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Oufaska’s identity (Vn € N* we have nt(2n)+it(2n)=n)
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DESCRIPTION

In this article, Oufaska’s identity (or Oufaska’s equation) asserts that for
every natural number n the sum of the prime-counting function m(2n) and
the con-counting function 1 (2n) equals n. Oufaska’s identity (or Oufaska’s
equation) has many applications in number theory and its related to one of
the famous problems in mathematics for example the twin prime conjecture

[1-3].

Notation and reminder

N*:={1,2,3,4,5,6,7,8,9,10,11,...} The natural numbers.

N, :={0,2,4,6,8,10,12,14,16,18,20,...} The even numbers.

Neon :=19,15,21,25,27,33,35,39,45,49,51,...} The composite odd numbers.
P :={2,3,5,7,11,13,17,19,23,29,31,...} The prime numbers.
P*:={3,5,7,11,13,17,19,23,29,31,37,...} The odd prime numbers.

V': The universal quantifier and 3: The existential quantifier.

Card A: The number of elements in A.

ANB: All elements that are members of both A and B.

AUB: All elements that are members of both A or B.

@ The empty set is the unique set having no elements.

Definition 1( The prime-counting function m(x) ) . ¥Yx >0 we have

m(x) = Card[0,x] NP = Card{p<x:peP}. In other words,
m(x) is the number of primes less than or equal x .

In 1838, Dirichlet observed that m(x) can be well approximated by the
logarithmic integral function li(x) = f;% or m(x)~li(x) (x — 00).

The celebrated prime number theorem, proved independently by de la
Vallée Poussin and Hadamard in 1896, states that m(x) Nﬁ (x — o).

Definition 2( The prime-counting function m(2n) ) .¥n € N* we have
w(2n) = Card[1,2n] NP =Card{p <2n:p €P}. In other words,
m(2n) is the number of primes less than or equal 2n..

Definition 3( The con-counting function w(2n) ) . YVn € N° we have
7(2n) = Card[1,2n] N Ny = Card{p < 2n: p € Ngp}. In other words,
7(2n) is the number of composite odd numbers less than 2n .

Definition 4( The en-counting function 7(2n) ) . Yn€N" we have
(2n) = Card[1,2n]NN,, = Card{p < 2n:p €N_,} . In other words
7(2n) is the number of even numbers less than or equal 2n.

Examples:

Forn=1we have m(2) =1 and 7(2) = 0and 7(2) = 1
Forn=2we have n(4) =2 and 7(4) = 0 and 7(4) = 2
Forn=3 we have m(6) =3 and 7(6) = 0 and 7(6) = 3
For n=4 we have m(8) =4 and 7(8) = 0 and 7(8) = 4
Forn=5we have m(10) =4and 7(10) = 1and T(10) =5
Forn=6 we have m(12) =5and 7(12) = 1and 7(12) =6
Forn=7 we have m(14) =6 and 7(14) = 1 and 7(14) =7

Forn=8 we have m(16) =6 and 7(16) = 2 and 7(16) = 8

Lemma. ¥ n € N* we have 7(2n) = n.

Proof. (Trivial).

Theorem .V n € N* we have m(2n) + #(2n) + 7(2n) = 2n.

Proof. Indeed, ¥ n € N*we have

[1,2n] NN ={1}u{[1,2n] NN }U{[1,2n] N P*}U{[1,2n] N N gn}

where {1} n{[1,2n] n Ngy }n{[1,2n] n P*}n{[1,2n] N Ny} =0

then, Card[1,2n] N N* = Card{1} + Card[1,2n] N N, + Card[1,2n] n P*
+ Card[1,2n] N Ngp = 2n

then, 14+ T(2n) + n(2n) — 1 +7(2n) = 2n

finally, m(2n) + 7(2n) + 7(2n) = 2n.

Corollary (Oufaska's identity). ¥ n € N* we have ni(2n) + @(2n) =n.

Proof.V n € N* we have n(2n) 4+ 7(2n) + 7(2n) =2nand I(2n) =n

then, m(2n) + 7T(2n) +n =2n

finally, n(2n) + 7(2n) = n.

(2n) = 0 whenn < 4

Remarc |
emat 7(2n) = 1whenn > 4
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