
frequency of the residue gaps for increasing Pn, required by (10) and 
(11). Figure 4. Shows the slow initial, but then rapid, growth of the 
primes in r0 to r0

2, while Figure 5. shows the steady growth of their k-
tuples as pn increases. 

Because coefficients a1 = a2 have a clear deterministic expression for all 
Pn, we can formulate a good estimate for prime gaps 2 and 4 
(Twins|Cousins) for all Pn. We can simply say it’s the percentage of 
their gaps to its residue count times the number of primes from r0 to 
r0

2, i.e. π(p, p2). For computational simplicity we can use πest(p, p2) = p 

T wins|Cousins count≃ ⌈(a1/rescntpn) · π(p, p2)⌉

Twins|Cousins count ≃ ∏(pi − 2)

(pi − 1)
· p · (p− 2)

2 · log(p)

⌈∏ ⌉

π(101, 1012) = 1227

πest(101, 1012) = ⌈(101) · (99)/2 · log(101)⌉ = ⌈1083.3⌉ = 1084 Strong 

estimate: Twins|Cousins ≃ ⌈(a1/rescntp97)·1227⌉ = ⌈195.3⌉ = 196 

Weaker estimate: Twins|Cousins ≃ ⌈(a1/rescntp97)·1084⌉ = ⌈172.5⌉ = 173 

From Fig 5. we see the computed Twins|Cousins counts are 202|197 
in the range 101 to 1012.  

To establish with certainty an infinity of Twins|Cousins, et al, it’s only 
necessary to show at least one additional larger pair continually exists 

for some set of (not even all) Pn as pn → ∞. Here it’s established there
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As there can be no finite number for any residue gap then consequently 
so too for any prime gap. 

DATA 

The following data was derived using Ruby|Crystal scripts to generate 
and count the residue gaps. 

Listed here are all the residue gap coefficients ai for the first few prime 
generators. We observe: the sum of the columns for each Pn equals 
its residues count; the sum of the products of each ai by its gap size 2i 
equals modpn; and for each Pn there are on order pn−1 unique 
coefficients. Also for the Pn shown, the first instance for aprime (a3, a5, 
a7, etc) equal 2. 

We also see the gaps frequency values oscillate up and down as they 
increase in size, with the smaller gaps numerically dominant in their 
frequency, and larger gaps initially occur with relatively much much 
lower frequency. This characteristic is a function of the computational 
forms of the ai, where each larger gap has a defined numerical 
relationship with the preceding smaller gaps and pn for its generator 
(Figure 3). 

Figure 3) Gaps frequency values oscillate up and down. 

As new larger gaps appear within a PGS, it takes some time (i.e. some 
progression of generators) for them to appear within the range p to p2 
of larger Pn where they become strictly prime gaps. The number of 
these residues constitute a dwindling percentage of the residue count 
for larger Pn, as shown below. This affects the rate of progression of Pn 
necessary to identify the strictly primes gaps (Figure 4). 

Figure 4) New larger gaps appear within a PGS. 

Below shows the progression of gaps frequency within p to p2 for 
gap sizes shown, and the max gap. 

Figure 5) Progression of gaps frequency. 

Here I use the data for p = 101 to visually show the oscillatory 
behavior of the gap sizes. We see from the data in Fig 5. this 
characteristic becomes more pronounced for larger p gap ranges. 
Larger ranges will have more local maxima|minima as they will 
generate more larger gaps. Each generator, thus, will have its own 
signature curve. We also see the local maxima|minima gap sizes 
exhibit an interesting characteristic: most of these ai indices are 
primes, i = 2, 3, 5, 11, 13, 17, or are powers of 2 or 3, i = 2, 4, 8, 9, 
16, 27. It will be interesting to see the pattern for much larger gap 
sizes for increasing Pn (Figure 6). 

Figure 6) Prominence of the smaller gaps and their expansion property. 

We also clearly see the prominence of the smaller gaps and their 
expansion property. All the preexisting gaps are pushed toward the 
front for the first half mirrored gaps (as larger ones are included within 
the structure) and they will appear first, and in greater frequency than 
larger gaps, for each larger generator. But to be clear, we are observing 
the number of atomic gaps (between consecutive primes) not 
composite gaps (over multiple primes). 

