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 RESEARCH ARTICLE 

Prime numbers in geometric consistencies 
Thomas Halley 

INTRODUCTION 
Refuting logic of the Goldbach conjecture in Riemann analysis 

he automobile method is distributed by means of refuting the 
Goldbach Conjecture, while stating the Riemann Hypothesis 

may be stable in 3 dimensions. Thus we understand primes by 
geometrically weakoning the said saddle point by replacing its square 
value in an open line, that may have a boundary at D(0,0). This prime 
differential equation is explained where its dt value is the rate of 

change of prime equivalency   4
T

N b   . 

We find meaning in this system. We will call it the boundary closure 
of equivalency. 

Goldbach Conjecture: 2 4a b N   (a,b prime) is found and 

thus refuted  
1 2 3 4 5

2, 5, 3{ 8, 223, 34}A a a a a a      ,

 
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1, 2, 5, 8, 13{ }B b b b b b        
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7 Steps: 
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when r = 3, ΣP + 200 =NT ΣXn– r 

NT = {1,− 1,− 6, 5, 10,− 1} 
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ABSTRACT 
A boundary manifold is developed for prime routes: 
The exact structure is noted in the rest of the paper for an 
automobile, or rather an auto- structured set which contains the 

manifold as prime and maintains the same consistency towards a 
prime consistency. The four subscript correlates the mapping of 
four charts in a circle part to an open interval, this covers the whole 
circle in a calculus mapping. Red and Blue lines are graphed later 
to show an integer behind the centerfold. 
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Proposition 1.0 

If the set by NT is consistent to {T } , every value is geometric to the 

Riemann Sum that is geometric to NT ΣXn − r since r X . 

Proposition 1.1 

If the value r X  then 2 G  by 2 · 100 
Statement 1.0 

If  
8

200 .32285917
1

10

P   , then  
6

200 32.285917
1

10

P R    

Consider 2R 

Axiom 2.0 

If {T } , is broken by polynomials of maximum degree polynomials, 
 16, 21523399n p  by Proposition 1.0 and Proposition 1.1, 

2 64.571834 4 .57R n   ,then .57 , is roughly 3 · .19 , then we 

conclude + r · .19 , a geometric component, n=16 is magnitude 8, 

since its prime has 8 digits. 1 0
i

p

n p





 , then 8TN  , so  a b 

is non-singular. 

Consider 102R ≈ 3.7310752 · 1064 
63.60974076...

10 a b  was found to have no two primes to complete

this sum. 
That is: 

(1) 4071371737173711909878900000100000000000000000
000000000000000008 

Statement 1.1 

R fits  5 a b  sets , where a,b are prime of 
64.60974076...

10R  , then 

geometrically 64.609740 − 64.571834 = .037906, so 
 2 .037906... 1 ,

10
R

a b
 

 . 

Axiom 2.1 
If .037906 has an action of 37 followed by 906 our number is parsed 
a prime (37) from [p] 40[71](37)[17](37)[17](37)[11]9098789000001... 
includes [p]={71,17,17,11}, set closes. 

Statement 1.2 
If primes 11 and 17 are derivatives of {T} of polynomial degree n = 2, 
3 9098789000001|r , then its system spread beyond mod r is 35 or 
36 of continuous 0’s,counting until 8. Since endpoint 8 is double the 
starting point of (1), the 9098789|7 or the magnitude of steps in 

  .T nN X r 

Statement 1.3   
If 407(13)7(17)3(71)7(37)11…, then [p]={13,17,71,37} which is 
separated by 7,3,11 or mod 7, mod r, and the first system output of 
{T } we conclude the system to have no balance beyond prime digit 
places 23, and 29. So (1) may deplete on 63. 
Axiom 2.2 

63 has factors /1, 3, 7, 9, 21, 63/, since 21, is only odd, and 23 marks 

the digits limit before naX  spread of 6, our 63 digit number cannot 

fit a Goldbach sum of two primes if the span beyond digit 29, is 35 
even 0 values, which doubles the midpoint, but the midpoint cannot 

be divided since the system is only odd. nB = 7, for 6 decimal 

factoring. 

Conclusion: 
The system (1) cannot hold two primes since Statement 1.0, 
Statement 1.1, Statement 1.2 concludes a movable variable at prime 
digit value of 29. Since this value is market by 1, and 8|2 and 4|2, 
but 1 is held at the inflection of numerical asymmetry. So the only 
sums which complete (1) are odd. By Statement 1.1, and the idea that 
35, is semi-prime by 7 · 5: The system now has three consecutive 
primes 3, 5, 7 that reduces by r, so the values describe 0 in {T}. By the 
initial statements, 3,5,7 move the system on 3,7 numbers that repeat 
but force a semi-prime gap, as 2r is held between 23 and 29 and the 

geometric system between initial prime groups 2 , and 3 . So 

geometrically beyond the stretch of .037906, the action group in 
decimal notation forces component 906, to break even on the sub 
group 453, which forces the counting index to be deduced as 5 or a 
set of 5 {a+b} from (1) being extended by (n+1) 0 digits. Then 
403|13=31, which is the other action 31. Notice how the number 13 
reverses 31, and 17 reverses 71, all of which are prime. So we 
continued expressing these values until the gap called zero room for 
primes. The number was checked by the analysis to hold no two 

primes. 1
4

453 403G   , odd. 

The sum of   1 21| |TN    which is 63|r. Then each set is non 

singular. We conclude (1) to break   2a b n   since 19 is

derived once in the system as geometric prime component, as in 
Axiom 2.0. 7 steps force the An middle only odd. By Axiom 2.2 the 
system 63|7=9, or 63 | 7 2r . G.C. breaks geometrically by even 

(1). 

Exploration: 
This is what I explore: p1p2 eliminate a triangle (3, 3, 4) that′s non 
euclidean to (3, 4, 5) 

2

(1 1 ) )1 ,(
x x x x x

e e dx e e e dx       where u = 1 + ex, du = 

exdx, integrate by ex = ep > p
1
p

2. 

      2 1

2 1 / 2 1 2 1 / 2 1 ,u u du u u u sin u C


      

   2 1

1 / 2 1 2 1 / (2 )1u u u sin u


    . 

 
2 2 2 2

1 1  1 .5 2  5( . )u dx sin cos d cos cos d cos d cos d                      

    2 1
.25 2 .5 .5 .5 1 / 2 1 2 1 / 2 1 .sin C sin cos C u u u sin u C    


           

so 

    2 2 1
1 .5 2( ) ( 1 ,)1 .5

x x x x x x
y e e dx e e e sin e


       

locating   0T
dx

dt

 on 0x  .
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   2 2 1

(1 / 2 / 2 2( )  ,|x x dx E sin x


   

         
2

2
2 2

0

.5 2 1 1 .5 1 / 2
x x x

e e e x x dx      

   2 21 / 2y y dy   : denote this integral as the area 

under y2 = P , so 2R|2 = XY Z 

3 2 2 2 2 2( ) ( (/ 1 1 1 / 1 1))sec x y dx sec x tan x sec x y dx        

where tanx = y, dy = sec2xdx, C = 0. 

3 2 2sin
/   1 1  ,

s
(

n
)

i

x
sec x y dx u sec x

x
   

3
( )2 , 1 /du sec xsinxdx u secx sinx u u    . 

3
3 2 2sin

/ tan 1 1 /

sin

( )
sin

1)
sin

x
sec x dx x

x

x
x sec sec x dx

x
    

so 

1

sin
0.5 0.5

1 1

u

x u
du du

u u



 
 

. 

   2.5 1 / , ,u udu u sinw du cos w dw    then 
2

/ ,
2

i
cos w sinwdw

when w = x... 

         1/2 |
2

2/3 2 1/4 2 2F x dx sinx cosx F x
i

   

  11 21 2 1( ( ) ( / 4 2 2
3

( ) | ))
i

sec tan y u F sin G
   

 2 1 ,u G sec tan y 

     2 1( 1 2 1/4 2 2| ) )
3

i
G G F sin G C F y dy    

 
  

 


   
12 21 / 2 / 2 2( ( ) | ,y y dy iE isinh y C


     denoted as hyperbolic

function triangulation so 

 
1 1/2 2 1/ 2 2 1 2 1/4 2 2 ),( ( ) | ( |

3
)

i
iE isinh y C G G F sin G C

 
 
 

      

then 

     1 2 13 / 2 2 1 2 1 / 4 2 2( | ( | ,
x

E isinh y G G F sin G ifG e
     

if x T  

    1
3 , 2 1 / 2 , 2, 2( , ,)E y F G isinh y y x A B 


      rest in 

,n as n = 2 G represents the condition values to connect 
exponentially if sec2(tan−1(y). If cos2x + sin2x = 1, sec2x = 1 + tan2x so 

   2 21 11sec tan y tan tan y  

So  2
1 ,G tan   by complex variables we eliminate x,y so z = x + 

iy, then hold G as symmetric to 
1 2

1 1

p p
 

         
2 0 22

2 2.5 2 1 1 .5 1 / 2 2 ,
1 0

|
0

|

x
x x xe e e x x dx G nAx



      


 p 

eliminated by    2 21 / 2 3, 3, 4y y dy    are eliminated by: X.Y.Z. ↔ 

∞. 
These values are rational smooth so we eliminate p2 and p3 

The original data set: 
101 1

. 11 3   ,
317 503

X   correct to 6 decimals 

157 29 1
Y . 13 3   ,

233 419 1051
   correct to 5 decimals

53 3 1
Z . 17 4 ,

433 4177 69127
   correct to 8 decimals 

2
1 20| |X Y Z R dxdydz n dn Z dn dn z             

 

through z containing a hyperbola that is non-Euclidean so: 
Let p1 and p2 simply define a metric space that is referential to its 
principal value. Prove that f (x, y) there is no matrix [n]n an integer N 

if  ,  
b a

f x y x axy ay   , given a = b + 1 so D(p1, p2) = N 2 if p1 

and 2 1p N  Suppose b is always prime, but not on degree n+1. 

Let   4 5 3 4
, 5 5 , 4 5 , 5 25 ,

f f

f x y x xy y x y x y
yx

 

        

where a = 5, wisely chosen 
2 2 2

3 2 4 3
4 5 12 ,  5 2

2 2 2
5 100 , 5

2

f f

x y x x y

f fx

y
yx y x

x y

    

   
          

 
33 4 4 44 5 0, 5 25 0, 5 , 4 5 5 0x y x y x y y y        so 

 12 11500 5 0, 100 1 0y y y y    . 

 
41 1 4

1 0, 2   , 1 5 0 0, 2 5  
1/11 1/1

(
110

)
0 100

y y x x    

   
5 5 1

    0,0 1, 1 ,   ,   2, 2
4/11 4/11 1/11100 100 10

( ) (
0

)x y x y   . 

   
2 2 2 3002

12 12 1 0, 12 2  
2 8/11100

f
x x x

x




    , 

   
2 3 3 1003

100 100 1 0, 100 2
2 3/11100

f
y y y

y




   

 
5 1

0,0 0·0 25, 25 0,   ,    
4/11 1/111

(
00

)
100

D D   

300 100
  .     25 300 25 275, 275 0

8/11 3/11100 100
      as alluded to earlier by 

squares. Saddle point at (0,0) and a local min 
5 1

  ,    
4/11 1/11100 100

( ) . To 

show that is example allows proof as follows. Let condition a=b+1 
then ba2 = 100 so b(b − 1) − 1 = 11, a prime. 

To generalize  ,f x y as 

  1 2
, , ,

f fb a b b
f x y x axy ay bx ay ax a y

x y

 

 


       

 
2 2 2

1 2 2 2 1
1 , ,

2 2 2 2

f f f f fb b b b
bx ay b bx ax a y ba y a

x yx y x y

    

   

  
            

 
11 2

0, 0, , 0
bb b b bbx ay ax a y x ay b ay ay


        so

(1 1
0,

)b b b
ba y ay

 
 

 
1

1  0, 2 , 1 0  0,
1/11100

b
y y x a   

  1 1 1/22   , 1 0
1/11 b/11100 100

( )
ab bb bx a y ba y

 
   
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     
1 2

0,0 1, 1 ,   ,   2, 2 , 144 : 8
/11 1/11100 1 0

( )
0

a
x y x y x

b
    so 

   1 2 0 , 3 2y y x 
     . 

     
2 22

1 1 1 0,
2

f b
b b x b b x

x






    

     
22 ( 1)100 1 1

1 2 , 100   100 / 2 2
2 /11 2100 2

( |
b x

b b x dx iE isinh y
b

x

  
   


. 

   
3 23

( 2)/11

2 100
100 100 1 0, 100 2

2 100

a

a

f
y y y

y







     so y is the set of 

all primes    P P  scaled by 100. 

  2

b/11 1/11

1
0,0 0·0 , 2 0,    ,    

100 100
( )

a
D a a D   

 2 2

( 1)/11 (b 1)/11

100( 1) 100
  .   100 1 , 0
100 100b a

b
a b a N N  


       . 

Saddle point (0, 0) and a local min b/11 1/11

1
   ,    
100 100

( )
a

 then the scaling 

operator is n+1 equivariant. 

If e is always ln(e) = 1, p > 1, so x2 + yˆ2 + z2 = r2 → x2 + y2 = z2 Then z 

is solved for all p is eliminated from the space: 
2 2 23 4 5

   e e e   So 

we showed a2 + b2 = c2 since 32 + 42 = 52, contained by ∀p1p2 and 4(a2) 
= 100, then 62S − 2S = 52S + 32S responds by Riemann analysis. 

     2 2 2, ; / 1| ,F k F k F sin k d k sin         F is an Incomplete

Elliptic Integral of the first kind. 

     2 2 2, ; 1 ,|E k F k E sin k d k sin         E is an Incomplete

Elliptic Integral of the second kind. 

2 2 2 21 / 1 ,d k sin d k sin        implies  2 21d k sin    

/0 1M M 

Thus the gap of the pythagorean given X. Y. Z. have allowed 
magnitude to adjust 0<2<6→11−13−17 Every Manifold must match 
its radian manifold, if every linear node sits on the line of 
intersection. 

Then 
2

2 ,k m n C M    on  , , 1, , 31 2 3( )M M M s s s   so M 

Magnitude Correct (s = {S}). 
Using Wolfram’s Method in Mathematica the given Integrals are 
complete: 
EllipticE, an Algorithm in Wolfram Language Documentation: 
EllipticE [m] gives the complete elliptic integral E(m) 
EllipticE [ϕ, m] gives the complete elliptic integral of the second kind 
E(ϕ|m). 

Then the pythagorean theorem is proved through the function 
system: 

1/2 1/2 1/2
 a b c  is also true so by    2 21 / 2 1 /y y dy r   

     2 11/   ( 1 2 1/4 2 2| ) )
3

r dr ln r G G F si
i

n G C
 

  


     




 2( 1 2 1/4 2( 1 2
3

( )| ))

  r  

i
G G F sin G

Ce
   

 , so by G = 1 + tan2(θ)

2 2 2

1 2 3     for a translation between first and second kind 

elliptic functions on 100   

 
1 1 1 6 3 21

  
1 2 3 61

s s s

If s y
s s s ssn n


  
     


 
 

We know ζ(s) = 0 when s is one of −2, −4, −6, .... 

In  
1 1 1 6 3 21

  
1 2 3 61

s s s

s y
s s s ssn n


  
      


 
 

So (s) is satisfied by the closure of equivalency and the saddle point 
within pole, s=1 

If   4N bT  

We know an is doubled by {T}with no negative values b1 + b2 =− r 

Then the shape is reflected across the x axis with a segment bridging 
an 

We call this linear aim of the boundary closure of equivalency as 
follows. 

Rationalization: 

If 
1

,
2

s it  our set {s} leaves the boundary of t ∈ T closed (1) by G. 

If every value is contained by r ∈ R of our smooth set manifolds in 3 
X − Y − Z dimensions. Given the Riemann Hypothesis, θ = t, or 

 
1

2
s i  . 

Then let ∑T = t, Riemann Zeta Function can be replaced by its 

antecedent elements in square geometry ± [x] 

Now z = x + iy is polar equivalent to its polar equation 
2 2 2

1 2 3     for a translation between first and 

second kind elliptic functions on 100  , thereby C is completely 

eliminated, or zeroed by the moving vertex. 

The dispersion of primes is collected at the boundary of a semi-prime. 
We now call this the automobile method. When r=0, Riemann’s 
Hypothesis simply describes a shape in Euclidean space, but invisible 
to its imaginary radii. 

Goldbach is hitherto, the boundary sum of an arbitrary Riemann 
Space of rational smoothness checked through: 

    0
dx ds

T S
dt dt

  everywhere in ζ(s) = 0 upon a full cycle′ matrix.

Then it is not solved on [n × n], a square matrix, but given room on 
1 × n or a row vector of solvable polynomials, given the sets were non-
singular, the analogy was to promote the inverse space of an invertible 
matrix. 

I f one takes the derivative of this 15piece polynomial set, its integral 
is the inverse operation, noting the set becomes contained then on 

171

17
x , thus a prime composite of the prime containment in the 

finite field that divides the integer system until 17 is reversed at its 
prime 71, or p+54. Then p=-17.54 is the lower value with factors 
1,3,6,9,18. We’ve shown 144:8=18. So 18r is geometric of the inverse 
notation of our deemed non-singular set, which is really a matrix 
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k k 

being communicatively transposed, until our 63digit system, which 

divides 63|3 = 21, or 1| |NT  being reflected until termination of 

the action 7. 

