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Due to the wide interindividual variability in pharmacokinetics and
therapeutic response of cancer patients towards anticancer drugs,
pharmacogenomic-assisted dose optimization and/or application of
therapeutic drug monitoring service could be of benefit. For some drugs

like irinotecan used in solid tumors, dose optimization may be achieved if
the oncologist depends on pharmacogenomic approach. On the other hand,
dose adjustment of some other anticancer drugs like tamoxifen used in
breast cancer can be affected more by application of therapeutic drug
monitoring of its active metabolite; endoxifen.
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INTRODUCTION

Despite the notable advances in treatments used in oncology,
interindividual variabilities in drug response, and/or side effects may limit
the use of chemotherapy protocols [1]. The drugs used in oncology require
often a dosage adjustment to limit the toxic effects while maintaining
optimal efficiency [2].

Irinotecan in solid tumors like colon and lung cancers and tamoxifen in
estrogen receptor (ER)-positive breast cancer are widely used. The clinical
response, efficacy and toxicity of both drugs are variable and may be
related to pharmacogenomic (PG) aspect and/or biotransformation of the
drugs and their active metabolites.

Implementation of the tumor pharmacogenomic in routine clinical
practice, might be of interest as it could predict the future of oncology [3].
Many factors complicate the issue of dose optimization in cancer
chemotherapy including availability of different therapeutic protocols,
wide interindividual variability in PG and pharmacokinetics (PK) of
anticancer drugs and tumor resistance to drug therapy [4,5].

In this minireview, we have selected irinotecan and tamoxifen as two
examples of anticancer drugs to discuss whether PG aspect can play a
definite role in dose optimization, clinical outcome and drug toxicity or
application of therapeutic drug monitoring could be more reliable
especially for tamoxifen drug and its active metabolite, endoxifen.

I-Irinotecan
Irinotecan is an antineoplastic agent widely used in colon and lung
cancers. It is bio transformed in the liver by carboxylesterase 2 to 7-
ethyl-10-hydroxycamptothecin (SN-38), an active metabolite 100-1000
times more cytotoxic than the parent compound. SN38 is metabolized via
glucuronidation by a UDP-glucuronosyltransferase (UGT) enzyme
encoded by the UGT1A1 gene to an inactive compound, SN38 G, more
easily eliminated in bile and urine (Figure 1) [6]. The risk of irinotecan
toxicity increases with genetic variants associated with reduced UGT
enzyme activity. Therefore, UGT1A1 may be a predictor for irinotecan-
induced toxicity. More than sixty variants of UGT1A1 have been reported
and UGT1A1*1 is the wild-type allele associated with normal enzyme
activity. On the other hand, the most common variant (mutant) alleles
related to irinotecan-induced toxicity are UGT1A1*28 and UGT1A1*6
[7].

The frequency of UGT1A1*28, is about 45% in African Americans, up to
40% in Caucasians but less common in Asian population (about 10%)
[8-10].

Figure 1: Biotransformation of irinotecan.

On the other hand, the variant allele, UGT1A1*6, is more prevalent in
Asian populations, with an allele frequency up to 40% [11,12], however, is
rare in Caucasians [13].