The data shows, as expected, the ratio of Twins|Cousins is near unity 
(1) as their residue gaps are the same (providing the modular form
framework to explain the Hardy-Littlewood Conjectures). We also see
there will always be more Sexy Primes than Twins|Cousins, or any
other individual k-tuple for the ranges shown. But with p = 503 we start
to see gaps of multiples of 6 become the dominate local maxima of the
gaps curves. In fact, the 1999 paper Jumping Champions, by Odlyzko,
Rubinstein, and Wolf [9], suggests as we increase the number range, 
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the most frequent prime gaps increase from 6, to 30, to 210, etc, i.e. 
are primorial gap sizes 3#, 5#, 7#, etc. 

Here I show in more detail the slow growth rate of max gap sizes for 
increasing ranges p to p2 (Figure 7). 

Figure 7) Graph quantifies the slow expansion. 

This graph quantifies the slow expansion. As p increases orders 
of magnitude its PGS max gap grows much slower. For p of order 103 
the max gap reaches 102, but only increases to 5 · 102 for p of order 
106. We can create growth curves for all the other gap sizes to see 
their growth rate.

It should be noted again, though while this graph is 
technically accurate, it doesn’t tell the whole story, as the gaps don’t 
always occur in linear order. For example, the first prime gaps for 
210, 220, 248, etc, occur for prime values much smaller than for the 
first prime pair with gap 200. 

Also, primes gaps seem to occur in clusters. Primes with 
(relatively) small gaps seem to cluster in progression. As we journey 
higher into the number space we start to observe more and larger 
prime gaps (in fact an infinity of them), regions I call prime vacuums 
(or deserts). The smaller gap clusters exist around the vacuums, 
which using classical numerical techniques makes searching for 
extremely large Twins, Merseene Primes, etc harder. You ideally 
want to be able to identify where the vacuums are and avoid them. 
We can use the residue gaps profiles for PGS to confine searches 
accordingly based on the goals [1]. 

Thus the data illustrate the distribution of primes is not random, but 
in fact deterministic, and conform to the described 
properties manifested within the structure of prime generators. 

APPENDIX 
Infinite progression of primes

From the Prime Number Theorem (PNT), it has been proved 
the number of primes up to any value x is on order x/log(x), or better 
Li(x) (log integral x). I use equation (8) (for computational 
simplicity) x/log(x) to estimate the number of primes between any 
random prime p (or really any value x ) and p2, per the PNT. 

The Pn residues are the integers pn < ri < modpn coprime to modpn. 
The Euler Totient Function (ETF) tells us their exact number. Thus 
it’s clear, the {ri } must include all the primes, and their 
coprime multiples < modpn, necessary to satisfy the ETF residues 
count. 
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Each Pn eliminates all its modulus primes multiples from 
consideration. Since the first residue r0 of every Pn is the next prime > 
pn, its first multiple in its residue set (pcs table) is the multiple with 
itself, i.e. r0

2. Therefore, the residues between r0 to r0
2 can only be the 

consecutive primes in that interval, as they are not multiples (the only 
non-multiples) of the modulus primes < r0

2. And the PNT estimates 
their numbers are of order p2/log(p2) - p/log(p), or better Li(p2) - Li(p). 

However, for each specific generator Pn we can compute easier a 
simpler estimate. We know the number of modulus primes for any 
Pn, I’ll note as π(modpn). Thus the primes < r0

2, for r0 = p are: p2/
log(p2) - π(modpn). For the previous example for P23, with r0 = 29, a 
simpler calculation is then: ⌈(841)/log(841) - 9⌉ = ⌈115.87⌉ = 116 as 
before. In fact, we can just use p2/log(p2), here ⌈841/log(841)⌉ = 
⌈124.88⌉ = 125, as π(modpn) is relatively so much smaller as p2 
becomes larger.