8NT  , even, while its total reflection 2| | 4NT  , also even

| ||N r NT T   

T hen the system truly is geometric to T. 
We note the system does imply 63|7=r2, which moves our matrix 
subset past the point of 15(r+1)+r=63, so we have shifted {A} and {B} 
through 7 steps in prospect of ± r . The negative r value implies 
negative curvature on the finite field that expresses magnitude until 
the shape has no outer boundary to connect to, if the Riemann 
Manifold is the same unit spread width it started with, in this case
p=11. So our saddle point never divides until 11(2r)-r. 

This concludes the base point of 2r=d, or a diameter 11d-r=63, the 
matter can be solved both reflections in the right, as in the left, which 
we show in doubling the starting digit by the last in (1). Then (1) is an 
immutable even, or unable to be fragmented by p1+p2. Then by the 
building of A, B sets, p1 or p2 moves to a negative value creating a 
gap that no longer follows the allotted system digits. 

References: 
Adaptations from: Homogeneous Riemannian Manifolds with 
Applications to Primes by Thomas Halley. 

THE STRENGTH OF THE CONTINUUM 

Topics: Calculus, Number Theory, Chen Primes, Fibonacci 
Sequence/Spiral, Computer Science. 

Chosen set is a Set of Rings that can be embedded in a relational 
elliptical torus of Radius 3. Define this radius as R=3 because the 
method provides a prime set of any 2 elements within set size R-1 to 
be even. This is an n=16, torus. 

All outputs are prime numbers and the connection between the set of 
Rings, is the isometric symmetry of maximum Goldbach values under 
rules defined by strings breaking up the characters of each integer 
noted. Equivalent Integrals were checked using Wolfram Alpha. 
Meaning, probability integrals are evaluated to converge specific 
relations of general primes greater than 3 (F|H) equates every 
polynomial as prime equivalent using a basic smooth topology. The 
generalization is made that any prime Radii close a set iff A+B=2N, if 
Merten′s Logarithmic Summation Law includes. 

Prime numbers that can be deformed as a polynomial solution being 
the closest solution to its derivative, a factor of itself on a Ring of 
Prime Radii. This is computational paper of number theory. A useful 
way to determine probability rich functions, a varying closing law 
which maps area equations under k+1, within spaces like Jones 
Polynomial. This then gives radial volume. Two knots of one or more 
finite prime sets describe the Laurent translation of this given set: 
2{A} + {B} such that k ⋂ R − 1, if p = Σkpk X

k , pk ∈ F, k =/ 200 M is 
Euclidean Space, Knots are analyzed: 1388710 # max. prime knots 
with n crossings, that is at chosen n = 16. So between n = 13, 14 of 
the Tori Ring Set, every link Δk includes Time, then a cord defines 
(2391523 − 1388710)/3 →  1002813|3 for n = 14 (1388710 − 
797389)/3 → 591321|3 for n = 13, they are harmonically Euclidian 

knots to n = 15, 16 that mirror n = 13, 14 since leading an term are 
both additionally prime and are the same integer, so knots are 
harmonically B is written akin to the Fibonacci Sequence. Time is 
geometry, constructed so parallel computation of cords, or 
hypotenuse can be checked parallel to an even value given: 
An elliptic scalar divides sets of Σ p Xk, {A} = 11 {B} = 13, and {F 2} = C2 
= 17, which are 3 signif icant wisely chosen prime values.  

Define H space: μ : X X X   with an identity element e such 
that μ (e, x) = μ (x, e) = x for all x in X. It is a topological space X. 

A polynomial ring or polynomial algebra is a ring (which is also a 
commutative algebra) described in the set and set cones of one or 
more indeterminate with coefficients in another ring, wisely a 
field. Define the field as an arbitrary set of consecutive primes, 
which the square root is taken and approximated as a set of 
rational numbers as described in the duration of this paper. 
Evolve a broken Fibonacci sequence {B} to f ix Tori radii to each 
connecting element which total n + 1 units of the Elliptical 
Torus. 
{A} has three fibonacci elements, 2, 5, 34. This shows that: any
even integer greater than or equal to 4 can be written as an area
that can be topologically molded to an event based system, of a
minimum of two prime inputs, or a value greater than 3.
Solution involves the computer science characteristic that each
string is its length, which is the number of characters in it, are
summed. 

To begin, solve the same idea in a system of decimal values. Cut 
each string prime rationally so unite reforms as first order 
Elliptic Torus [0]. 

{T} defines mapping torus. [t] defines stemming matrix of T. R =
3, n = 16 per sixteen dimension of prime outputs = p* let x = 3
on X = {T}. Let τ ∈ X = {τ = r − 3}, so A =/ p, then α = β, leading
term degree defines dimension Dim.

[a] is defined as having {T} being contained on N − 1 subsets in
H.

{A} = {a1 = 2, a2 = 5, a3 = 38, a4 = 223, a5 = 34}, {B} = {− 1, − 2, 5, − 8, 

13} 
2

111 x a 

23
172 1

i
nx x bn


    rule 1 of [t] 

3
47

4

2 1

i
nx x an


    given o = odd, E = even 

4
1312

5

2

i
nx x an


  

   ,
n n E n n o

a o a a E a
 

 

5
3672

6

2

i
nx x bn


    b = middle recursive elements 

6
11032

7

2

i
nx x an


    characteristic of Fibonacci B, such 

that 
 2n = 50, ΣB + 1 = 8, 8|2, .5(8)(2n) ≤ 

200 
7

33232

8

3

i
nx x an


  

8
98512

9

3

i
nx x bn


  

9
29567

10

2 3

i
nx x an


  

10
888012 4

11 i
nx x an


  
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11
2657172

1

4

2 i
nx x bn


    rule 2 of [t] describe additive prime or 

prime, 

12
7973892

1

4

3 i
nx x an


    a1 = 2, a2 = 5, a3 = 38, a4 = 223, a5 = 

34 

13
23915232 5

14 i
nx x an


  

 a3 = 3 + 8 = 11, a4 = 2 + 2 + 3 = 7 = a5 = 3 + 4 

14
71744712 5

15 i
nx x bn


  

15
215233992 5

16 i
nx x an


  

Note: all outputs = 32285717, only odd, 32285917 is prime 

rule 3 of [t] → a ∈ A 

{A} in Mertens is defined as having two states: 

between a1, a2, an = (1,2) = 3(n − 1) + 2 between a3, a4, an = (1,2) = 185(n − 1) + 

38 and a4, a5, an=(1,2) =− 189(n − 1) + 223 

2Σ{A} + Σ{B} + 200 + Σ (Dim N − P rime outputs) = ρ = 32285917 

Σa n = 1 − n + 263, 263 is prime, an open value when n = 1. Define n = 1 as non 

− circular 

a4 is added twice because n = 11, n = 13, are both a prime number of dimensions 

must close twice given a5 is also the string closing mapping of 7, prime. 

This is within n = 14, 16. This reflects all possibilities of dimensions being odd or 

even.  

{A} becomes closed when n reaches R = 263, the maximum prime radius. Setting 

Fermat radius to 2. 

1 2an   , should
2

2 1
n

 , yield a Fermat set that can be integrated

around elliptically. R = 3 is added on every prime event, should N + Xn + 

200 = P. If P is a geometric space to define Dimension 11 in a geometric 

subset. 

In a general sphere, then equate 3 manifold mapping to a difference of 

two primes closing at 211 − 11 − 200 = 0, within X − Y − Z. This 

mapping describes a trivial set of Δp ≥ 200 

Alternate N + C to be defined as C, a constant of integration and N, any 

integer that completes a prime sum 

N + C|2n ≤ 200, given elliptic, 
2 3 2

1 17y x x    , so 17y  , 

define this as a prime root bound. 

N + C = 4Σ π(x)|200, Locate the derivative of an elliptic equation in an 

algorithmically 

If A + B = 2N · π(x),  
2

2 2~   1 / 2  ( )
1

p

x x dx

p

   , this integral must be

elliptical under R(T ) and its dot product 

T is the Tori Solve Time. 

     ( ) / 
1

| 2x R x R x M S H S


       

This relation is seen by Riemann in addition of a density throughout real 

primes given zeros are found by n according to Merten.  

Considerately, define R[x] as the set of all polynomials with coefficients in 

R. 

This set forms a ring under polynomial addition and multiplication. 

Σ [Tori Rings Outputs] + 2Σ{A} + Σ{B} = P − 200 = P rime Polynomial 

Translation of Degree 2NL, L is length of Prime Volume If Δp = 200, 

total sets in dimension n = 1 are closed, then Dim 1 contains the Contour 

Set: 

iff 
2

1 2 , 1{ }
n

np N C P N n      

   ( ( ) ( )) / / • /( ) ,n t z z t t z t t dz dt t t ti i i i          denotes a 

perfect curve.   ( )
3 2

3f z y x i x   where i3 is the derivative mapping

2 1
2

n  can be chosen to drop radius by r − 1, as 3     2
1

dx C
s
   reverse

integrate the countour space as logarithmic of two ellipses then 

integrated within an elliptic integral : 

   2 1
1 16 2 20( ) [ 0]

n
r C DimN Outputs A B p


           so 

2 1
*  1 322) 8 917( 5

n
N r C


    , this is Σ[Tori Rings Outputs] 

, , , ... ,( , ,2 )x x x xi x xi i ni 
in (

1
) R f p dp

n


2 1
2 ,

n
 at n = 12, = 33554432, Σ33554432 = 29, count 29 as K = kill 

value. 

2 1

2 1268515 32285917

n

  , reduce a surgery to a sizable magnitude of 

6|3 = 2, 1268515 < p − knot max in N = 16 

     2 12 1 2 9 1 2 8 1
2 2 6·21 2 3 4X X X X

  
       

     2 6 1 2 3 1 2 2 1
5·2 10·2 2 322859175 6X X r

  
       

respectively, this method is described as n = 12, 9, 8, 6, 3, 2, [0] if r = 

3, n < 16, M(n*) = 31231, or Z = map(− 3,− 1,− 2,− 3,− 1, [− 2]). 

This is a prime number sequence whose M(n*) is prime and − 2 + 2 is 

the draw of two prime elements returning the Trivial Set. 

6
* 32285917,11 2 3 4 5 6

i
X X X X X X r N X rn n

         N is 

random and unique to each iteration. {n} is iterated 6 times, Set space 

of size 6 can reorder a randomized surgery, given 3 ,  )3( X Xn n and 

given the Fibonacci Sequence is (0, 1, 1, 2, 3, 5, 8, 13, 21, 34), are 

both rationalized symmetries. 

See rules of recursive addition of Fibonacci sequence (0 + 1 = 1, 1 + 1 = 

2, 1 + 2 = 3, ...), so p1, p2 will be found f rom the given draw. 

The set is closed on 34, being the prime string sum of 7, draw out its 

J Pure Appl Math Vol 7 No 1 January 2023
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bounds using Calculus of Tori, n = 16 max 

Let the Riemann bound equate a broken Fibonacci sequence of 

1, 2, 5, 8, 13 , , 21, 341 2( ) ( )S S r     Let N * be unique on N > 1, 

then ΣN = 21, completing P (X1, ...X6) = (5 · 5, 19, 17, 13, 7, 5), 

semiprime 25 defines rule 1 of [t] 

/ 
1 2

So S S  given r = 3, and a neighborhood of complex variables can 

map out perpendicular values to Z, given that it is modularly complex within 

π(x) dotted on a 2N interval, given 3 is returned at 21. 

since 2 + 1 = 3. Draw out 3 primes, eliminating an arbitrary prime 

then: 

1 2 0a nn     at dimension R2, if f 263 ∈ X, if f 2ΣA + ΣB = odd, 

309, but 2ΣA + ΣB + 200 = prime checked 509 

isometrically 200 must be always a decimal bound for the computer 

string to recheck itself. See [2] 

X is made general to describe Goldbach values being added under and 

over 263 > 200 and 263 > 4(2n), given the following example: [1] 

Define a summed 4 space on the before surgery within 2n, given a 

prime event. Let 2n = 50, form: 2n = a + b 

         1 3,7,13,19 , 1 47,43,37,
1

{ }31, 1a p b pba
     then {a1} + {b1} 

= {C} = (3 + 47, 7 + 43, 37 + 13, 19 + 31), isolate a movable bn = 31 as 

being 2D − 1, where N = D = 16 so {C} = 50, then its elements define 

a set {D} from {Σa1} = 42, {Σb1} = 158. 

Studying          1, 2 5,11,13,19 , 2 37,31,29 {,23 2 }
2

a a p b pba
    

so {D} = 42 since {Σa1} = 42, but {Σb1} = 158 

Studying 

         1, 3 7,19,31,61,79 3 , 3 151,139,127,97,79, { 3}b a pa b pb    

implies there is a set {E} = 158, but {Σa3} = 197, and {Σb3} = 593 

E is still even, as an even set, but the sums are prime lasting, define a 

movable corner. Being prime and odd they cannot be divided evenly. 

19 is found in every {an}, this is the additive form of string: 1 + 9 = 
10, Let a P = p + 2, of S space, a Chen P rime, then F(x) maps a Chen 
Opposite p = p − 2, {p + P}, Chen Set 139, a Chen P rime is found in 
{b3} it is the smallest prime gap before a spread of 10. W here String 
can check base 10. 
{a1}. and {a2} are Chen Prime Sets since all elements follow rule p = p 
− 2, {Σa3} = 197, a Chen P rime, or a counted element.
Where 2N = p1 − 2 + p2 − 2 = 199 − 2 + 5 − 2 = 197 + 3 = 200, {a3}
is accepted as a Chen Set when {a3}, {b3} are differing.
So 79 is not included in {a3} if counting unique elements, non-
intersecting, in both sets, finally a polynomial to have unique k, as
opposed. That is k is harmonically divisible within four vectors of a 3
sphere.
So there exist a movable set where 4 · {A + B} ≤ 200, where the system
follows given rules and sums are continuous unless there is a 2N =/
p, then every Δp ≥ 200 exists where a Chen P rime, 139 ≤ 200 by a
factor of 61, also a Chen P rime = P c So this set is included in the

example of [2] given 200 can order a unique prime area of a given 
probability integral. 
[1] is checked given 61 + 2 = 63, and 200 + 63 = 263, the maximum
radius, by choosing 2 as proportional to ΣG, a Goldbach Set
Function. Fractionaly, 2 is the only value which can be minimized
fully in {2N} = A + B, since 2 is the first known prime, and 63 is only
odd.
2n < p < 2n + 1, when 2n + 1 is only odd, a minimum p is called
given a maximum p can be integrated.
19 is found within a multiple space of 3, so every integer stretched
beyond 20 is contained in n + 1 units of a Torus. 17 + 2 = 19,
the variable prime bounded on infinite primes within a specific
topology of prime spaces, or simply non − divisible spaces.
In computer science additive number is a string whose digits can
form an additive sequence. 
Base ten is common and treating {A} as static be ε < .2 where a base
can be changed from an arbitrary string from the standard numbering
system. Then the spread is minimized.
Given a derivative can be taken of a function so that its integral
produces 2ξ, being even elliptical.
Define its balance being integrated within the torus of radius 3, given
these equations map its structure.
Define every leading degree within each line of set {T} being the
number of dimensions recorded in the Torus. Noted in [1]
Σa3 + r = 200, given the static set must return to its isometric state
given r = 3. 

Goldbach list is now closed. 1 0 ,) 1 2(0
k a a ak a




     define prime 

numbers representing rational harmonies that conform to the second 
type of Euler transform, a technique for series convergence 
improvement.  

Theorem 0: 

Stitch the set f rom (Dim n = 11, y2 = 88801), magnitude 5 prime cut to 

(Dim n = 16, y2 = 21523399) by counting digits On n = 11, this dimension 

cut is to force 13  to be estimated at 5 decimal places, small s as 

approximated 

Within Σan + 1 creating a hole that can be wisely located. n = 16 

magnitude is attributed to ΣB + 1 = 8 As n|2 = 16|2 = 8, forces 

decimal rounding of 8, on C0 = 17. 

 Count number of digit term places within p (s,s-1,s+2). 

Given a greater circle connects every radius as prime, it can divide 

should M (6, 5, 8) be a valid magnitude function. Given M(p1, p2, 

p3) show these primes to be consecutive (11, 13, 17) then M is 

magnitude function to decimal degree. 

Define a curve between the suspension of these three primes in 0<p1-

11<6, inserting: 

Merten′s zero, 101, also Chen P rime, of his chaotic sequence within 

π(x), minimizes k to be symmetric within rational expression, 13 is 

located as specified by the hyperbolic procedure as follows. Let 

rational prime expressions to break an arbitrary string count. 2(101) − 

2 = 200, this is O′s linear cut so 6(13 − 11) 

H = 2ξ|2N, a curvature map. T hen 2ξ|2N, even elliptical equations 

divide even integers, or any R = p − 1 = 2 
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Define λ = 2, 3 to be Eigenvalues of oscillating geometry that account 

for an infinite set of primes. {P} =/ {iP}, so (H|S) Figure 1-2. 

 

 

 

 

 

 

 

 

 

Figure 1) Equating radii R = r, the hyperbolic structure can be found per a 

count of n = 16, rings defining dimensions. 