The reduced UGT enzyme activity with the genetic variants UGT1A1*28
increases the risk of neutropenia from treatment with irinotecan due to
reduced excretion of irinotecan metabolites, which leads to increased
active irinotecan metabolites in the blood. Approximately 10% of North
Americans carry 2 copies of the UGT1A1*28 allele (homozygous,
UGT1A1 *28/*28), and are more likely to develop neutropenia following
irinotecan therapy [14,15]. The FDA-approved drug label for irinotecan
states that “when administered as a single-agent, a reduction in the starting
dose by at least one level of irinotecan hydrochloride injection should be
considered for patients known to be homozygous for the UGT1A1*28
allele [16]. Furthermore, Innocenti et al in 2013 demonstrated the interest
of genotyping of UGT1A1*28 in the dose setting of irinotecan. Patients
with advanced solid tumors exposed to irinotecan were stratified by the
*1/*1, *1/*28, and *28/*28 genotypes. In the group with the *1/*1
genotype, the maximal tolerated dose (MTD) of the drug was 850 mg, the
group with the *1/*28 genotype, the MTD was 700 mg while the group of
patients with the *28/*28 genotype, the MTD was 400 mg. While the
irinotecan area under plasma concentration curve (AUC) was correlated
with the actual dose given in each group in a linear way, the different
doses of irinotecan in the different three groups with different variants of
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UGT1A1*28 resulted in similar SN-38 areas under the curve [17]. The
study concluded that UGT1A1*28 genotype can be used to individualize
dosing of irinotecan and additional studies should evaluate the effect of
genotype-guided dosing on efficacy in patients receiving irinotecan.

As regards irinotecan-induced diarrhea as another toxicity,
UGT1A1*28/*28 genotype had a higher risk of diarrhea than those with
UGT1A1*1/*1. The data of 25 studies were used to analyze the
association between diarrhea and UGT1A1*28 polymorphism whereas
those with UGT1A1*1/*28 had intermediate risk [7,18].

Analysis of the association between UGT1A1*6 polymorphism and
neutropenia showed that the risk of that toxicity was higher in AA
genotype than GG genotype whereas heterozygotes had intermediate risk
[19,20].

The risk of irinotecan-induced diarrhea in patients carrying UGT1A1*6
gene variants has been reported higher in patients carrying AA genotype
than GG genotype whereas heterozygotes showed intermediate risk
[21,22].

According to the above, UGT1A1 genotyping can be considered as a
straightforward approach for irinotecan dose individualization to achieve
therapeutic targets and reduce adverse effects while application of TDM
of the drug is not at the same beneficial level.

II-Tamoxifen
In the Western world, breast cancer is the most commonly diagnosed
malignancy in women representing the second leading cause of cancer
deaths. This type of cancer is often dependent on estrogen in growth and
anti-estrogen medications are commonly used in treatment [23].

Tamoxifen is a selective estrogen receptor modulator (SERM) that has
anti-estrogenic effect on the mammary gland and is used in hormone
receptor-positive breast cancer in premenopausal women as a long-term
adjuvant therapy showing a 50% reduction in annual recurrence rate and a
30% reduction in breast cancer mortality following 5 years of treatment
[24,25] .

Tamoxifen is extensively metabolized in the liver mainly by CYP2D6 and
CYP3A4 into a range of active and inactive metabolites (Figure 2).

Figure 2: Biotransformation of tamoxifen.

4-hydroxytamoxifen (4OH-tamoxifen) and N-desmethyl-4-hydroxy-
tamoxifen (endoxifen), both have an affinity for the estrogen receptor that
markedly exceeds that of tamoxifen itself. Endoxifen is considered the
main active metabolite, though it has substantially lower steady-state
concentrations than tamoxifen itself in blood, but its affinity for the
estrogen receptor is at least 100-fold higher than the parent drug [26].

CYP2D6 is highly polymorphic and is considered as the rate limiting
enzyme in tamoxifen to endoxifen bioactivation. The metabolic activity of
that enzyme can be predicted from CYP2D6 genotype, enabling
classification of patients into poor (PM), intermediate (IM), extensive
(EM), or ultra-rapid (UM) metabolizer phenotypes [27,28]. The high

variability in endoxifen concentrations among patients ranging from 5 nM
to 100 nM is thought to be derived from polymorphism in CY2D6 [29].

The importance of CYP2D6 in tamoxifen metabolism and subsequent
endoxifen formation has provided logical rationale for the hypothesis that
CYP2D6 genotype correlates with tamoxifen efficacy, disease outcomes,
and prediction of the risk of recurrence [30,31].

However, other studies failed to provide conclusive evidence for
recommending CYP2D6 genotyping as a predictive marker of tamoxifen
efficacy [32,33].