Thus, since we know each generator Pn always generates the 
consecutive primes r0 to r0

2, we can use these primes to construct a 
larger Pn, and keep repeating this process as many times as we want to 
generate as many consecutive primes groups we want, and thus can 
also then observe, record, and count, the exact gap structure of all 
the primes, into infinity. The graph below shows the growth in the 
number of new primes in r0 to r0

2 for each of the first 100 
primorial Pn generators. We see it has the classic x2 parabolic curve, as 
the number of primes will grow without end as more primes are used 
to construct larger primorial generators (Figure 8). 

Figure 8) Growth in the number of new primes. 

Here we see the ratio of the number of new primes to primorial primes. 
It has a much more linear profile, as their growth appears fairly 
constant for the first 100 primorials. It’ll be interesting to see if it 
approaches some asymptotic limit as the primorial primes increase by 
orders of magnitude (Figure 9). 

Figure 9) The ratio of the number of new primes to primorial primes. 

Modular complement property 
Using clock math, we see residues exist as modular complement pairs, 
and prime generator sequences have mirror image symmetry, as a direct 
property of their modular forms. 

On the infinity of twin primes and other K-tuples
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Any even n can be the modulus for a cyclic integer generator (a ring 
Zn) we can visualize as a clock of n hours. A 12 hour clock has a 
modulus of 12 with mod values 0–11. We see if we draw horizontal 
lines between the hours left-to-right, their sums equals 12, and also see 
this if we fold the clock on its vertical axis. Moduli with multiple factors 
of 2 (as here) have even midpoint|bottom values, thus the bottom gap 
is 2. For primorial moduli, et al, with one factor of 2, the midpoint is 
odd, and the bottom (pivot) gap is 4 between the odd values on each 
side. The top gap is 2, so primorials have equal odd numbers of gaps 
of 2 and 4, while all others occur evenly on the clock. When we form 
the prime generator P12, for mod12 we only use the residues coprime 
to 12, i.e. {1, 5, 7, 11}, where (1, 11) and (5, 7) are modular complement 
pairs. Eliminating the non-coprime values creates the P12 generator 
with these 4 residues, and its mirror image gap distribution. Any even 
n > 2 will have a modular form with these modular complement 
properties, for every Pn (Figure 10). 

Figure 10) Cyclic integer generator 

Reduced Primorials 
The principal, and reduced primorials of rank r, play a fundamental 
role in the construction of the ai residue gap coefficients values. They 

have form: (p ) ( ),
nr

ipn n i
r p r p r


      where for pi = r, (pi − r)# 

= 0#=1, similar to 0!= 1. Below is a table of the reduced primorials for 
the first 10 primorials (Figure 11). 

Gap Coefficients 

It was previously established: 

I have also determined the recursive forms for a1 - a7. For any generator 
Pn, with last modulus prime pn, its gap coefficients ai are a function of 

pn and the preceding generator coefficients 

The P37 gap coefficients distribution has now also been directly 
generated, and is shown below. 

a1 = 217,929,355,875 
a2 = 217,929,355,875 
a3 = 293,920,842,950 
a4 = 91,589,444,450 
a5 = 108,861,586,050 
a6 = 83,462,164,156 
a7 = 34,861,119,734 
a8 = 16,996,070,868 
a9 = 21,218,333,416 
a10 = 4,814,320,320 
a11 = 5,454,179,550 
a12 = 4,073,954,144 
a13 = 918,069,454 
a14 = 857,901,000 
a15 = 535,673,924 
a16 = 58,664,256 
a17 = 69,404,898 
a18 = 46,346,428 
a19 = 7,381,190 
a20 = 10,176,048 
a21 = 4,153,336 
a22 = 526,596 
a23 = 291,342 
a24 = 239,760 
a25 = 91,392 
a26 = 8,912 
a27 = 25,320 
a28 = 2,952 
a29 = 1,654 
a30 = 452 

a31 = 26 
a32 = 48 
a33 = 24 

We can now calculate the gap estimates within the range p to p2 for a1 
- a7. Comparing data from Figure 5. let’s calculate the estimates for a1

- a7 for p to p2 for r0=p=53. This means we have to find all those
coefficients values up to P47. Below are their calculated values
starting from P37 (Figure 12).