 
Figure 2) When R and r are independent between 3 and 263 every even 
integer reaches a great circle space Sn, of prime roots. 
 
They are spread being apart by 260, given 260 divides 2 as 130, 130 
divides 10, as p = 13, providing n − 13 = 3, dim. Finding polynomial 
time is relative to the specific geometry of there being 16 total 
dimension in Tori. Giving 139 
Geometry contains a Chen P rime found {b3}, it provides (p1, p2) > 
130, such that (137, 139) two smallest primes before 10 spread. p = 
13 is found within the geometry of number dimensions n − 1, at the 
line of X15, within the set corresponding to the additive inverse. 
String Js can always reorder an integration within a Tori of [r, R] 
given the minimization of k in example [2]. 
Time solved cannot be removed from A ⋂ B because time is curved 
by H = 2ξ|2N 
 
Equate a Ring P olynomials as an identical prime scalar, given every 

string J s  can be separated on S space and H = O curvature. 

Rule of [T]: 
Define two integrals as the numerical distance of an r − ball′s matrix 
so [T] metrically forms the completed Null Space: 
The complex plane of   13,  11  ,    17x i i x i     is mapped to the 

Tori area under this additive symmetry. Let  r   if curvature is 
found. 

1 2 11,
x

e e xdx   11 is defined as an average area function 

containing (13 + 17 + r = 3)/3 

( )(1    1    ) , 
x xx

e e e dx    where    1    ,     
x x

u e du e dx   , arbitrary two primes 

are true transcendentally, given Chen Sets     
X

e P c  

122       1 / 2    1 2        1 / 2      1      ,( ) ( ) ( ( ))u u du u u u sin u C


         calculated 

using algorithmic techniques and by Wolfram Alpha derivative of 
121 / 2 1 2   1( ) ( ( )1 )/ 2u u u sin u


     
22 2 21 1 1 .5 2 .5( ) ( )u d x sin cos d cos cos d cos d cos d                       

 

    2 1.25 2 .5 .5 .5 1 / 2 1 2   1 / 2 1sin C sin cos C u u u sin u C                

 

So    
2 121 2 .5    2  ( ) ( ) (1   1 .5 ,
1

C
x x xy e e xdx e ex ex sin e C

C


       

when x = 0, y = 0, on y = G(x) 
The origin is set as a vertex, of (x, y) = (0, 0) ,  r   then an cone is 
chosen to maintain two bounding primes of G(τ ) then x ∈ X for a 
scalar a ≥ 0, where "a" is a unit value of the matrix of size [16]. 
 
By definition z = x + iy, when 

2 2 1   1 /    2      / 2 2       ( ) ( ) ( (    )|

b

x x dx E sin x
a

      , a second kind elliptic 

equation as shown again. 
 
It′s differentiable and able to be integrated under elliptic equations if 
its imaginary part cancels out this leaves z =± x, under the rule of

   12.5 2    1    (  ) ( .5  (  )1
iy iy iy iy

e e e sin e C


      where C0 is 

carried through the topology of a cone embedded Torus. 

C = M 1/M 2 where its differential equation 
d

dx
  shapes magnitude 

value on z = x + i11 z = x + i17, force the prime index to be conjugated on a 
reflection of real number 13. 
 
in {T} under {P} where {iP} exists on the negative portion of the cone 
within the, (N − 1)5 on x = 3, a f if th harmony given the elliptical 
Torus of R = 3, N = 16, enables every ring is also differentiable under 
prime identity, and regarded as true, since constructed, so every 
discrete prime can then be added. 
 
Merten′s Logarithmic Summation Law as: 

  1
    11   17

1
a A loglogx A O lo X

p
gx x pp x


           

 O < p − 11 < 6 gives B − 1 ≤ {6}, ΣA + 2 = (2 + 5 + 3 + 8 + 2 + 2 + 3 + 
3 + 4) + 2 = 32 + 2 = 34, on rule 2 of [t], a Fibonacci number. 
When (ΣB − 1)|2 a set size of arbitrary two primes is lef t. O′s 
behavior is chopped given this linearity. 
Set size may be 6|2 = R, but with respect to base of 2. B has 6 

elements so we can f ix R − 1 always and express linearly: 

     
2

6 2
1

p n

I C dx T N P
p n



      


 R(n) is continuous within 

prime outputs of {T}. 

   
1 2

~ 2   /  2 2 2
2

npk
R n dx lnx pkk pk


   

 on Jones Polynomial

  ( ) ( )2 2      1 /   2 1    17

b

C F y dy y y dy r
a
         
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3 22 2 2 2/   1 1     1  /   1 1   ( ) ( ( ) )sec x y dx sec x tan x sec x y dx          where 

tanx = y, dy = sec2xdx, C = 4 

3 22/   1( 1)    

sinx

sec x y dxu sec x
sinx

    , 

3
   2     ,      1 /( )du sec xsinxdx u secx sinx u u     

3 3
/ 2 1( )1 / 2 1)

sinx sinx

sec x tan x dx sec x sec x dx
sinx sinx

      So 

1

.5 .
1

5  
1

u
sinx

u
du d

uu
u



  


. 

 2.5   1 / ,      ,     ( )u udu u sinw du cos w dw    then 
2

/ ,
2

i
cos w sinwdw  when 

w = x... 

Wolfram Alpha:          |1/22/3 2 1/4 2
2

2F x dx sinx cosx F x C
i

    

 ( ( ) ( ( ) | )
1 11 2  1 2 1 / 4 2 2
3

)C sec tan y u F sin G
      

   
2 121  , 1 2 1 /( ( ( ) | )) ) (4 2 )2    

3

i
u G sec tan y G G F sin G C F y dy

        

 
12 2  1 /   2    ( ) ( ) ( ( )/ 2|2y y dy iE isinh y C


     , elliptic Integral of the 

second kind mapping y as opposite x. Then H|X   
So 

11 1/2 12/ \ 2 2          1     2   1 / 4( ( ) | ( ( (   2 2  ) | ))   , 
3

)iE isinh y C G G F sin G C
 

       

domain of 
1

    ,  ) (tan y


     where r is positive curvature then 

   
1 2

3 / 2 2 1 2 1 / 4( | (E isinh y G G F


  

       12 2, , 2 2 , ,sin G d x y R N D x y      a function of Dim 

Curvature     1
, 2 1 / 2( )E y F G isinh y 


    icludies hyperbolic 

node 2, 2y x   on  1
( 2|/ 2E sin x


 

arcsinh(1) = 2 1(   )Ln x x   

arcsinh(1) = 1 (1 )1Ln    

arcsinh(1) = )2(1Ln   

arcsinh(1) =  2.4142135623731Ln  

arcsinh(1) +  .12 .881373 58701954 .12 1   , this mean J0(.12) 

estimates deformable rational prime fractions deviations [z] such that 
13, 73 ∈ 881373, primes separated at the hyperbolic geometry that 
account for the middle prime 13, forcing two prime elements. given 
73 exists at the magnitude value of 6. 19 exists in (58701954) so the 
algorithm can recheck itself for the base change bn. 
.12 exists on M (.12) = N = 12, and hyperbolic geometry confirms this 
notion as R1 = 3 − R2 = 2 = 1, so a minor radius finds arcsinh(3 − 2) 
producing 19 at 1012 decimal places .881373(58701954)* 1012 = 
8813735870(19). This is the formulaic way base is shif ted from 10 = 
9 + 1 

     2 2 2,     ;  / 1|F k F k F sin k d k sin         , F is an 

Incomplete Elliptic Integral of the first kind 

     2 2 2, ;| 1E k F k E sin k d k sin         , E is an Incomplete 

Elliptic Integral of the second kind 

2 2 2 21   / 1 ,d k sin d k sin         implies  2 21  d k sin      so every 

angle of the Elliptical part Torus is solved for. [c] 
θ = M / M if θ = M / M exists k2 = m, then m is an elliptic scalar of 
2πn + C 
However, Wolfram Alpha checked the given by hand manipulation 
complete elliptic equations, so θ is fully retained on 4πn + m = k2 

Elliptic E, an Algorithm in Wolfram Alpha: 

EllipticE [m] 

Gives the complete elliptic integral E(m) 

EllipticE [ϕ, m] 

Gives the complete elliptic integral of the second kind E(ϕ|m) See 
References 

21
x xe e dx   connects nodes of every knot between the complex 

elements. When ex = G, in total equating if x/2 = τ /4 then a 
trigonometrically balanced delta on a General Three Sphere, given in four 
dimensions every radii is equidistant to some fixed point of X − Y − Z if the 
extension is harmonic at 101, also a Pc. Chop the radius length along an 
elliptical path given 2r = d, dimensions, then the EllipticE system must f 

luctuate only on  
2

2
1

x p

G x dx N
x p



 


 

{T} series an , whose Euler transform converges to a sum, then that 

sum is labeled the Euler sum of the original series. 

It′s seen that ξ1 and ξ2, being of first order and second order, can 
move our system at any prime distance, given a smooth topology of 
U(x) → V (y) within a mapping of X − Y − Z, W RT in the complex 
plane. One can see that a trivial set can be chosen to maintain a 
Torus′ Rings through a prime value, of being either valid or false. If 
valid the set of Euler iE can be mapped to a real set of F, Given the 
first Fermat numbers are {F 0 = 3, F 1 = 5, F 2 = 17, F 3 = 257, and F 
4 = 65537}. 

Notice within set {T} that element x3, F 2 is Found, and R = F 0, in 
fact the formulaic way, within this elliptic set each 3E(y) → F (g) 
translation is made is going from 2F 0 + F 3 = 263, given r = 3, closes 
the set R = 263, opens it. 

It is not known if there are an infinite number of Fermat primes but 

compare an , as a completed sum returning n − primes scaling to 

null. 

(S|H) space contains infinite {P} ∈ {T} when 50 is partitioned in 
Goldbach. Euler Set remains even since string 19 of an = {3} see [1] (1 
+ 9) = 10 on a magnitude of (− 3, 3) being a 6 object magnitude 
spread. Increase an object as being odd or prime. 

Only An numerical topology can be made on any degree of n given 2+ 
1 is a F − prime and 263 = 2(3) + 257, on 2F 0 + F 3, 4(2n) ≤ 200, given 
2n = 50 is isometrically balanced within r in given Goldbach Set. 

This means every balance equates an even Sine wave function (G(x)) 
that is harmonious to an elliptic area per a radial volume. Approach 
Goldbach integrally by the trace r = R as closing hyperbolic geometry 
and [r, R] independently within Euclidean 4 space, a general sphere 
as prime closing. 

Note P V = Dilemma, the prime volume of a general 3 sphere in 4 
Euclidean space. 

Finally Dim 11 is equated to 2y p  , from this dilemma since 

log(10) = 1 within Mertens law that so 2 2   1 /    2  y y   becomes 

   1 /p p , this is conclusive evidence of O′s negation. So within a 

general only prime approximation in 11 3 101 / 317 1 / 503,  
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13 3 157 / 233 29 / 419 1 / 1051 17 4 53 / 433 3 / 4177 1 / 69127       

, compare 11 3.31662479036,

13 3.60555127546 17 4.12310562562   so magnitude correct is: 
3.31662391581, 3.60555880677, 4.12310560026 and by inspection 
determines Decimal Magnitude of M (6, 5, 8) decimal places. The balance 
occurs on 11  since 101, is the only 0 found in a Merten spread. 

Every prime fraction can be equated within ,
c

p A N
p

  if 

 1 2p N N A   by hyperbolic a node )0 ( 2 ,  2J , given d(x, y) is a 

Riemannian Manifold that contains , 2 , 2) ),( (d x y   then 

/   0lim a ck k k   , then λ = 2, 3 given {T } implies 

hypergeometric torus to sphere conformity. 6|λ → (λ1, λ2) 

 

Theorem 1: 

Prime rule:  ( )3 , 2 / 2d x y tan    , 
4


  , given π exists in 

a 3 sphere per four dimensions. 

Then an  in a fibonacci ring is fixed by the translation of b so 

( 1 2)0 0 1
kak a a ak


   

  where 
1 1

1,
2 2

p M

An p M
    

M(x) square count includes free integers to x so even number of 
prime factors, minus the count of those to be odd in M(n), when 
Mertens is of chaotic nature, first zeros produced by n: 2, 39, 40, 58, 
65, 93, 101, ... (7 elements in a Fibonacci Mirror) Showing 
handedness of a Riemann sum balancing (s, s − 1, s + 2), π(x) must be 
balanced only once. So P rime count can be integrated. Rounding is 
done per ε < .2/n corrective since the algorithm is a derivative of base 
10 in the decimal direction. 

Every domain is either rational or irrational smooth. 
Elliptic equations define smoothness. Mertens is chaotic in nature 
when these n values cause it to pass through 0. W here a 
perpendicular distance defines a timeline n, so that RN = SN if n ∈ 
N, therefore solve time is the polynomial written over a mobius 
function μ(k) = μ(x) Let 

 Merten′s Function    ,1

n
M n kk    return k + Δx if k = 200. T 

hen a diagonal cord "c" splits the mobius shape per knots in its area 
[Z]. 
 
Theorem 2: 
M(x) is the count of square − free integers up to x that have an even 
number of prime factors, minus the count of those that quantitatively 
form an odd number. Choose a cord from Theorem 1 to complete 
the distance of radial translation given Incomplete ξ, ξ1, ξ2, and κ, 
equate each area and ratio to the greater circle′s elliptic nature on 
collapse of O on 2N ≥ 2 + Σ Mertens (2 − 101) = 400 being elliptical 
equations of the first order m = k2, and second order m = k2, so 
equate Mertens containing all k elements. 
The complex span are simply connected within the Tori, where two 
primes connect every even interval of a 3 sphere. 

Through a topology diagram including  1
n

kk 
 ,where μ(k) is a 

mobius function tied to a mobius strip. Call this prime area. 
see graph: 

   3 3 2
  :    1     5 3,   2     5( ) { }3Z f f x x x f x x x x       , tie a 

square node, rectangularly, curve is crossed on a square loop. 

 ( ( ) ( )) ( )    / / • /z z t t z t t dz dt t t ti i i i        , denotes a perfect 

curve.   ( )
3 2

3f z y x i x   , where i3 is the derivative mapping

  2
1   2  ( )f x dx G x dx CK dm   ∮ , where dm is the integrated area of 

m, or the bound of the elliptical equation. then   3
1        5    3f z z z   . 

  3 2
2   5 3f z z z z   , if    z x iy  ,      ,             ,      ,f x y xy if Re z x Im z y  

then      ,     ,f x y Re z Im z so     2
  1 2Re z Im z dxdy CK dm dm  ∮ , 

where       3

1 2 1 2

2
,

3 n
M M M iy x iM M K    so 32

3 2 n

i
M CK

 
 
 
  exists 

on  1
1 / 2sin 


 , or perpendicular to [ | 3]

k
X Kn  . The Euclid 

Space of a Contour integral mapping to the deviation curve J0 = 
1/(5n), given N − 1 Sub Intervals per bn = 3 of an r – ball Figure 3. 

 

Figure 3)      3 3 2
: 1 5 3,{ }2 5 3 ,Z iy f x x x f x x x x       

   
02 2

1 2 , 3 5 3 5 6 , 6 0,
6

f x f x x x x x x
 

       , the topology 

exists on 
0

6
aR b  of 

1
C . 

[b] 

Let 
2 

B
C

A
  modular D dimensions be a set of 3 manifold ties on R3 

= S3 or a knot with 3 dimensions: 
let x = 3, note all expressions are equal to prime numbers, begin 
within x2 + 2, where 2 corresponds to 2 elements. 

2
2 11, 2x a   , this defines

2 2 2
2 , 11,y sox y    r − knot to be 

justified in (ΣB − 1)|2 = 3, then check "r" as Euclidian. 
3 2

1 17x x   , mid constant – 1 

4 3 2
 2  47,    2x x x a      

5 4 3 2
5 131, 5x x x x a       

6 5 4 3 2
2 367x x x x x      , mid constant – 2 

7 6 5 4 3 2
5 1103, 5x x x x x x a         

8 7 6 5 4 3 2
38  3323,  38x x x x x x x a          deformed at 3 

+ 8 = 11, found at 6 decimal places within Dim 11 → 88801 
9 8 7 6 5 4 3 2

5 9851x x x x x x x x         , mid constant 5, 

deformed statically as an imaginary prime 
10 9 8 7 6 5 4 3 2

38 29567, 38x x x x x x x x x a            

11 10 9 8 7 6 5 4 3 2
223  88801,  223x x x x x x x x x x a           
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, stemming set [7, p] 
12 11 10 9 8 7 6 5 4 3 2 268 5717x x x x x x x x x x x          

, mid constant – 8 
13 12 11 10 9 8 7 6 5 4 3 2 223 797389, 223x x x x x x x x x x x x a               
14 13 12 11 10 9 8 7 6 5 4 3 2 34 2391523, 34x x x x x x x x x x x x x a              

, stemming set [p, 7] 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 13 7174471x x x x x x x x x x x x x x              

, mid constant 13 
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 34 21523399, 34x x x x x x x x x x x x x x x a                  

The set provides a mode of cancelation such that each magnitude 
decreases at the rate of a set size of 6 primes, or 6|3 objects. By the 

surgery of r − 1 = 2 on    
6

3 , 1,1
i

N X P T Nn n


       so 

{ 0}

dx

T
dt

  

Imaginary or prime values being led to a minimum of two primes 

given the initial geometry of a circle at radius 11. 2y   implies that 

there exists an empty node where ξ2, elliptical equation, of the 
hyperbolic space is no longer imaginary given J0 provides a real scale 
of 2N dividing. This circle, when revolved on x = 3 of 3 mapping 
contours. 
 