Endoxifen threshold which has a therapeutic effect was reported as 5.97
ng/ml (=16.0 nM) and Patients with low endoxifen blood concentrations
less than this threshold value may experience less tamoxifen efficacy and
may require a tamoxifen dose higher than the standard 20 mg once daily
dose [34]. The low endoxifen level achieved with administration of fixed
dose of tamoxifen (20 mg/day) may be multifactorial, and CYP2D6
genotype is one of them. Other factors may include, concomitant CYP2D6
inhibitor use, poor adherence (non-compliance) and impaired absorption.
One or more of these factors were identified in 48% of those with
endoxifen <5.9 ng/ml. Therefore, it has been reported that 50% of low
endoxifen subjects could not be explained by CYP2D6 genotype or use of
inhibitory medications but even more these subjects may not have obvious
causes identified [35].

Although the PM CYP2D6 genotype give insight to low endoxifen levels,
some PM individuals may have baseline endoxifen >5.9 ng/ml and others
could achieve that level with tamoxifen dose escalation. Conversely,
UM/EM and IM patients may have endoxifen levels <5.9 ng/ml even
when the use of concomitant inhibitors of CYP2D6 is excluded.
Therefore, determining the CYP2D6 genotype is likely not enough to
predict the concentration of the active metabolite endoxifen [36].

On the other hand, endoxifen concentration monitoring has been
suggested to play a key role in modulating tamoxifen's clinical
effectiveness. Based pharmacokinetic-pharmacodynamic modeling,
optimal tumor growth inhibition (TGI) was predicted for patients attaining
endoxifen concentrations >40 nM, while <15 nM endoxifen was predicted
to achieve sub-optimal (83%) TGI [37]. In a large retrospective study on
endoxifen threshold in estrogen receptor-positive breast cancer patients
administered tamoxifen, patients with an endoxifen serum concentration
higher than 5.9 ng/mL had a 26% lower recurrence rate than patients with
a lower endoxifen serum concentration [38]. Another study reported that
patients with <14 nM endoxifen had significantly short distant relapse-free
survival as compared to patients with levels >35 nM [31]. Dose escalation
of tamoxifen based on baseline endoxifen concentration rather than
CYP2D6 genotype has made sound in PM patients with subtherapeutic
level of endoxifen (less than 5.6 ng/ml). Increase the dose from 20 mg to
30-40 mg daily elevated endoxifen level significantly to be similar to
normal metabolizers averages, without any noted increase in adverse
events in CYP2D6 PM subjects [34,39,40].

CONCLUSION:

In cancer chemotherapy, therapeutic efficacy and reduction of toxicity are
two main therapeutic goals for oncologists. Pharmacogenomics and/or
therapeutic drug monitoring are two pharmacological tools that can help
dose optimization to achieve these goals.

Irinotecan used in colon and lung cancers is an example of anticancer
agents where pharmacogenomics could be utilized during its use.
UGT1A1*28 and UGT1A1*6 polymorphisms may help in predicting
severe drug toxicity, such as neutropenia and diarrhea, and determining
the maximal tolerated dose of the drug.

Tamoxifen is used as a long-term adjuvant therapy in premenopausal
women with cancer breast. The biotransformation of the drug to its active
metabolite; endoxifen, by the highly polymorphic CYP2D6 enzyme drew
the attention for the utility of testing the genotyping profile of that enzyme
in patients receiving the drug. However, it is unclear whether there is an
association between CYP2D6 genotype and tamoxifen dosage and
efficacy. Therefore, additional research is needed to correlate genetic data
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with individualization of drug dosage. On the other hand, therapeutic drug
monitoring of endoxifen concentration in the blood seems promising to be
relied upon as a surrogate marker of adequate tamoxifen dosing. Further
studies on a large scale are suggested to identify an optimal endoxifen
concentration target and to validate its correlation with treatment efficacy.
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