###

Figure 11) Reduced primorials for the first 10 primorials. 

a1 = a2 = (pn−2)# =
∏
(podd −2) = (3−2)·(5−2)·(7−2)·...·(pn− 2).

a1 = a′1 · (pn − 2)
a2 = a′2 · (pn − 2)
a3 = a′3 · (pn − 3) + a′2 + a′1
a4 = a′4 · (pn − 4) + a′3
a5 = a′5 · (pn − 5) + a′4 · 2 + a′3
a6 = a′6 · (pn − 5) + a′5 · 6 − a′4 · 2
a7 = a′7 · (pn − 7) + a′6 · 3 − a′5 · 3 + a′4 · 4

n

pi≥r

a′i.
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Figure 12) Calculated values starting from P37 

We can now use P47’s calculated ai to find their range estimates:  

gapsi ≃ ⌈ai·π(p, p2)/rescntp47⌉ (Figure 13).

For p = 53, π(p, p2) = 394, and 47 ( 1) 85287729364992000,
p

np
rescntp p  

gives values: 

Figure 13) Use P47’s calculated 

There’s also an algebraic way to generate the ai values without 
recursion, using reduced primorials. The table below shows the first 20 
ci,j rational coefficients, which when multiplied by the respective 

reduced primorial 
r

n
p


# column values, and summed across each row, 

will compute the ai resdue gap values for any Pn generator (Figure 14). 

Figure 14) Algebraic way to generate the ai 

We directly compute each ai(n) value as:
(1 )

1
( ) ,

k j

iji n
a n c p

 


  #, for 

their k row values. Thus as before:
2

1 2 1|2,1
( ) ( ) c

n
a n a n p


 

 (1)(pn − 2)#, are the 2nd reduced primorials. 

For a computaionally longer example, let’s compute a8 (residue gaps 
of 16) for P23, i.e.P9.

To compute it for any Pn we have: 

8 8,1 8,2 8,3 8,4 8,

2 3 4 5 6

5
a (n) =c # + c # + c # + c #+c #

n n n n n
p p p p p
    

For P23, p9= 23 (for the 9th primorial) and we use the 
9

#
r

p


reduced 

primorial table values. 

2 3 4 5 6

9 9 98 9 9
a (9) = (1)p # + (-5)p # +(12)p #+ (-6)p #+ (1)p #    

=(7952175)-5(2867200)+12(700245)-6(290304+(85085)=362376

We see this matches the value in Figure 3., which were obtained by  
brute force computation. At time of writing, the values up to c35 have 
been determined, to compute a1 −a35 for any Pn. However, a 
presentation of their derivation is beyond the scope of this paper. 

Numerical gap derivations 
The ai coefficients can be numerically determined by the constrained 
system of equations for Pn: 

 (14) 

 (15) 

As pn# is an even value c1 and (pn − 1)# an even value c2 we can reduce 
the equations to: 

 (16) 

Oddness of a1 and a2 
For P2 we only need to use: 

1

2 # 2 2
a

  (17) 

This numerically establishes a1 = 1 for P2 as the single (odd) value for 
gap size 2 for its PGS. 

For P3 we have c1 = 3# = 6 and c2 = (2 − 1) ・ (3 − 1) = 2, and we are 
constrained to only having the two nonzero coefficients a1 and a2, 
which gives: 

1 2
3 2a a   (18) 

1 2
2 a a 

The only solution is a1 = a2 = 1, matching the known odd occurrences 
for gaps 2 and 4 for P3. 
For P5 we have c1 = 5# = 30 and c2 = 8, and are constrained to only 
having the nonzero coefficients a1, a2, and a3 which gives 

1 2 3
15 2 3a a a    (19) 

1 2 3
8 a a a  

We now create the system of equations: 2R2 - R1 and 3R2 - R1, 

1 3
1 a a   (20) 

1 2
9 2a a 

which after rearranging gives: 

3 1
1a a   (21) 