Provides that the 3 manifold set is indeed bound on 2 primes, 
providing the shape of a general sphere in even space. 
Set can be written as this expansion of linear subsets. However, 
unknown values are 34 within A, since A is the varying degree of 
Mertens. 

 0  , when local time expands from 0, when (HIF) is functionally 

valid on contained time T. Then  {
'

} ( )
dx

T F T
t

f g
d

   

Since area can be checked at the same time as any solved number, 

then equate the additive inverse of ABdb  as seen finally. 

Rule / 2    X   P rime numbers being written over E, Euler Transform, 
in transformable rings of any converging steady state polynomial. Merten's 

law closes   2   ,
 

A B
n n
  

For example: 2 can be added to 11, which is 13. All of which are 
prime, where 211 is prime, but hyperbolic to 4 since 2 + 1 + 1 = 4 but 
so is 200 + 11. Although, 200 is a reduction state inequality of £ and 
must be decimal even. 

Goldbach base change as logarithmic, in effect of a Torus Singleton if 
comparably A + B = 2N, is proved on a unique sequence [2]. 

Let A and B be both prime such that A + B = 2N where 2 4N  , by 
example : 4 is hyperbolic even given a draw 4l2 can be found Let 
foundations in complete the proof [1]. 

Within 
1K

R


, let c2 = k2, c is a given hypotenuse of a general triangle 
mapping 3 space within the sphere 

1
,

2

M
k

M
  confirm   2 2 2, , ... , 2   1x nx i Lx n  , given integrals map an 

arbitrary p area implying that another p bound can be found. K + 1 
corresponds to Jones polynomial, varying the autonomous quality of 
any prime set of a chosen interval.  

 ,
c

p A N
p

  if 1 2 ,( ) 100p M M A n    given 101 Chen - 

Merten harmony on "O" of Merten's Logarithmic Function 

1 1k log wb   for 0,k  so k a , A being a cone set to an elliptic 

scalar n then there is o < logbw + 1 < £ 

simply defined for any £ < 1.2 of the hyperbolic node integrated for 
mean .12 in [z] closing z elements on continuous tin choose primes A 
to be 11, and B to be 13 so if there is a movable base set l{b}l, all of 
which has Fibonacci elements then there is found a set l{a}l 
containing only three Fibonacci elements, where the movement of 

this sequence is defined as general objects within   1 1Sn s sN    

then {b} forces {a} to have 3 objects on knot space R3 

since 11 < p1 < 17, then 0 < p2 - 11 < 6, so al2 corresponds to the 
Elliptical Torus of R = 3 and p2 must be 13, so 0 < 2 < 6, then 6l2, 
leaving 3 objects that can be tied at each node of a string Js, al2 of R = 
0, r = 3 and is a sphere bound. Being a prime distance and implying 
that two prime objects, A, B complete the sum if [if F 2 = C2 is 
algorithmically configured]. A prime area of p1, must find p2 to 
complete 2N > 3 
ln an elliptic lntegral, a prime probability function of a specific line 
converges on two elliptic equations 2 | 2N  

T hen m = k2, defining first and second order elliptic equations such 
that logbw < 1, a set {b} to any order of base so k is elliptically 
minimized. 

If 
2

, a Ax   , Area, 
2

ra = volume, then na2 = nAx, b2 = A, nb2 

= nAx  
2 2  a nb nAx Ax    

Let,   2 2 2 21/ )2 (a b nb na nAx Ax      

if 2 is set to the string length of an arbitrary factor in computer 
science, p + 2, is a balance in [1] Chen Sets by the additive inverse 

property in a ring within given geometrized set   { }T x      

Adding a2 + b2 + n(b2 + a2) = 2(nAx + Ax) 
by the Pythagorean theorem 

2 2

 2( )c nc nAx Ax   , so 
2 2

2( )nc c nAx Ax    , or 

(
2

1 /)2n nAx Ax c     

then n + 1 = 2(nAx + Ax)/c2, we approach infinite primes within the elliptic 
scalar n, in n dimensions. 
Def ine n + 1 to be F s = n + 1 where the Fibonacci Spiral separates area 
from the following dimension in {T} 

The system only enters the first Mertens state if its bn value 
approaches a set size of {2}, non-circular.  
This must only mean that  

22 2
2A B C , where 112 + 132 = 290, 

and 172 = 289 
So 112 + 132 = 172 + 1, this means that A and B are unique under a 
parallel area, where area is checked numerically, algebraically. 
 

  2
1 2 /Z n nAx Ax c    , where area is checked as a parallel 

computation to n + 1, where np = 289 + 1 = 290 
The prime scalar is a verified solution to a verified easily checked 
solution in an arbitrary geometrized polynomial ring. 
See part [a] (1/10)(200 < 263 < 290), or 200 < Maximum Radius < 
290 < 2 + L Mertens Zeros ((2-101) = 398 + 2 = 400 
then if 20 < 26.3 < 29 < 40, the Maximum decimal radius is still less 
than a prime 29. 
String 2 + 9 returns to 11 so Dilemma = P V is sorted as a solution in 
polynomial Time given Matrix Set {T} and Parallel Equation Z, given 
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base 10 reorders standard sets of primes and there are two set states 
in [a] which allow R = 263 to always be true and open the set at a 
maximum, given tip > 200. provided before Lan + 1 has two states. 
Prime function µ(x) creates equations that can reorder 263 as two 
separated F - P rime sums as seen earlier, then C = 4, integrated 
between the Elliptic Set of every node that can be tied in n = 16 knots 
as the exact elementary base b, given the number of fibonacci 
elements must be even so {a} is left with only p - 2, Chen factors given 
Fermat equations are used because they increase the prime finding rate 

sufficiently at 
2

2
2   1

n

  provided an elliptic fluctuation. 

Of the surgery at eigenvalues A = 2, A = 3, are corresponding prime 
radii. Given the two states reverse integrate logarithmic ellipses. 
2 2 200N  , if Goldbach values are assigned as in [1] then the 

differential equation /dx d   shows T solved in geometric 3 space. 

From a second Euler Transform of a Torus within T, a solve time, as 
a radial component of a sphere, being set at (p1 - 2) + (p2 + 2) = p1 + 
p2 when   / 2r  , if time solved between area and elliptic area 

minimize k, of 2 order 1, 2, 

T hen p1, p2 can always be integrated on an even basis, so... 

1 / ...10 1 1( )
koo

a p A c p cnk k
     


  if torus radius is 

defined on ( ( ) 2\k p n np A B N     if 2a
k

 

Then the Euler transform is between the area solved in a probability 

function given 1 ..) .1 20 0( a
o

k

o
k a a ak     

  

So two primes are left to be added of any arbitrary 2N > 3 relation, given a 
string is connected evenly on 1, 1 16n n    Torus 
The solution is seen on n + 1 = r + 1 = 2 + 1, by surgery of      3 *P N X

n
   

as calculated in the first cut surgery of this paper. So p within 
Merten's Law Fluctuate between eigenvalues of 2, 3,    
Where     G Sin G   such that 1k R  if 

, , 200
k

p p X p F kk k k
    

A + B = 2N is always true given a knot can be tied at the amplitude of 
a harmonic wave, given  

2

( ) ( ( )
22 2 21   / 1   / 2( )   
1

)
1

b c

a c

Mx xe e dx y y dy
M

     

Where 
2 12 1 1( ) ( ) ( ) ( ( )

4

x x xex e e sin e



   
 So any prime value can be 

checked to find 2N elliptic equations given  4 4 2 ,N   at N = 8, or 

half of the Tori Dimensions, so an arbitrary p1, added to a solved p2 
complete. 

[S] = [0, 1, 2, 3, 5, 8, 13, 21, 34], at p = 32285917, Q = prime, so 
17

       2   4    , 
p

R A B N


      if A + B exist on   200k  , k = m2 and by 

[c] where 0 /0 1M M , so every action is accepted by the Tori recording in 

a given complete elliptic  geometrization. 

Then 
2

1  
2

b
b

e
a

   is E(k), a complete Elliptic lntegral of the first kind. 

So every  ( )e E k  , if 2 . 2, 1A B N b M a M     This occurs on 

states 
1 2

 3 , )3  (  
n n

a a
 

  given the surgery      3   *P N Xn p   , then x =± 3, 

or every symmetric zero of {T } matrix.  
this forces A + B = 2N, given 2 4N  4 is a knot that can be tied to form 
this prime in any integer succession towards  . 

The maximum knots of r = 3, R = 263, N = 16 of the Torus imply 
that every possible tie is mirrored in the density function between the 
balance of 32285917, given every arrow switches n = 11 + 3 = 14 
between a4, a5 => 34 --- 3 + 4 = 7, and 223 +--- 2 + 2 + 3 = 7 
C + G(x) = 7, when lntegrated C = 4, G(x) =+ 3, then A, B, C2 = F 2 
are three wisely chosen prime values to complete the Goldbach 
Algorithm. 
A Merten Value 101 solves the given system to be no longer chaotic 
but symmetric to all primes within [7, 7] that can be generalized to f it 
[A + B = 2N being on an even space of 2 ]4N   , C is integrated as 

4 since 17 4
c

N
p

  , from the given integrals. 

Then 11, 13,  17 ,  can be approximated to a greater circle's 
magnitude of M (6, 5, 8), where P (s, s - 1, s + 2), at s = 6 
This s defines a great circle's arc length. So that through 
approximation the shortest distance of the 3 sphere is defined. 

2 /   0,lim a ck k k     then A = 2, 3 given {T} implies 

hypergeometric torus to sphere conformity. Only one conforming 
topology. 

Then an in a fibonacci ring is fixed by the translation of bn so 

( 1 2)0 0 1
ka a akk a   


 . 

Let d(x, y) be a Riemannian manifold, where the shortest curve between x 

and y has a value of       2M Js P s   is a Chen P rime arc, s is its 

pair and s - 1 = 2N, so that     X Y Z   always changes its center node, 
Y , to Even 2N Space of Y , given Dim N of {T } bends it. 6/3 = P (A, B) = 
2N. See Set {T} for Y - P rime outputs given [z] implies a closing node in a 
topological transformation as follows: 
Between each translation there is an identical rectangular area between Z = 

n + 1 = 2(nAx + Ax)/c2, then    e E k  6 rectangular areas found 

closed at e(Z) = E(Z ). Minor curves are the shortest translation 
between A + B = 2N. 
Let   map to a Mobius Strip of 2  , and   map out the Torus of 

 3  to 
1




on a Given Sphere. lf there is a singleton of 1. 

.12   given the defined node J0 = 1, returning to its original 
state {0}, then all vectors are counted in J0(.12), given .12 + .88801 
Dim 11, counts prime 88801 which is the density area in the stitched 
region. Constant 11 defines a circle that is revolved on the Torus of 

radius 3 by Theorem 1. Then Dim 11 110C   so Theorem 0 can 

be rechecked for J0(.12) , as a deviation function returning .008. 
 
Merten's law is an defined for this convergence: 
µ(n) = 1 if n is a square  free positive integer with an even number 
of prime factors. 
 µ(n) =  1 if n is a square  free positive integer with an odd number 
of prime factors. 
 µ(n) = 0 if n has a squared prime factor. 

1
n

ukk


  where µ(k) is a mobius function that contains k as a node of 

a connecting mobius strip so total p  knots of n = 16, are 1388710 

Given  , , 3kp p X p F µ nkk
k
    simply means 3 states that

6 / 3 1 2 2 3, 1388710 28p p N       so 2 + 8 returns [10]. 

T hen  2 6 / 3 , 2( ) ( )N A B P A B        where k can be 

maximized for all primes given first surgery is less than prime knot 
max. 

1388710    1K   , or the Kill value of a vector space 28k = 29k - 
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k, on the initial value k = 1. 

Then 
1

  ,
4

b Jn s  or a Computer String that connects a node p1 to a 

searchable value p2 of an even number in 4 Vectors. 
So:  

2      ( ) {  (1 ,} [ ]6T t pow a Rn        where a = a, b = B) and 

   n    , Aleph of Cardinal Time ordered sets. 

Call ring:      162 2 1
( ) (( ) (

6
) ) ( )a b a bn nn n n n n n

    


  

( ) ( ) (   )  ( )a b a xb T t Zn n T n n t n n n T       on 

 ( )0
n
k a b

k nn k 


     

So  ( ) ( ) 8  
0

na bn a b
n n n k nk n

      
so 

   ,0

dx

T so T R N
dt

   , scalers returns µ(k) = 3 states, then there 

must be    2   2 \ 2, 
1

ABdb
c

   then 3   3    ab E F   or 3 complete second 

order to first order   bounded on 32285917 = p, contains 59175917 = pc1 · 

pc2 , a semi - prime, is the product of two Chen primes 61 and 97, count 

C0 integrated previously as 4 in    4  17(  )G x dx   then P (s, s - 1, s + 2) [t] = 

17 on s + 2, s = 59 the Chen Arc so X - Y - Z maps Z = n + 1 = 2(nAx + 
Ax)/c2 

 ( ) ( ) ( ) (( ) )  an b a xb a b Z Zn n n n n n n n
        on 

( )0 a b
k n k n

n
k  

  on magnitude C = 4 so 59, 17 seperate their primes 

on 

2   ((an ) + (bn)) = Z + 2, given {T }3[t] if p  n."((an ) + (bn)) = Z = i P = 
263, on the maximum radius of state two in Lan + 1 

if 263 + 1 = Lan + n given 
2 2 2

.5 0x y z
  

   ."(x2 + y2 + z2 + e)1 = 8(x2 

+ y2) where   1n e  in R = 263, now circular 

{T} defines Hyperbolic Ring.   [t] defines 2 16( ) ( ) n n nan b  where 

T t in  and a R  to (a, 0, 0, ..i), vertex is contained on 2 Null 
spaces 17i + 2i = 19i, prime returning [10] define a static subset of z being 
contained as [5] in C2. 

Let: 
2 2

2 2 2 2 2 2

   
      ,      ,

( ) ( )

x y

x y
x y z i x y z i

 

 
     

 

2 2 2( 1)2( )

2 2 2 2 2 2

   
  i      '

( ) ( )

z i i x y z

z
x y z i x y z i

   

  
     

 then r   , a contour 

symmetric to H. 

So: Given a C0 inversion   2 160,0,  ( ) ( { }  ) ( )n n n n n
i a b a T t 

       

Defined Function G on r   : 

 2 016
(  )8) (

n

n c kkn cn n n k n
aa b b    

    ( ) { }
N

nn n n
a b P

 
    

containing all (A + B) if and only if  ( )2 , 59N n t p p   , or 

simply 
n

s a R  , only if {R} = {Rule 1, 2, 3 of   [ ]}16T t  . 

Then    2 1 16B b   , a = {p1, p2} = {2} carrying cone into (x2 + y2 

+ z2 + 1)1 = 8(x2 + y2) given (b/a)(x2 + y2) = 8(x2 + y2 ) = (3 + 5)(x2 + y2), (3, 5) 
are a unique Goldbach pair to complete A + B = 2N for 2 4N 

,32285917 = p, exists on A = 2, 3  
where A = 2, 3 are mapped to 

1 2
( )( ·   1 2 2 2 1 2 2) ( )1 2 4Pc Pc p p p p p p       , then 

1 2 2 4 0), 2(p p N AB A B       So Chen sets divide the mapping of 

A + B = 16/2 provided p + 1 is the next prime in the infinite sequence of A 
+ B = B + A, 2(A + B) =- AB 

 

Consider d\H, being geodesic loops of X -Y- Z 

as seen equal to n = 8, 10, so every algorithm can determine a flexible 
way to parse out the ending behavior of O, a curve, as S can always 

divide its radius, given a Set Space within 
1 2

S S  retains a recursive 

quality of the Fibonacci Sequence. 

Any even integer greater than or equal to 4 can be written as an area 
that can be topologically molded to an event based system, of a 
minimum of two prime inputs. T wo values in this Spiral are 
bounded through Fermat Number F 4, at 2N = 46368 < F 4 < 75025 
= Only odd, Z maps the center node Y to a prime found by Reverse 
lntegration, and by inspection Figure 4. 

 
Figure 4) Note: 1, 2, 3, 5, 8 correspond to areas sectioned by the Spiral 

Curve. 
 
This Fibonacci Spiral repeats through every Fibonacci sequence such 
that its area is mapped to a prime curve derivative in a sphere. T wo 
points define this derivative, the radial symmetry to a curve as 
converging to N/2 = 8 on a minimum of two primes. 
Only 5 + 3 are unique prime spaces summing 8. F 0 + F 1 = 8 in the 
continuous integration provided by the Fermat equation. 
A given Algorithm can prove the Goldbach conjecture given spaces 
are irrational or rational smooth in a reordering of prime radii and N 
- prime scalars within specific geometric standards. 
 
Soul Theorem: 
lf (M, g) is a complete connected Riemannian manifold with sectional 
curvature 0,K   then there exists a compact totally convex, totally 

geodesic submanifold S, whose normal bundle is diffeomorphic to M. 
 
Context of Proof: 
This is not a claimed proof as it has been already thanks to Perelman. 
Let gp be defined smooth on T pM, define point to point smooth 
space of {T} being a Torus Bounded on the Laurent Polynomial gp[t], 
if µ(n) = T pK, Tangent Space that is killed by a vector space of a 
mobius function. [t] is contained on A + B = 2N 

| | ),(
p

p g X p Y p  so X and Y are differentiable vector fields on 

point to point 3 dimensional space. Since  '
{ } ( )

dx

T F T
t

f g
d

   T 

hen R3 = S3 is a prime knot system where 0K   moves every vector 

between X - Y - Z, a 3 sphere. 
Then D(x, y) = 0 if K > 0 only if (M, g) returns a curve of a simple 
unit 1. So the vector space [t] = 1, by Rule of [T] 

lt's noted (M, g) = 1, a single loop, then 
2

2
1

p

b
T e

a
   E(k), a 

complete Elliptic lntegral of the first kind. 
 
Embed e into the normal bundle RN, where R maintains radial 
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symmetry to K then there is a set {T}, who kills K. 
into the symmetry of f(Br(x)) = Br(f (x)) so a short map f between 
metric spaces contains S of (M, g) 
A smooth embedding of a Manifold is the image, such that R > 0 for 
any point x and radius r < R we have that image of metric r - ball. 
 
Then a Solid Torus contains the volume of its contained sphere, or 

an r - ball metric that 
p

T e . 

2 2

2 2 2 2 2 2

   
      ,       

( ) ( )

x y

x y z
x y z i x y z i

 

 
     

2( 2 2 2( 1))

2 2 2 2 2 2

   
 i      ' 

( ) ( )

i yz xi z

x y z i x y z i

   

  
     

then r   . 

 
 
 

If 263  1   na n    given 

 2 2 2 2 2 2 1
2 2.5 0 8( )x y z x y z e x y

  
          where n = e = 1 

in R = 263, now circular. 

As seen in the maximum radius of R of {T}, so smoothness defines 
curvature as clp, Contain C as a prime inverted subset Cut each 
string prime rationally so unit e reforms as first order Elliptic Torus. 

lntegrated between elliptic equations y2 = x3 + ax + b, the ax + b is a 
linear subset of 2{A} + {B} in {T} such that 16\8 returns two prime 
spaces 2( )   . 

So f (Br(x)) = Br(f(x)), if   (2 )f x     ) and is smooth then 2x  , 

where f (a + b) = P > 3 > r. 
2(r, R) are of hyperbolic space containing a cone that carries 8(x2 + y2 f rom 
(x2 + y2 + z2 + e)1. y2 =P (x) where P is any polynomial of degree three in x 
with no repeated roots. T hen there is a vector f ield that controls a 

continuous space of 3 arbitrary primes such that  
21

   
2

b

a

f x z


 , then 

curvature follows a n - prime scalers and divides a continuous space (M, g). 
where static a A  implies that the boundary of a convex set is always 
a convex curve. 
The intersection of all convex sets that contain a given subset in 
Euclidean R, is a convex hull. 
So an intersection of all convex sets containing X is meshed to (- 3Xn, 3Xn 

), but where the tangent space remains positive. 

So,   2 2
, , ,{ }: :M x y z z x y f M N     is called a dif feomorphism 

if it is a bijection and its inverse 
1

:f N M


 . 

Let 
B

A
 modular D dimensions be a set of 3 manifold counting blocks on 

R3 = S3 or a knot with 3 dimensions 
6

1
32285917

i

nn
N X r




   , where 

r is shown to be 3, then  
21

b

a

f x z
N


 , where N - 1 subsets of an 

Elliptical Torus of N = 16, r = 3,  
Counter an + 1 through two ellipses closing curvature on D(x, y) = d(x, y) the 

Riemennian manifold that finds 
N

N N  

So ,
c

p A N
p

  if  1 2 , 100.p M M A n p    is a simply 

connected prime bounded polynomial. W here its roots define Magnitude 
curvature. So <1-1 factors the Soul to a X - Y - Z, 3 sphere containing every 
Ring Boundary of S in geodesic spaces of its trivial set. T hen a 
neighborhood of complex variables equates Z as a parameter of 3 space that 

is also complex. So 3 primes manipulate the manifold of a bounded 3 
sphere containing M, a minimal surface.  
H of a surf ace S. loop measure of curvature that comes from differential 

geometry of  
1

( )      \    
f n n

J S H p S S


    

Let :f X Y  be a map so a singleton fiber of an element commonly 

denoted by is defined as 
0

6
aR b  of C1 , 

Shown in {T} is iterated 3  per 16 dim, but can only be measured 

once by two primes.     1
: \ ,f y x X f x y


    then a b X Y  . 

Then  \ , ,( ),H X H y Y  so all curvature maintains even integers 

given \ , )2(6 1   and <1-1 maps the Soul { ( )}2 ,lN u G . 

If 
2

, 0
B

C
A

   where     G Sin G  such that 1k R  , if 

, , 200
k

kk k
p p X p F k    when V is a vector space, ( )V G  . 

So 4 \ 2N , producing the Rs integrated structure of (M, g), 
trigonometrically defining g of G, by functional containment. 

By Theorem (0 - 1), g(t) is a Sine Wave function reducing the 
geometry to a manifold M. M is integrated by Theorem 2. 

1

2 ,

M

k
M

  confirm
2 2 2, , ... , 2 1( ( ))

i
x nx x n  , given integrals subtract an 

arbitrary p area implying that another p bound can be found. 
[16  dim. Tori Rings Outputs]    2 200 eA B P X      , such 

that (- 3Xn, 3X) so inner product is f(n(n - 2))1/2dn = N. 

1 0,K K   on ,
E

R  or the Real Number Ordered Even sets on 

Torus movement in Space \ : 2     / 0 :H S lim a ck k k     

2          ( ) { } 6 ,(1  [ ]  
n

T t pow a R       where a = a, b = B) and 

     n  , Aleph of Cardinal Time ordered sets. 
So (M, g) is a complete connected Riemannian manifold with 

sectional curvature 0K  , given  {( ) |, : }a b G g tn n  then there 

exists a compact totally convex, totally geodesic submanifold S, whose 
normal bundle is diffeomorphic to M. 
The union of two variables in both a and b allows a cardinal state to 
be measured. Cantor's hypothesis states: The continuum hypothesis 
states that the set of real numbers has minimal possible cardinality 
which is greater than the cardinality of the set of integers. 
In my other paper I showed that building the state sets of {S} is 
circularly equivalent to a non-singular Borel Set. Inviting to some, 
perhaps scary to others. By redefining the set space of any vertex 
leading rule, the origin of the {1/H} state is equivalent to the marker 
over all {e>1} values. Potentially invariant to its domain, the cardinal 
value repeats itself one last time before diminishing into the empty 
set. That is, the principal elementary value, which is stronger than the 
integrated set space. So taking any finite value length of polyhedral 
has its counted space as cardinal. Let counted space be in a sphere, 
then the cylinder that replaces each manifold holds the cardinal value 
as shown elementary. Then by regard of the first value, each flat space 
would and should prove the Continuum Hypothesis as always true 
within the Integer Set Domain. If the real values are elongated with 
each solid, each value is of {S} in union of {A}\{B} There are more 
positive numbers to make the Goldbach conjecture true. That is by a 
factor of 3 given set {T} holds and the Goldbach should then still 
hold. Then Cantor would be correct in his initial assumption that a 
cardinality of regular intervals corresponding to dividing sets. This 
brings the count of a positive ratio greater than two but minimally 
equal to the minimum inputs in a Goldbach function. Since the 
immutable even holds a negative prime requirement there is a Cantor 
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condition which states that in n possibilities, Goldbach matches 
cardinality which is greater for the set of real numbers and less for the 
set of integers. As was shown in Homogeneous Riemmanian with 
Applications to Primes, the n-sphere is an object that tied all knotted 
translations in the dimensions lower than a sphere, and platonic and 
symmetric. So greater than or equal to p=32285917, all values are set 
to fail n=2, n=3, since p1+p2=5, but since the set {A} and set {B} 
require 5 elements each, the negative elements in set {B} create a 
boundary of an even number since odd elements of01+02=2N. Then 
0's curve clocks a boundary that holds the Goldbach Conjecture as 
always correct outside of Cantor's condition. That is if there are any 
other falsifying even values for positive primes, which require a 
negative number in the initial set being p1=-p2. If one followed my 
logic in Refuting Logic of the Goldbach Conjecture, there is only one 
symmetric value which means an n-sphere holds t-2=24n on 16 
dimensions. So the solution exists on p=17, or in 17 dimensions 
being scaled 3 and divided at 2. So Cantor is always partially correct 
and Goldbach is never false in the containment of a Cantor Ring. 

 
A THEOREM ON PRIME EQUIVALENCY 

Primes can be expressed as a single function and the integral can 
wield a form that supplies compression to the prime number system. 
Firstly, one must integrate the function. For any formula to exist, we 
prove the open case of {X}={R} in universal prime decomposition with 
regards to Halley’s Method, that is Sir Edmund Halley’s well known 
algorithm. This paper is in accompaniment of the three papers 
written on geometric corners. What I found is a close approximation 
of the prime number route that closes a boundary on the second 
derivative between 
<20,30> = <n1, n2> 
 

The problem of finding the integral of
3 5

(sin )x x x  is not so 
intuitive. However, its integral can still be found. 
1:

7
4 2 4 215 53 5(sin ) ( 12 24) sin( ) (27 36 8) sin(3 )

7 4 972

x
x x x dx x x x x x x


       

 
 

4 2 4 21
20 120) cos( ) (27 60 40) cos(3 )

324

3
... (

4
x x x x x x x x c       

7
4 2 4 215 5

( ( 12 24) sin( ) (27 36 8) sin(3 )
7 4 972

d x
x x x x x x

dx


       

4 2 4 21
20 120) cos( ) (27 60 40)

32

3

4
(

4
x x x x x x      

51
cos(3 ) (4 3 sin sin(3 ))

4
x x c x x x x


     

4 3 51
(4 _ 3 sin sin(3 )) (sin ) x , 0, 2 ,

4
x x x x x x x x n n z 


        

 
2

3 5(sin ) 58242.1...x x x dx





   𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑅𝑜𝑜𝑡 

7
33.97265439727902924509317 10x


    

1a:  
pn 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

33

5 5 5

1 1
(sin ) (4 3 sin sin(3 )) ( ( )

4 8

ix ix

x x x
p x x p x x x x i e e p


          

5
523 3 5

5 1

1
(sin ) ( ( ) )(1 | |

csc( ) 1 ( )

x
x

kx

x
p x x x

x k
     


  

5
52 5

1

1
( )(1 | |)

csc( ) 1 ( )

x
x

k

x
x

x k
  


  

5
523 3 5

5 1
(sin ) ( cos x))(1 | |)

2 1 ( )

x
x

kx

x
p x x x

k




     


  

2: 
5 7 4 2

1 1

11
(4 3 sin( )) (972 25515( 12 24) sin( )

68044
x p x x dx p x x x x

 
     

4 2 4 2
35(27 36 8) sin(3 x) 5103( 20 120)x x x x    

4 2
xcos( ) 21(27 60 40) cos(3 x)) cx x x      

Taking the integral and using the Prime Number Theorem we find 
that the function will correlate to the same problem in (1) found here 
with an integration being the reverse of its derivative. We show 
functional equivalency as follows. This equation above is called the 
closing loop. 
 
Similarly to Sir Edmund Halley’s root finding method, an algorithm 
called Halley’s method, it iteratively produces a sequence of 
approximations to the root. This shows the rate of convergence to the 
root is cubic. Here the cube is located within three terms and the nth 
prime is found as a cohesion of a minor root and a major root. The 
major root being k, and the minor root being triangulated between 
m, i, and j. The part taken for {X} can be adjusted as directly found in 
the parallel axis theorem. Except for k, we can take n mod t. Then ds 
is the differential equation that binds the prime radius to function. 
After all, integrating is simply locating an area that has the upper 
bound prime and the lower bound prime as its resultant. The above 
equation will be called the holding function. With respect to the 
second derivative mix, or case zed, there is formulation into Halley’s 
method. In this case, instead of there being a second multiplier, there 
is just one since the numbers 20 and 30 show up. If one divides by 6, 
the leading terms are 10/3, ½, 5, and 5. The ½ component sits with x 
squared. So, rearranging in the prime configuration, one can see that 
between (1-7) in the prime recursive formulas, there is the event (C) 
shows as well. Then the case opens on (D) and closes on (E). In the 
first n group, this is since the original function leads with x being 
drawn out with an exponent 5. So every root follows sigma defined 
locations in (A-D). So the formula is wisely chosen to be integrated 
for a prime involvement that located 4 quadrant planes. Since there 
are four necessary terms expanded from the second derivative 
formula, the roots of f(x) satisfy f(x)=0, or to put it similarly f(p)=0. 
This describes the finite motion of primes with respect to the four 
coordinate planes. Then each quadrant follows, (+,+,+,…), which goes 
to the prime reals as the central plane of cohesion, but the paradox 
does not continue infinitely as outlined by the equations in the mid 
section of this paper. The holding function changes p to direct 

   , , ,   , , , ½, 5       . Then every variable has a closing root 

over x, such that the nth prime can be found similar to Halley’s 
Method. Instead of only the root, it finds the nth prime 
unconditionally. 
 
2b: 
{P}= (2, 3, 5, 7, 11, 13, …). N is simply set to the original integral so 
the nth p of n term is found, assuming n continues on indefinitely. 
However, if n does not equal p, that would mean there are not 
infinitely many primes as shown by (5). It’s important to be careful 
with how n is indented. But clearly I chose 𝑛 = 𝑥5first. So we can 
conclude in this proof that R does not equal i, or the radius does not 
circle back to the origin given 10 does not divide 3. P of n is actually 
looked at as P of x to the fifth. Then stitched to the function group as 
follows. Locally 𝑛 = [𝑥], which retains the function as a whole beyond 
just 𝑥5 

 

Theorem 1.0 
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R does not equal i in the prime number field given a local group of 
imaginary areas. That is in any group defined by {X} sets, finitely a 
triad. So a closed prime group is always found with a remainder term 
of 1 until the prime root is found and the remainder term is 0, or just 
a succession of n primes in a continuous {P}=n location. 

Since the analyzed function of the integral is an even spread until the 
first count, minus the odd number sets, there is (11, 12, 13). That is 
to show just one continuous line. But the prime group exists beyond 
the dozen lines. That is just the number 12, apart from the 12 lines 
(A-E) and (1-7). The barrier is not a complete whole yet until the 
closing loop is applied and Halley’s method is adjusted for given a 
prime root is ¼ differential. I proved x has no other factor than the 
listed set in its binomial expansion, thus the problem is solved when 
the group closes. This closing property is shown in Strength of the 
Continuum. 

 

Sources: 

wolfram alpha. Online Resource for Mathematics: 

Homogeneous Riemannian Manifolds with applications to primes by 
Thomas Halley  

Refuting Logic of the Goldbach conjecture by Thomas Halley 

Strength of the Continuum by Thomas Halley. 

 

 

HOMOGENEOUS RIEMANNIAN MANIFOLDS WITH 
APPLICATIONS TO PRIMES 

This paper shows methods on how to reduce the Goldbach 
conjecture. In contrast, the conjecture is solved by definition that this 
eccentric proof will explain the seminal work of R. Knott in 
describing the one to one correlation of Fibonacci numbers and 
primes. This is done in an effort to further topological modeling and 
works of algebraic computational methods of abstract geometry and 
fractal imagery. Synthetic proofs are given by elementary procedure, 
and thus organic means. Perhaps later, a method like this will solve 

the Goldbach Conjecture or refute it by 2
N

N A B  , when r+ and r  
give insight into the Riemann Manifold defining (a, b) error. 
The author does not claim proof but shows refutation through a 
stated method. By error analysis to begin: 

The first part explains the aim of routing a line. The second part gives 
practical application and uses predictive models developed. The third 
part qualifies the use of immutable spaces. A statement of Poincare is 
made. 

If the space does form two cubic-like structures: XYZ1 and XYZ2, 
through prime scalers, there is an empty space of fractal non zero 
curvature that cannot be separated from {A+B} through redirecting a 
sizable magnitude that is integrated. So any 1 unit space that is left an 
even area, includes two prime values of the minimal space that can be 
directly computed. Unless by non-euclidean geometry the projected 
point has nullity that scales towards infinity to refute. We use a bent 
line s, to redirect the formation of a distributed line, by primes, to a 
sphere. 

<x> Prime routes follow this Riemman pattern analytically by 
rotational matrix 6. 

1R a  

2b R    

1R c   

3d R   

n({H}) =Saddle Position of a, b, c, d. 

 

PART 1: LINEAR AIM OF THE GOLDBACH 
CONJECTURE 

Fibonacci Table:  

0 1 2 3 4
, , , , , ...F F F F F  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 

377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 
46368, 75025, 121393, 196418, 317811, ... 

 

Context of Proof: 

I use the Fibonacci Sequence and its Theorems to prove a 
functionally available method. The conjecture states certain prime 
number pairs, each prime integer greater than or equal to 2 sums all 
even integers greater than or equal to 4: A + B = 2N ≥ 4 

Part 1 is self referential to Part 2 and Part 3. 

Statement: 

Every Fibonacci number bigger than 1, besides 8 and 144, 
has at least one prime factor that is not a factor of any 
earlier Fibonacci Number. 