9 2a  

47

2

p

p

j

# =
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= (7952175) − 5(2867200) + 12(700245) − 6(290304) + (85085) = 362376

a1 - a35

modpn = pn# =
∑

ai · 2i = 2 · a1 + 4 · a2 + 6 · a3 + ... + 2n · an

rescntpn = (pn − 1)# =
∑

ai = a1 + a2 + a3 + ... + an

c1/2 = a1 + 2 · a2 + 3 · a3 + ... + n · an

c2 = a1 + a2 + a3 + ... + an

2 a1
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′

We solve this by picking the value for a1 that produces a2 and a3 that 
satisfy equations (19). 
Notice a2 is odd for any value of a1, and because we know a3 is even a1 
must be odd, and constrained to 1 or 3 (5 makes a2 negative). Only a1 
=3 works, producing a2 = 3 and a3 = 2, the known PGS values for P5. 
Again we see, now purely through numerical methods, that a1 = a2 and 
numerically required to be odd, which matches the computational 
form for these 𝑎1|2 = 𝑎 |2. (𝑝𝑛 − 2) 

Let’s continue for P7, with 𝑐1 = 7# = 210 and 𝑐2 = Π𝑝2
𝑝7(𝑝𝑛 − 1) =

48 

1 2 3 4 5
105 = a  + 2a  + 3a  + 4a  + 5a  (22) 

1 2 3 4 5
48 = a + a  + a  + a  + a

Now do R1 - R2, to eliminate a1, and R1 - 2R2, to eliminate a2, and 
after rearranging gives: 

2 3 4 5
a  = 57 - 2a  - 3a  - 4a  (23) 

1 3 4 5
a  = -9 + a  + 2a  + 3a

Again, a1 and a2 are odd as a3|4|5 are even (due to their mirror 
symmetry). This problem is solvable using linear programming 
algorithms e.g. the Simplex Method. It can be characterized using their 
prime generators properties to produce the ai values for P7, i.e. a1 = a2 
= 15, a3 = 14, a4 = 2, and a5 = 2 for all larger Pn, a1|a2 will have 
similar forms as (23) with more ai terms. 

Solving for larger ai 
However, we really want a system of equations where the larger gap 
coefficients are functions of the smaller ones, to reflect the order of 
their relational structure we see empirically expressed in their 
computational forms. Thus, because we know a1=a2 we can transform 
(22) to:

 (24) 

We now create a new system, solving for a5, and performing 5R2−R1 
and solving for a4: 

 (25) 

We can now pick a3 to determine a4, and then a5, which gives us all the 
ai. For P7, a1 = a2 = 15 gives c3 = 60 and c4 = 18 creates: 

 (26) 

Because a3|4|5 are > 0 and even, requires 2 ≤ a3|even ≤ 14, the only 
solution is, again, a3 = 14, a4 = 2, and a5 = 2. 
Creating the equations in this order provides for computation of the 
lower values for larger gaps. 

As the gaps become larger we’ll see more of the oscillating nature of 
their values as functions of smaller gaps, as shown in Fig 6. Thus we 
illustrate again using numerical methods, the properties of prime 
generators determine the unique solution to the system of constraints 
for each Pn, which show the gap coefficients ai will only increase in 

frequency value for all gap sizes, as the Pn moduli pn# increase as 
pn → ∞. 

Closing thoughts 

Since the 2013 release of Yitang Zhang’s paper [10] that for some 
integer N < 70 million there are infinitely many pairs of primes that 
differ by N, there has been a fury of activity to reduce its bound to a 
smallest gap size. Included now is the quest to solve problems 
regarding questions of small and large gaps [11]. The work presented 
here proposes to establish with certainty there are infinity of prime 
pairs that differ by any gap size, large and small. 

Using strictly numerical approaches will likely continue to be fruitless 
to definitively answer questions about prime gaps. If you want 
to understand and characterize the nature of prime gaps the most 
direct (and easiest) approach is to strictly work within the domain of 
prime gaps. Prime Generator Theory (PGT) provides the 
theoretical, philosophical, and numerical framework to do this, 
which current analytical and numerical methods alone are not 
equipped to do. 

At the beginning of the 20th Century, Relativity Theory was imagined 
by Einstein to provide both a qualitative and quantitative 
framework to better understand and explain how nature works. 
Initially it was resisted, but ultimately was (had to be) embraced 
because it worked. It could quantitatively answer questions about 
the known behavior of nature other theories couldn’t, and accurately 
predict and explain previously uncontemplated behavior. And 
continual experimental testing has reaffirmed its validity (for the 
reality we are aware of), over and over. 