Statement: 
Any three consecutive Fibonacci numbers are pairwise coprime. 

Which means that, for every ,( ) ( ), 11 2gcd F F gcd F Fn n n n    FS = 

Fibonacci Sequence, a, b = prime, gcf = greatest common factor, gpf = 
greatest prime factor Aim: I show how a recursive function of the 
Fibonacci Sequence FV will prove or disprove this prime conjecture. 

 

Proof of Linearity of 1-1 correspondence 

L 1: There are an infinite number of primes. Then there must be 
infinite possibilities of co-primes. 

L 2: Then FS contains an infinite possibility of co-primes since FS 
continues to infinity by [T 1 a] 

S1: By the unique-prime-factorizations theorem: Every 

2 1 9 1 2n p p p     a semiprime. 

L 3: There are an infinite number of a+b=2n, when a=b, since there 
are infinite primes and 2n terms. 

L 4: For there to be infinite a + b = 2N ≥ 4, a,b have to be unique or 

a b  for completion. Omit a=b=2. 

C. 0: This implies    ( )  .  ... ,1 2gpf F F F P Pn n n    being the set of 

all primes. Since by [T 1 a] 

L 5:    1 2F F Fn n n   implies any integer 2 1 41 2n p p p     can set 

in factorization of semi-primes. 

If a + b ≥ 2N ≥ 4 is valid then 
1 2 1

         
n n n n n

F F F F F b
  

 or 

  2F F an n , since {P ≥ 3} = {P }  

By 2n + 1 = N it will be prime or odd. 2 ,1{ 2 }N p p since 

  {b}1 1 p F Fn n  or   {a}2 2 p F Fn n   

 
Reasoning: 
Functionally, this equation algebraically reduces a + b = {N} by [T 1 a] 
through linearity. 

P R 1: By [T 2] Any three consecutive Fibonacci numbers are pairwise 
coprime. So omit 2 + po = 2n + 1. 
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L 6: Every third random N of a FS is odd or even. When Pairing FS: N 
or (1, 1, 2, 3, 5, 8, ...): (1, 2, 3, 4, 5, 6, ...) 

 
Pairing pattern: 

(o, o, e, o, o, e, ...) always, o = odd, e = even. F 6 = 8 and F 12 = 144 
so [T 2] sequences {p} 

C. 1: As F12 = 144 = e it is followed by two odds. Therefore 2(2n + 1) 
= e 

( ) ( 2 2 113 14 1 2)F o F o N e n p p p         

, ,( ) 1, 21 2 1( )gcf F F gcf F F o o Nn n n n n n       

so a, b ≥ 3. Since every Fn+1 contains all of 1 Fn before it by Fn+1 > Fn 

 
S 2: FS > F 12 retains A + B = N ≥ 4 by C. 1 if and only if F n+1 > 

Fn by [T 1 a] in the equation: 
2 2 2 2

  ... ,  1 1 2 3F F F F F F Fn n n s      creating an area by ab. 

 

By [T 2] FV correlates  2 2 2 2    ... ,2 1 2 1 2 3
F Fn F F F F F Fn n n n

      

so 1FV FV   

Prime factors in  2 2 2 2        ... ,2 1 1 1 2 3
F F F F F F F Fn n n n n

           

unique since ab=semiprime,  a b  

Consider ab the area retained by   1F Fn n  then checked by 

   2 1F F Fn n n    in the sequence  (o, o, e, o, o, e, ...) 

So by [T 2] theorem and [T 1 a]: FS > F 12 implies a + b = 2N ≥ 4 ≤ 
144, prove a + b = 2N ≥ 144 given C. 0 

By unique prime factors in Fn+1 > Fn after F12 = 144 it is immediately 
followed by two odds values. By C. 1: 

 
 
Reason that primes may not close N  imply. 

a + b ≥ 2N ≥ 4, 2 x 2 x 2 x 2 x 3 x 3 = 144. 2, 3 are gpf of 
144 for S 2 on where a, b ≥ 3,  a b [T 1 a] limits a, b ≥ 3 min. 

So sum a min. or max. value if (a + b) = {N |3 ≥ 6} since 9, semi 
prime in 144 by L 5 to 144 : 8PR   reduces as 18 through S 1 as 

18|2 = 9 in 144 and 8 in 144 by |: 2 4( )F N A B N ns       

gcf by 1 gpf (   )1 2F F Fn n n    holds minimum value on a or b given 

a > b or b >a F n+1 > Fn by [T 1 a] shown by (ab) : 
By C. 1 the gpf in (On, On+1) index given

: , 1  ( ) 2 4
s

F N a b a b N      by :  1F N F Fn ns    only 

if  
1

2 )2 2(n n
a b n gpf o gpf O


     on a + b = 2(o, o, e, o, o, e, 

...o) by [T 1] so gcf (   ) 12F Fn n  . So let area retain gpf 

, 1, 2,
(  , , , ...)  {x x x ...} { }1 2 n n n
F F F Pn n n  

   so 

1
( 1) (2 , 2 ) 4

n n
x N N a b N


         by [T 2]. 

 
A recursive function is delayed by τ 

By recursive pairing FS: N, any 2N ≥ 4 is the sum of 

1 2   2
:

V
p p F T


   

Every even number has one prime by definition of successive integers, 
so by there being a set of unique primes in FS 

When summing the prime factors in gpf (  , , ...)  { P}1 2F F Fn n n    , 

one can create a linear map FS : N through areas by finding the mean 
of linear reduction, then the function always reduces per previous 
two odd elements by (AB). 
To show that when stretching the logarithmic value of a Fibonacci 
number, p1 + p2 are left at minimal connectives of 2  6N  . So by 

aim, given this formality, a f (x, y) function will reposition the original 
or first prime space that is checked by a given square. Thus enabling a 
stronger mod for two prime sets. 
 

PART 2: EQUATING NUMERICAL TECHNIQUES FOR 
FRACTAL CALCULUS 

 
Figure 5) Equating numerical techniques for fractal calculus 

 
Introduction: 
Prime 32285917 finds a formulaic way to describe the Helix Look 
and Microbe Look among fractals. The use of the geometrizations are 
for useful ways to study each parameter in the Newtonian Fractal, and 
its Rational Map. A volumetric spiral as shown in Part 1 gives insight 
into FV being treated as a volume vector that maps the 0 unit as we 
prove prime spaces based on non-Euclidean geometry, specifically 
domain targeted fractals. If Q is a rational point, it shown congruent 
to the hyperbolic triangle of triangular measure from given integrals, 
one giving hyperbolic geometry of second order elliptic function that 
is mapped to its first order counterpart identically. Z or z axis is 
complex Figure 5. 
 
fractal species problem: 

If there are 3 consecutive 
S

F co   spaces, 3 prime spaces of XY Z = NT 

There is square geometry, G of a point (A, B), then FS = {S}, bounded 
by Sn|2N of D dimension 4. fractal curve area by banded color space. 
Color is simply dimension 4. 
Color is specified [1 - 3] as there are three convenient prime colors. In 
metric analysis we denote period, find tolerance, and find tolerances 
for linear aim as shown by Part 1. 
{T} = {P}, Set size is 15. I develop all connectives to prime 32285917. 
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Def: FSA = Fibonacci Spiral Area, FS = Total Fibonacci Elements, x = 
3.  

   
1 2 3 4 5

2, 5, 38, 223,{ }34 ,A a a a a a B      

1 2 3 4 5
 1,  2, 5,  8{ , 13}b b b b b      
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n

n
x x a




     

11 10

2 4 88801
ni

n
x x a




     

12 11

2 4 265717
i n

n
x x b




     

13 12

2 4 797389
i n

n
x x a




     

14 13

2 5 2391523
i n

n
x x a




     

15 14

2 5 7174471
i n

n
x x b




     

16 15

2 5 21523399
ni

n
x x a




     

Note: 32285717, 200 32285917 , 200.P P p G Max          G is 

a geometric condition. 
 
Definitions: 

       0,1,1,2,3,5,8,13,21,34,...     0 1 1,1 1 2,2 1 3 ,
S S

F F n        or (...1, 2, 

3, ...) 

1 2
 ( )  

SA
F n n   The Area between 

   
2 1

  , ...( ) ( ) (, )  ,
S n S n

F n n n F n F n n F F F n
 

   per table . 

An has two states: 
Between 

 1 2 1,2 1 2 1
( ), , 3 1 2, 2 5 7

n
a a s n a a p


       

 

Between 
 3 4 1,2 43

, , 185 1 38, 38 223 261,( )
n

a a s n a a


        only 

odd and 

  44 5 1,2 5 2
, , 189 1 223, 223 34 257( ,)

n
a a s n a a p


         

[N1]   302
an

  , where :  
n

A n   states are either p or only odd. 

Disk edges unite p-corners A, B = [A4]. 
 

Valid only when equal to p1 + p2 since a4 is counted twice I place a 
Fibonacci Sieve Limit on a3 

Later: 
2 3 2

    1 17y x x    , so 17y    Define a disk perpendicular 

to the complement. 
Let dimension four be set to prime color to offset the fractal matrix 

implied by  p Z ZC       

 p Z C Z     has its Z part located by eiy as shown by the integrated 

functions that precludes Part 3. 
 
Then p(Z)|2 and C[Z]|2: 
Newtonian fractal  Polynomial terms  .3, .2, .2, 7,   relaxation 

parameter .32285917.100 
3 3

1z az b z   , this Julia parameter ( 1)  collects itself at 

terminal “b” so “a” can be differentiated for a non-vicious infinite 
regress. If P 1, a prime statement holds then that P 2 holds, so should P 

3. Assume p. 
This R-parameter finds a Helix Look. As a generative map of what 
DNA subset defines the Microbe look. As -7 is the [7] fractal matrix. 
If “7” is the value rounded from the Fibonacci number scaled 
logarithmically, 7 dimensions partition the fractal graph in an 
augmented matrix. 

To define a sensitivity n is the degree that the relaxation parameter 

is found by f(x,y). So we change  1n  to rotate. This defines a 

Rational Map of three arbitrary primes. 
 
If the map is a Rational 4 Quadrant relation the axis corresponds 

1 1
 P S  or a family or primes existing in absolute prime space. If 

one says that there are an infinite number of primes by [T 1 a], an 
infinite number of primes that can be divided exist in the shell of a 
hollow sphere. 
 
Center Argument 

If the map contains a non-vicious cycle then 
2 2

 P S or an ambient 

space. The hollow sphere 
3 2

 P S  thus 2S N  so a radius 

2r

  implies 3r


  then a square space is left on the terminal of 

a disk. So n  implies that 
1n

S


 if Arg n   , then the system must 

rotate to connect our geometric prime 32285917, or 

 ( ) |, 6 f x y r P   to show the following step of being prime or odd. 

C. A. 
If our theory holds, every non-negative representation of the same 
value has its second value place through a double point operator. If 

2 2
P S  then 

1 1
P S  or every 

1
A B P  if 

2
( )A B R  , but are 

counted in
1

R by X. 
Suppose p=32285917 (prime relaxation parameter) is found another 
way with base 2, instead of base 3. Notice {A} and {B} each have s=5 

elements so {Xn} = s + 1 elements if {S} = 6|3 leaving 
 1,2

2 .
n

p N


   

Rules:  

Step1: 
2 1

2
n

n
X


 , Step 2: 

2 1
2

n

n
N X N



 
  and   2

1)2 ,(2z R    

the binomial effect of the Species. 
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Step 1: 

       2 12 1 2 9 1 2 8 1 2 6 1

1 2 3 4
2  2   6 2 5 2X X X X

   
         

   2 3 1 2 2 1 

5 6
10 2   2 32285917X X r

 
         when r = 3, so ΣXn is 

numerically apart from a prime by 3. Then N


 defines F S by N 

scalers. 
n = (12, 9, 8, 6, 3, 2, [0]) Decompose31231 = p as 

2 1
  3, 1,  2, 3,  1, 2 .)  2(

n
L z


       

   . Mandelbrot1 

 
Step 2: 

1 1 2 1n n n
n L n n L n


      where iteration 1 ≤ i ≤ 5, Then 

6

1
  r  32285917, 1

i

nn
N X N



 
   so | | 21N   since 6 + 5 + 10 are 

equal to 21 containing a Fibonacci area FSA(0 -3) = 15 = 5 + 10. 
FS :(0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...) if FS locate the scalar pair 

3 , 3 ),(
n n

X X  being set {B} by negatives. 

Addition of FS: (0 + 1 = 1, 1 + 1 = 2, 1 + 2 = 3, ...), We impose 2N as 
a local of (o,o,e), a set of 3 numeral vectors. Notice that a set |{B}| of 

{T} then {T } If Goldbach isn’t true,  
T

X N  negates its tautology. 

 

Denote 
2 2 2 2

 , ...1 1 2 3 ,F F F F F Fn n n      to be the derivative in 

application  0  
T

N  

Example: Within 
2 2 2 2 2 2

 , , 1 1 2 ( 3) 5 8 1041F Fn n        by FSA. 

Solve: length by rectangular radii, 13 8  104  . Then our corner 

diagonal implies n + 1 = r, radii [2]. 
Two unknown points

    2

1 2
   1, 2, 5, 8, 13 , 2, , 5, 4,| | ( ) ( 34)

S
F B S A S r y          

This explains N


 on N > 1, then ΣN = 21 = y2 + 4, so 

 
1 6

( ) {, ... 2 1 5 5, 19, 17, 1 , }3, 7 5P X X n    

So   0

dx

T
dt

  at x = 0 if
1 2

(| |  | |)
s

S S F   given  1 6,...P X X  are 

bounded on area 25 and length 5 only or they are bounded by (p1p2, 
...pn) if p1p2 is d(x, y) spaced from Pn so XY Z = p1 + p2 = 2Bn ≥ 4 + An. 
 

To solve  
6

1 6 1
,... ,

i

nn
P X X N X r




   by F Sequence. 1  0R G    

if G is  by i2 hyperbolic geometry. 
 
 
Example: 
There are 4 p between 
F 0...F 9 or FS (0  34) of the Fibonacci Sequence. Then the triangle 
holds Q hyperbolically. of the Fibonacci Sequence. Then triangles 
hold Q by their edges hyperbolically. That of which continues to 
infinity because we mark each point of the triangle vertex with the 

function derivative of FV that is
1

N
. 

Then if  
1 2 1 1

1

|     
n n n n n

n

Fn
p p p p p F F Q

F 


     

Then it must contain all 2N. Let’s question 2N on {S} where s = 5 
given 2{A} 

To define   1
S

F s   possibilities (s + 1)|P n = (XYZ) if Pn = Mod 3 

The target prime space.  
Iso-equation Using elements derived by 

 2 , 3 0, 1, 3  1, 2, 8  , 3
n

S n
z n F P      isometrically. 

 
Lemma 0 

Let   AB1F Fn n  , if XY Z = 2N, (A, B = p) and  1F F Nn n   , A as 

prime length, B as prime width. Then there is asymmetry. 

Partition Rule (P.R.) 2N    |5 |Area F B  finds 3 F |{A}| elements. 

So 
1 2 5 1 2

41 29 70 2  5 7, 331  ,na a a b p p p            

where 8 FS elements included Σ|{B}|+Σ|{A}|=331 Then the square is 
prime free. 
Example: 

Let
14

331 46 377 13 29F      or 
7

29,F x  as noted F 14 = F 2(7) in R. 

Knott s Sieve 46 = 40 + 6 or 6)5(0
SA

F   ., double mid value F S on 

2N given: 
1 2 5

46    2   a a a    Lem 0 

[T 1 b] Every Fibonacci number bigger than 1 [except F (6) = 8 and F 
(12) = 144] has at least one prime factor that is not a factor of any 
previous Fibonacci number. 
By C. 1 and C. 2: {S} set size corresponds to 15|3={s}. Then denote a 
Fibonacci number the sum of any s value since 5 is not a factor in 
F(6) and F(12)[1]. 
 

     200 6 32285923, 309 ,P R p A B P           so 

   2 611 { }A B T      

Then 377 is the maximum FS to contain XY Z = 2N ≥ 4 on all 
reflected areas. Since 377 > Σan by 75. We later show in a f(x,y) 
function 75 is a standard value to offset G as 275. Then 377 is the 
maximum FS  

    309 3103, 611 1347| | (, 3, 13)  
S

A B F    , so 

 ( ) ({ }, )3 13 P T , given 75  15 5   

 
Example: 
By 200 + 75 = 275 = N = |V | then the functional needs a 
perpendicular vector. 
So an inequality f (x, y) uses an iterative connective 

1
 1  5

n n n
n L n s


     

So, 
1n n n

n L n


   where 1 ≤ s ≤ 5, iso-equation denoted max n = 3, 

23 =8 confirming [T 1] 

Note: 
2 2 2 2 2

0, 1, 1, 2, 3    0 1 1 2 3( 15)      15 f inds area and this 

shows 15|n = s 

If 
14 2(7 )

 F F and 
1

2(6) 12
, (13 29)F F n p     factor in [7, 14], 

(2 )
n

n p   factor in [6, 12]. 

Within Step 1, 12 2 6|n   , so [T 1] holds for p except F (n = 6) = 

8 and F (2n = 12) = 144 in R3 
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If ( ),
s

a b F  where a and b are prime: bn + 2 = 15. or an only odd 

area retained by 2 (X Z  Y )
SA

F  by [1-3]. 

Given a, b can  ( ),
s

a b F then (S 21) | , or two prime values that 

divide the set space. 
Since p = 31231 decomposed provides bn 13 is width, two is length 
within the digit span. 
Bind iso-equation on n = 3, as 

     8 2 13 |6): 2( 2 4nr A B X r n XYZ N          

[T 2 b] Any three consecutive Fibonacci numbers are pairwise 
coprime. This means that, for every n, 

1 2
, , 1( ) ( )

n n n n
gcd F F gcd F F

 
   , gcd is the greatest common divisor. 

 
Example: 
F (38) =39088169 > 32285917 by 6802252 = 2n, F (34) < 2n < F (35), 
both odd so relatively coprime. 

By the unique-prime-factorization theorem. Every 
1 2

2 1n p p p   , 

so F (34, 35, 36) are co-triple prime. 

Then they complement      36,37,38 : : 36 2F F n F  (36 even, 

37 odd) then co prime spaces. 

Therefore F(a3 = 38) correlates [T 1] Sieve Limit  3 |2F a n  

from {T}. 

Then 
1

 
n n

F F AB


  if |2 8 2  , ...   
S S

XYZ N F F   by 

2 : 47 1 5 7( )
SA

T F 
    Switch 

A mid integer bn, which is parsed or seperated into R > 1 
summing 2N ≥ 4 always at a prime mean tautology 

1 2 1 1
3 3 1,| |

n n n n n
p p p p p F F AB

 
   so G > 1 and 2n is d(x, y) |>| 

to > d(x, y) under ΣFS = N. 

Method 
1

2
n n n

b a b N


    if every

1 1 2 1
2 , 0 : 1 / 0

n n p
p p p ab b lim P

  
     . 

Note: A set of integrals is given for this method to describe three 
consecutive spaces for F(p). 
Goal: set integration limits and parameters to approximate by only 

: 11, 13, 17p . 

1 2
  2P P N  if 

3 3
 R S if ( )n  of R4 contains one negative in 17 by 

X Y Z  in 
2

R  
The original data set: 

101 1
. 11 3   ,

317 503
X    correct to 6 decimals 

157 29 1
Y . 13 3   ,

233 419 1051
    correct to 5 decimals 

53 3 1
Z . 17 4 ,

433 4177 69127
    correct to 8 decimals 

2

0
||X Y Z R dxdydz n dn Z z            

   

Magnitude correct is 6,5,8 respectively. We hold 13 as the lowest 
value to give a big enough gap for 17-11=6 because it is important in 
our understanding that Step 2 lowers our parameter by 6 values 
minus the radius of our stemming set {T}. If it’s implied that R is 

collinear with S, or the midpoint    0Y r  , as breather. 

 
The set contains 233=F (13), denote ratios as fractal tolerances on a 
Rational Map, given + curvature when scaled in an Euler Argument. 

3,3,4 are integers that exist in  N or  P . 

2
6, 5, 8   0 13( ) 11 6,

n
s M places R      is collected in the bounds by 

the Julia set (1) f (z) = z + c [2]. 

  2

1n n
Z f n Z c


   , what we’ve shown is the root of z given the 

transpose of (1) and (2). That is in three consecutive primes to show 

symmetry bounded 
1

P
. Locate A,B,C,D as corner roots implying 

17 , its integer 

  
N= D1, or the first dimension unique within the system so as to 
reflect symmetry uncut from the values f (n1) and f (n2) implying the z 

axis has no gap on the reals. So each corner is a point before
1

P
 of 

the function value 4R|{2P}. Leave F (p) space 2 4p XYZ N    

Every prime value is one less than its symmetric component p + 1 ≤ 

2N , so [1] and (p1p2, ...pn) if  
1 2 1 2

p p R p p   

Let e2x = C, or e2p = C [X] We draw an even fractal route. 

2

(1 1 ) )1 ,(
x x x x x

e e dx e e e dx       where 

  1  ,    ,
x x

u e du e dx    integrate by 
1 2

x p
e e p p   

      2 1

2 1 / 2 1 2 1 / 2 1 ,u u du u u u sin u C


      
 

   2 1

1 / 2 1 2 1 / (2 )1u u u sin u


    . 

 
2 2 2 2

1 1  1 .5 2  5( . )u dx sin cos d cos cos d cos d cos d                      
 

    2 1
.25 2 .5 .5 .5 1 / 2 1 2 1 / 2 1 .sin C sin cos C u u u sin u C    


             

so 

    2 2 1
1 .5 2( ) ( 1 ,)1 .5

x x x x x x
y e e dx e e e sin e


         

locating   0T
dx

dt

 on 0x  . 

   2 2 1

(1 / 2 / 2 2( )  ,|x x dx E sin x


   

         
2

2
2 2

0

.5 2 1 1 .5 1 / 2
x x x

e e e x x dx      

 

         
2

2
2 2

0

.5 2 1 1 .5 1 / 2
x x x

e e e x x dx      

 

   2 21 / 2y y dy   : denote this integral as the area 

under y2 = P, so 2R|2 = XY Z 
 

3 2 2 2 2 2( ) ( (/ 1 1 1 / 1 1))sec x y dx sec x tan x sec x y dx        

 where tanx = y, dy = sec2xdx, C = 0. 
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3 2 2sin
/   1 1  ,

s
(

n
)

i

x
sec x y dx u sec x

x
   

3
( )2 , 1 /du sec xsinxdx u secx sinx u u    . 

3
3 2 2sin

/ tan 1 1 /

sin

( )
sin

1)
sin

x
sec x dx x

x

x
x sec sec x dx

x
    

so 

1

sin
0.5 0.5

1 1

u

x u
du du

u u



 
 

. 

 

   2.5 1 / , ,u udu u sinw du cos w dw    then 
2

/ ,
2

i
cos w sinwdw  

when w = x... 

         1/2 |
2

2/3 2 1/4 2 2F x dx sinx cosx F x
i

   

  11 21 2 1( ( ) ( / 4 2 2
3

( ) | ))
i

sec tan y u F sin G
     

 2 1 ,u G sec tan y 

     2 1( 1 2 1/4 2 2| ) )
3

i
G G F sin G C F y dy    

 
  

 


   
12 21 / 2 / 2 2( ( ) | ,y y dy iE isinh y C


      denoted as hyperbolic 

function triangulation so 

 
1 1/2 2 1/ 2 2 1 2 1/4 2 2 ),( ( ) | ( |

3
)

i
iE isinh y C G G F sin G C

 
 
 

      

then 

     1 2 13 / 2 2 1 2 1 / 4 2 2( | ( | ,
x

E isinh y G G F sin G ifG e
     

if x T  

    1
3 , 2 1 / 2 , 2, 2( , ,)E y F G isinh y y x A B 


      rest in 

,n as n = 2 G represents the condition values to connect 
exponentially if sec2(tan−1(y). If cos2x + sin2x = 1, sec2x = 1 + tan2x so 

   2 21 11sec tan y tan tan y    

So  2
1 ,G tan    by complex variables we eliminate x,y so z = x + 

iy, then hold G as symmetric to 
1 2

1 1

p p
   

At least once, where radians connect to prime symmetry. Mean exists 
on G>1 for a greater dimension lowering the room for asymmetry 
since a higher prime value pulls a higher magnitude. 
Statement 3: 

Disk D
1 2

( ) 
4 2

tan


  exists in R2, contains so / 4 / 4.      

That is, by the given integrals of the transcendental integral including 
inclusion of Elliptical Equations. There are 4 prime ξn elliptic 
equations on R4=S4 of n=4. So the solution exists in 16 dimensions 
given R=R, of n=4, so 2 can be set on the root basis of two elementary 
spaces. Then Disk D rotates + under R. 

Given bounded 1-1 continuity: 
2

  4Y   defines the 

   
2

, 0    (
N

D x y P p    C. 3 

Mathematica Algorithm Development: 

     2 2 2, ; / 1| ,F k F k F sin k d k sin          F is an Incomplete 

Elliptic Integral of the first kind. 

     2 2 2, ; 1 ,|E k F k E sin k d k sin          E is an Incomplete 

Elliptic Integral of the second kind. 

2 2 2 21 / 1 ,d k sin d k sin         implies  2 21d k sin      

/0 1M M   

Every Manifold must match its radian manifold, if every linear node 
sits on the line of intersection. 

Then 
2

  2 ,k m n C M    on    1 2 3, , 1, , 2M M M s s s    so M 

Magnitude Correct (s = {S}) 
Using Wolfram’s Method in Mathematica the given Integrals are 
complete: [10]. 
EllipticE, an Algorithm in Wolfram Language Documentation: 
EllipticE [m] gives the complete elliptic integral E(m) 
EllipticE [ϕ, m] gives the complete elliptic integral of the second kind 
E(ϕ|m). 

C.4 - So Disk    11( | ) ( ), 13, 17 .E m E m T   Then p(x, y) under

0 2 6 0 1 3      

A disk is closed if it contains the circle that constitutes its boundary. 
A disk is open if it does not. Hypersphere is the set of points at a 
constant d(x,y) from a given centre, manifold of codirection one. 
Then 0 < 2 < 2r. A disk is closed if it contains the circle that 
constitutes its boundary. A disk is open if it does not. Hypersphere is 

the set of points at a constant of   ,
dx

dt
x y . 

From a given centre, manifold of codimension one. Then denote 
where r=3 defines its circle. So the Hypersphere bounds a G value 
unconditionally. 

Beyond  2, 17 4 ...,
n

p     We connect C. 4 to a mean of 4, if 

d(x,y) continues operating under y = {T } 
1

1 / 4 2( ) | )2
n

sin G by 

   
1

2 2 1 / 2 1 : 1 / 4 2 2 0| | )
2

,(y y dy G



 

     





 so G > 1. 

Then ( )XYZ S  notation of FSA = SN areas : we conclude Y 

insufficient. 
Not if 

4
16   4 4     2| | | | | | ( ) 4[,  | | ]8TN by d x y B A           

ΔG < 200 + 23 = a4 322859[23], so 23 8 15  , U area 

1 2
15 3  . 23    . . 5 1    | 4s r r C n       

Implication: 

    
S

n s r R    
3 5

3 , / .r x R R    

This symmetrically has shown a manifold decreases at a value of an 

operator that moves the partial sum as follows.  
1 2

) 2( |T p p N

if 
2 3 2

  1  17y x x   and 
22

112y x    Allow C. 5 on R. 

 
Axiom 1 
Hypersphere: 13 closes {T} on degree 16 by bn, V ector V of N 
polynomials of dimension n+1. Then every coprime FS has a 
dimension of set n of {T} by 15. Therefore F(n+1) replaces then every 
coprime of FSA. FS has a dimension of set size n of {T} by 15. 
Therefore F(n+1) replaces the set by its dimension count. {T} by 15. 

Therefore F(n+1) replaces 
1 2

 2 16
p

XYZ N e p p    by the decay of 
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p, or soundly we denote how , ,s p if  { }.
p

e SM S  is the set 

magnitude beyond error. 
Limit 

         4

2

3 4, 40 13 1083772251534189 1643446100464101388961560708 13F a F a F a x x 

 

Ex : Denote XY Z as a preliminary fractal equation equated to n  

degree sensitivity. 
Since 13 is unique in the two prime factors

   40 13 108377 .. , ). 13 , (
s

a b F  so 2 15
n

b odd    

 
5

    13.4b T   primes in [2] separate in 132, sufficient to reflect areas 

of a disk D2 Ex Ax. 1 

Producing XY Z = 2n ≥ 4 given ΣFS = N. So the U area 0 3( )
SA

F   

demonstrate s in C.L. by Ex Ax. 1 

F (13) in the root basis of 11 13 17   connects F (N ) as its image 

of even XY Z spaces. 
0 2 6  ,| |V V     Space pulling  X Y Z   prime values at a f ixed 

point, structurally by Switch 1 
Lemma 1 

Then 
2

|4| Y   of    2, 0 { }  ND x y P p   we see a factor we can 

directly compute by our sieve value. 

In     2 02
4 1 0

1
106.5 . 5 2( ) ( ) ( )1 1

2
|x xx x

x
F a GMax e e e




       

2

2 2

0

.5 ( 1)/( 2 G 2 n)   \ e
XYZ

A
x x dx     

Then  0 2 6.51 , ,  2
2

( | ),( | )R z i E m E m


       

Let us stabilize :E m  . This should prove E fits into R0 given FSA 

= 8|2, and area 8 is {T} so 16|2 = 8 
Completes ((s + 1)|2n, s, (s + 3)|2n), rounding 0 < 2 < 7 leaves a | > 
| enough gap for s = (7 
Demonstrated F (n = p = 7) being 2N of Fn apart F (n = 14), to a 
Fractal Lem 1* 
 
Axiom 2 
F (n = 6) being 2N of F n apart F (n = 12) shown in consistency to [T 

1] so this [Sl] implies two p space as sorted in C.L. and  1F F Nn n 

th 

image of edges bound on P 2N space. Existence demonstrated by 

   0
T

dt
X Y Z N T

dt
      on x = 0. Limit reaches 0, then G is 

fractal geometry, geometrically consistent to An, with Bn being 
complements to its root or the square d(x, y) prime Switch 1 

space {S}. Then    2 4

2
1 , 2,3,5,...

XY Z N

S
e e S V S


      includes 3 

consecutive base primes. Ax. 2. 

So: when there are 3 consecutive 
S

F co   spaces, as described in [2] by 

P .R. so  3 5 8 | |B   3 consecutive prime NT are images with 

square geometry G of a point (A, B), then F S = {S}, bounded by its 

sn|2N of D fractal curve area by retained area through the 
 

 
SA S

F F 

. Ex Ax. 2 
Example in following the two Axioms. 

2D=32, or roughly a relaxation parameter that finds a non-zero metric 
to study the Microbe Look. Let D be a dimensional area of accuracy, 
as if viewed from a microscope, where light reflections define, analyze, 
and obtain periods of accuracy of XYZ=2N as being the dot product 
of an even space, that gives magnitude by cubic dimensions, or 
specifications as to why G behaves the way it does. To define 3 
potential geometric scenarios as follows. G is linearly on 2N if R 
maps X-Y-Z. 2D = 32. or roughly a relaxation parameter that defines a 
metric view of Microbe as if viewed from a microscope. 
Polynomial terms define G as a potential single band color metric. 
Now determine each to G=XYZ/R. Polynomial terms define G as a 

potential single band color metric of
0 0

 
old

C R C   

Call constant C, color of integration if  
4

0    NEWR C  DNE by the 

binomial effect of the species 
 
Axiom 3 
Banded Colors depend on fractal kind and parameter. Given 16 
dimensions polynomial {T} dimensions. 

17   19.2  Manifold operators are consistent to 5R , where r is of 

radius the even bound. Then we have a consistent manifold M. Then 
decimal bound above is set to 100 because values are switched to the 
100 Area D curve. 

To    2 21 / 2
V

F x x  so by Q x2 = 18 or   3 2x    by vector similarity. 

 The scaling operator: see part 1 

144: 8 = x2 so y is  
4

P  Ax. 3. 

Expanding on 3 Axioms: Microbe look by rational map 
The values in the rational relation map put a center Julia Constant 
on 13 as related to 11, p, 17, p = 13 
Exp. 2 relates to the second degree polynomial of 11 and 3 to 17. So 

the mid decimal scale is .13 
D2 area is of dimension 2. While 132 is its prime complement. 
Decimal bound is .00 in {T} = {S} 
This paper’s intention is to find mathematical parameters by algebraic 
geometry to better understand structures that can be used to 
understand biological geometry. The integrals were to be used to 

study  
R

x n   where n R . Thus Euler-Elliptical functions that 

can determine exponentially what Newtonian Fractal limits are. We 

define “a” and “b” as reverse values so   (, .)

b

R

a

f a b x n   3 nodes 

in the Riemmanian manifold develop what 1   2    3n n s  is.  

 
MAIN ASSUMPTION 

We continue that when approaching  x ln a

 or  x ln b


  

there is a portion of the prime curve that is no longer hyperbolic or 
sinusoidal by a hole in the data set, which transformable could scale 
an unknown 2N. 
What we’ve shown so far: 

If there are 3 consecutive 
S

F co   spaces, 3 prime spaces of XY Z = NT 

, there is square geometry G of a point (A, B), then FS = {S}, bounded 
by sn|2N of D fractal curve area by banded color space. 

1R a  

2b R  
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Percolation Fractal: The probability that an arbitrary site within a 
circle of radius r smaller than ξ belongs to the infinite cluster, is the 
ratio between the number of sites on the infinite cluster and the total 

number of sites denoted  1R a b    by r


and 2r R

 . 

Not if: 

 S R R R X Y Z      , homogeneous elements of their 

principal cause. 
So there must be separate manifolds. 
Explanation: 
Each color band has a 16 dimensional route. Then a co-space of a 
band has a square geometry G. That is, given 
Each color band has a 16 dimensional route. Then a co   space of a 
band has a square geometry G. 
XYZ = NT has 3 potential unbounded geometries with 1 rotation. So 
XYZ = 2R Area. 
Then there is an infinite radius that does not circle back to (A, B) so 
FS = {S} = {T }, then {S} is bounded By Sn|2N of D of fractal curve 

area a 
2

2D   or simply 1  2D D . 2 species converge on a single 

geometry D of G or G(D)=XYZ with a co-space of F(2). Then the 
calculus functions describing variables x,y to D as identity scaler of 
F(2)=(1,1). To now prove its functional opposite by denoting the 
scaling operator of n+1 degree higher. 
 