Here at the start of the 21st Century, I believe PGT shares a similar 
role in the field of math. It provides a better framework to 
qualitatively and quantitatively understand, characterize, explain, 
and predict the behavior of primes. Resistance has run mostly 
along the lines of questioning language, the meaning of 
terminology, being too simplistic, the perceived lack of rigor, etc. 
These are complaints more about its qualitative nature, and|or 
epistemological basis for knowing, than a refutation of its theoretical 
foundations or its empirical results and predictions. 

The content herein is a major revision of the earlier versions, to 
present its findings in a clearer and more “mathematician friendly” 
format, and to present new information and findings. I would ask 
whatever it may seem to lack in traditional mathematical rigor not be 
a deterrent from recognition of its mathematically sound 
theoretical under girding. Judge it on the merits of the evidence of 
its findings and results, which I contend overwhelmingly establish 
with certainty it claims. 

Undoubtedly the work presented here touches just the surface of a 
body of knowledge begging to be explored and revealed. Hopefully 
the curious will take up the challenge to do just that, and share 
their findings, and apply them to the myriad of known problems 
waiting to be solved, while contemplating and proposing new ones 
heretofore unimagined. 

RESULTS 

Ultimately, any proof must be able to explain known empirical 
results, and predict future ones. It’s shown we can compute a good 
minimum estimate for Twins|Cousins (and others) for any Pn. 
We can also establish when any residue gap first appears in some 
Pn, and then determine when it appears within the range r0 to r0

2 for 
some larger Pn. 

For example, a50, which denotes residues gaps of 100, first occurs 
for P59 (because its PGS has on order 53 coefficients). Figure 5. 
shows a prime gap size of 100 first occurs for 503 < p < 1009. 
The exact value is p = 631; i.e. between 631 and 6312 the first 
prime pair of gap size 100 occurs among those 33,599 primes. Thus,

We solve this by picking the value for a1 that produces a2 and a3 that 
satisfy equations (19). 

(105− 3a1) = c3 = 3a3 + 4a4 + 5a5

(48− 2a1) = c4 = a3 + a4 + a5

a5 = c4 − a4 − a3

a4 = 5c4 − c3 − 2a3

a5 = 18− a4 − a3

a4 = 30− 2a3

1

1

Pn: a1|2= a′
1|2 · (pn − 2).
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while in general gaps of 100 start occurring between residues with 
P59, it takes until P619 to establish with certainty the first prime 
residue pair of this size, a span of 98 prime generators. While this 
simple process may not seem rapid, it is mathematically certain.  

The following list are the first prime pairs with the first multiple of 
100 gaps sizes shown. 

 First instance of prime gap of 100 is (396,733; 396,833)
 First instance of prime gap of 200 is (378,043,979;

378,044,179)

 First instance of prime gap of 300 is (4,758,958,741;
4,758,959,041)

 First instance of prime gap of 400 is (47,203,303,159;
47,203,303,559)

 First instance of prime gap of 500 is (303,371,455,241; 
303,371,455,741)

(It should be noted, the gaps don’t necessarily occur in linear order, as 
the first prime gap for 210, for the pair (20,831,323; 20,831,533), 
occurs well before the first prime pair gap 200.)  

Because their are an infinity of primes pn there are no theoretical upper 
bounds on this process. As the gap sizes increase their first, etc, prime 
residue pairs will become unimaginably large. But that’s OK. We need 
not determine their actual values, but merely establish with certainty 
(with this simple process) that they exist, and that there are an infinity 
of them of any size. 

CONCLUSION 
The properties of Prime Generators allow for direct examination of 
the structure of the gaps between primes. They empirically show 
prime numbers, and their gaps, conform to a deterministic structure 
that determines their nature, numbers, and distribution. Residue 
gaps of any size n will first exist for some Pn, and occur in larger 
numbers for all larger generators. These residue gaps will ultimately 
appear and remain in the range r0 to r0

2, becoming prime gaps for 
some Pn, and all larger. Thus, this simple process establishes the 
residue gaps only increase in size|frequency, and with ultimate  
certainty will appear as strictly prime gaps, whose k-tuples only 
increase without end as pn → ∞. 
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