PART 3: REDUCTION ON THE FUNCTION OF TWO 
VARIABLES LIMIT LINE 

I explore a simple Multivariable Calculus function and problem to 
find relative minimum and maximum. 
Let p1 and p2 simply define a metric space that is referential to its 
principal value. Prove that f (x, y) there is no matrix [n]n an integer N 

if  ,
b a

f x y x axy ay   given a = b + 1 so D(p1, p2) = N 2 if p1 

and 2 1p N  
Suppose b is always prime, but not on degree n+1. 

Let   4 5 3 4
, 5 5 , 4   5 ,   5 25

f f

x yf x y x xy y x y x y

 

        , where a 

= 5, wisely chosen Lem 0 
2 2 2

3 2 4 3

2 2 2 24 5 12 ,   5 25 100 ,   5

f f f f f

x yx y x y
x y x x y y

    

   
            

3 4 4 4 3
4   5 0, 5 25 0, 5 , 4(5 ) 5 0x y x y x y y y         so 

12 11
500      5 0, 10 0( 1)0y y y y     

 
41 1 4

1 0, 2   , 1 5 0 0, 2 5 )
1\11 1\11100 1 0

(
0

y y x x    

   
5 5 1

0,0 1, 1 , ( , ) 2, 2
4\11 4\11 1\11100 100 100

( )x y x y    

2
2 2 2

2

300
12 12( 1) 0, 12( 2)

8\11100

f

x
x x x




   

2
3 3

2

3 100
,  100 100( 1) 0, 100( 2)

3\11100

f

y y y y



      

  (
5 1

0,0 0 0 25, 25 0, , )
4\11 1\11100 100

D D    

300 100
25 300 25 275, 275 0

8\11 3\11100 100
        as alluded 

  

earlier. Saddle point at (0,0) and a local min 
5 1

, )
4\11 1\11100 100

( , To 

show that is example allows proof as follows. 
Let condition a=b+1 then ba2 = 100 so 1   11( ) 1b b    , a prime[1-5]. 

 

To generalize  ,f x y as 

  1 2
, ,   ,  

b a b b
f f

f x y x axy ay bx
x y

ay ax a y

 

 


        

1 2 2 2
(

2

1
2

 ) ,
b b

f

x y

f f

bx ay b bx ax a y
x

  

 

 
       

2 1

2 2

,  
2 22

b
f f

y yx
ba y a

 

 


      

1 2 2 2 1
0, ax a 0, x ay , ( ) 0

b b b
bx ay b b ay ay

 
       so 

1 ( 1
    )  0,

b b b
ba y ay

 
   

 1/11 1/11

1
1 0, 2   ,  1 0 0, 2

100

1
( )
100

bb

y y x a x a    

\2 1 1

b/11

( )
( )

1
,

0
  1

0
   0

b b b
y ba y

a  
    

     \

2

11 1\11

1
( , )
100 10

0,0 1, 1 , 2, 2 ,144 : 8
0bx y x y x

a
   so      1 2 0y y   

2
2 2 2

2 \2 11

( 1)100
( 1) ( 1)( 1) 0, 1 ( 2) ,)

0
(

10

f
b

bx

b
b b x b b x b b x





 
      

2 1

2

1
 100 100 (isinh ( / 2) / 2

2

x
dx iE y

x


 




2
3 3 2

( 2)/112

100
100 100( 1) 0, 100( 2)

100y

f
a

ay y y







    so y is the set of 

all primes   { }P P  scaled by 100 

/11 1/1

2 2

1

1
0, ( , )

100 100
(0, 0) 0 0 , b

a
DD a a    

2 2

(b a 1)/11 (b 1)/11

100( 1) 100
100( 1) . 0

100 100

b
a b a N N  


        

Saddle point (0, 0) and a local min /11 1/11

1
( , )
100 100b

a
 then the scaling 

operator is n+1 equivariant. <x> 
Forms reduce by a-b to reform x-y by logic of D being the equivariant 
disk to the Manifold’s surjection in part 
1. 2 primes do not always exist in the additive denominator when one 
fractional component does not replace the said target approximation. 
Thus able to be scaled at 1-1, reflexively. Thus reproving this known 
property asymptotically through FV. Thus able to be scaled to 2-2, 
reflexively. Thus reproving this known property asymptotically 

through 
2 1

 
V V

F F . 

Then b must be prime for an even space a+2=b, or a set of twin 
primes. That is, if 2+2=4, is retained by FS. This does not however 
preclude the functions to not balance when analyzed at a point other 
than its saddle. So by the vertex rule this purely prime function is 
steady and allows the two manifold and double point operator to find 
minimal tolerance and thus a symmetric vantage point to build more 
complex functions. 

By the property  1   1  11b b   the functions can sit on the given 

prime space. So values curve in the same 
direction as seen in the given graphs. A minimum S will always retain 
its geometry on this limit Figure 6. 
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Figure 6) A minimum S will always retain its geometry on this limit 

R is shown by the hyperbolic integral described to have even 
symmetry [6-11]. 

 See 
2

2

1

2

x
dx

x




  evaluated at 3 2x  

If FS does not retain 2 at a stretch of the manifold: 

1 2
( )2 4p p N  , then 2

N
N A B  when 1 2p p  are both in 

s
F

where
s SA

F F

If P is the collection of prime spaces then R is a real valued function 
that denotes Q or S to be Integers by Ax. 1  
At least once in ratio before Q and S converge asymptotically as if S 
holds the space D(p1, p2) 

So  
1

    
1

F
n

Q Q
F
n

 


Validating the set arc if the previous boundary points are non-
negative G contained by Center Argument on all known system 
points. 
Then symmetrically we have shown 106.50. The limit line never 
converges due to minimal curvature if 
AB = FV, unit vectors. Noting work done to explain figure 1 color 
now gives 3 modes of operation. 

1. Denote period. 2. Find tolerance. 3 Linear aim. By Q, the set of

rational numbers A + B = 2N ≥ 6 given 1 2P Q N  by the double

point operator defined by limit [1]. Thus the sensitivity of p1 + p2 by

the by the spacing of pnXY Z ≥ 6 denoted:

 1 1 2 1  n L n n L nn n n       as a fractal to a barrier that’s

non-vicious. So N is partitioned to then be added as 21 2p p n 

if ( ) [ ]p Z C Z  contains the even area by square AB. 

  ( | ) ( ) ( | 2)E m E m E E A B N     by 

 1 , , { }X A B XV    to infinity now U = {0} of C. 5 

Noting work done to explain figure 1 color now gives 3 modes of 
operation. 
1. Denote period.
2. Find tolerance.
3. Linear aim.

By Q, the set of rational numbers 2 6A B N   given 1 2P Q N  

by the double point operator defined by limit [1]. 

Sensitivity   ( | ) ( ) ( | )E m E m E E  then A + B = 2N by 

 1 ,X   then }, {A B XV to infinity now U={0} of C.5. If f (a, 

b) are set to a second degree polynomial, so threshold of a,b are
centered on an inflection point of the z axis. A sensitivity measure
always follow two primes in even spaces

p ≥ 3 given   3    of the SN threshold when 3E(y) = F (G). 

Sensitivity finds accuracy first and then knows entropy: p1 + p2 

of pnXY Z ≥ 6 denoted: 1 1 2 1  n L n n L nn n n        as

fractal barriers and that’s non-vicious. So N|r is partitioned to then 
be added as p1 + p2 = 2n if ( ) [ ]p Z C Z  contains the principal value if 

the system divides odds. 

  ( | ) ( ) ( | )E m E m E E  then A + B = 2N by 

 1 , ,   }{X A B XV    to infinity U = {0} of C. 5 If f(a, b) are set to

a second degree polynomial, so the threshold of a, b are centered on 
an inflection point of the z axis. 
No sensitivity measure always follows two prime spaces 
p ≥ 3 given 3    of the SN threshold when 3E(y) = F (G). 

The DNA Look of the Newtonian Fractal implies the Julia set of the 
meromorphic function congruently on C. 3. 

1

( )
:

"( )

n

n n
n

p Z
Z Z

p Z
  . Converges root ,

k
 if

1 2
, ,

k k k
  

 
yield 

| |
N , A, B 2 N A B 2 N 4

k T
       by [2]. 

We take the derivative of a Zn function to know its starting point so

 1, 1) ,1( 1A B    and Fractal Species are solved. Goldbach’s 

Conjecture reduced by p(Z)|2 and  | 2C Z Z Z Cold new
    so

An parameter is based from z|2 = {a + b} 
closing assignment : 

     
1 2

, , , ,( ( ) (
4

), )x y x h y x y h x y h h f x y       


Figure 3. 

Numerically on a two dimensional grid of grid spacing   h, assign 
the given values of φ for the relaxation method to the grid points 
near the boundary and non-unique values to the interior grid points, 

and then by repetition performs the assignment : 


  which

satisfies Figure 3. 

( (
1/2 121    2 1 / 4 2( ) | )2 )

3

i
Z G G F sin G


    was on C. 4. 

: 


 is corrective of G = 1, Z = 0. By f (x, y) in the open set

   3 : 3 ,
b a

f x y x axy ay    Lem 1

We find negative curvature, or hyperbolic geometry by method of 

saddle point. It was shown earlier that  T
d

dx
 can be reflected at high 

enough magnitude redrawn by  3 ,3 | 6X X
n n

 so prime spaces are

immutable by Ax. 2 as shown in part 1 of this paper in continuation 
to infinity. A relaxation limit draws two prime spaces Ax. 3 in even 
degree terms by sensitivity on n+1.This confirms as closed method on 
an arbitrary prime domain in the reflection of this statement: 

If the color space is neutral, or a smaller harmonic to  T
d

dx

1 2
R R

N h HT  

The relaxation of R1 = R2 of {1/N}, given τ = 0, a = b so every value 
{1/H} 

It’s shown that {T}is congruent to an only odd value. { }
T

H N that 

{T} is equivalent.
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When  { }
T

H N that {T } are not equivalent Step 1 and Step 2 

negate each other by non-Euclidean rhythms. 
As shown for Yousef’s model for iterative approaches to fractals we 
can correlate the interpolation of Q: 

1H H
Q Q I Q Q


   . If I is the inverse then take

1
Q Q I Q Q

T T
   . Q can also be stated as set of rationals.

Unitary matrix Q is a matrix whose inverse is its QH Q then T=ln[e3] 

if  2 4 : , , 5A B N A B H A B      . 

This explains all possible rotations in two dimensions of the Fractal 
Species Problem given limit ln (F (a3) where “3” corresponds to 
{T}=[t] and is the only measure that completes this well-known 
conjecture when the space becomes flat or tangential. So perhaps 
Goldbach’s conjecture simply has no symmetrical bound given 
fractals develop symmetry. 
By main assumption: 
We have not necessarily proved the Goldbach Conjecture directly but 
proven a program for its methodology to be solved thus functionally. 
Perhaps in later time it will be or the stretched value will refute it of a 
higher 2NN value. ∎ 

If 2
a b

N Fs



 then
2 1 2N N

Q Q I Q Q


  when
( )

 
"( )

p z
n

Z zn p z
n

 

, then 2A B    fall through a hole of
1M

M


We conclude that the unit vector refolds on the matrix. 
Suppose x forms a local base at x, then: 

Negation Hypothesis: 2A B N  by  1R a b    by r


and 

2r R



shown by 

3 : 2.z r n rx y    

2 3
.

N
R R R

 N h HT  

The line of action is of 494 1 2 3 ( 4)F a N N N N      digits 

49 digits 49 7N
T

   , fractal dimensions 

CONCLUSION BY SCIENTIFIC HYPOTHESIS 
4D=64, a large distribution that finds dimensional understanding 
with 64-bit integers, memory addresses, or other data units are 
those that are 64 bits wide. A useful function that often 
approaches a maximum in our world. Let our symmetric value 
then round to 107. So we have

32.285917 32.285917    49V digits  

2 32.285917 64.571834 4D    , Examine this oddly gargatuent 

number: 
1. 4071371737173711909878900000100000000000000000000000000000000008

Now examine: 
2. 4071371737173711909878900000000000000000000000000000000000000008

This number is roughly 1064 digits by base 10 standards that is 
our numerical stretch with regards to this paper. 

64.571834 64.60974
10 10 z   

 

 4071371737173711909878900000000000000000000000000000000000000008 0

There is a set of 5{a+b} prime equations that fit this number: [z]

0X X Y R  

We should close the solution with reason on R0 

Let’s remind ourselves that the manifold is stretched by
1

2 5
0

(
1

)
0

D s 

 .037906 is the difference between r


and r


. Analyzing two
through super computing methods the two primes which sum (2) are:
3.
107 4071371737173711909878899999999999999999999999999999999999999901

The useful idea is that a+b=(2) are the only primes that complete 
the sum. We can determine a prime limit by 
2D  r given 2D  r= 29 a prime. Inserting 1 into our prime at the 
digit limit of 29 back into (2) gives (1). 
Notice 107 is found from the Fibonacci limit producing 106.5. It 
is clever that our a=107 and our b term ends in “1”. This refutes 
the Goldbach Conjecture. Notice how the span of 9 extends a 
great distance. It is a useful formula because we can limit the 
amount of primes within a digit gap. Now we close our 
assumption that our primes would behave this way given .08  

allows our assertion that the decimal bound is .00 in {T } = {S}. 

Thus our rational data set of 13 or rad 13 flips “s” at an odd 
midpoint by Figure 1 and 2. It would make sense that it is refuted 

by (1) 2 29D s r


     By s, the saddle point never sits on a 

Euclidean square. 
The prime spaces are set apart by s+1=6, or a sphere pulled at a 
hexahedron to icosahedron stretch M 0. 

Thus concluding 
7

100
 a strong metric for polynomial parameters in 

the rational map. So the asymptotic limit line never divides degrees 

concerning 49 digits 49 7N
T

    that are beyond octahedron pull: 

2
16n  of 

1
( ,

/11 1/11100 100

2 2
y n n n

a

b
    

1 2

1 1
,

b

p p a
   

Only if 
Given FSA = 8|2, and area FV = 8 is parallel {T} so 16|2 = 8 

By proof of Linearity of 1-1 correspondence, the Goldbach 
Conjecture is proven false if the immutable space is projected onto 
Euclidean space with the measure returning the infinite radius simply 
as the ratio concerning either “a” or “b” imaginary, or not real. We 
have concluded it a non-complete tautology by the extra digit 
analogous to imaginary curve on the boundary line of degree n+1 
digits connected on disk DR, and symmetry at 23 digits. 9 is marked 
on (1) and (2). So two prime spaces return the 3 manifold to a sphere. 
We denote the prime limit, or prime digit gap, cubic-like. While one 
structure remains the other, 29 23 6  , defeats the minimal space 

needed to hold the additional prime evenly in Euclidean space. By 

platonic space and approximating error, 1 2 3P P P   have 

allowed the 64 digit numeral to bound any possible 4-space. Then an 
n-1digit number, or 63 digit number contains no two primes or rate
within the system. Every diagonal of polyhedra map out linearly a
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space of an even map until they converge by sphere point to a non-
null space of the given topological cycle. The refutation by 

10
R

N A B


   of the inverse space is N=(1), which concludes:

The space R is homeomorphic on the 1-1 base of transformations 
limiting NR = NT. 
Thus negating Goldbach. This strengthens Poincare. 
We have proved Poincare is a stronger argument because the greater 
size the space becomes, the more dimensions or segments can reverse 
the transformation and make the geometry invertible. 
Example: 
The volume of cylinder A is 108π, which is twice the volume of 
cylinder B. If the radius and height of A are the height and radius 
respectively of B, find the height of cylinder B. 
Notice the way the problem is worded. 
πr2h = 108π of A, then πr2h = 54π of B 
h2r = 108 of A, then r2h = 54 of B 
h2r = 108 of A, then h = 54/r2 of B, 
Then: (54/r2)2r = 108 of A, 
Then: (2916/r3) = 108 of A, 
2916 3

27
108

r  , then r = 3 

Then the height of B correlates 9h=54, so the height is 6, and we can 
conclude h=2r, or h=d, a diameter. We look at this idea in Refuting 
Logic of the Goldbach Conjecture in Riemann Analysis. We can 
reverse the process of embedding a triangle in the sphere with noting 
that the sector actually replaces the radian manifold, so the line of 
intersection describes the quality of geometry continuously. So while, 
A, B are not found in {A+B} by (1). The binomial effect of the species 

and the argument of
1

8
( )Arg n shows that a fractal can engineer the 

limits of a light dispersion, if matter does not intersect the point 
within the codirectional implication would be the same temperature, 

frequency, or wavelength : ( )
1

8
Arg n  . So a cylinder transforms 

into a sphere by its length conforming to the saddle point derivative 
of ~ .RS  Then this Riemann Space is homogenous to the manifold 

implied by m . So 
1

8
( )RS Arg m   . Then by complex variables 

heat is the imaginary component of a topology τ. Then A, B cylinders 

implies 
0

1

8
(M )A B Arg   This is the statement of the Poincare 

with regards to the numerical compression of a sphere to a point in 
the 1-1 transformations implied by the geometry of the Fibonacci 
Sequence. Then the space would have to be the same in the initial 
disk translation. 
Note: Integrating for color means we can express the coloration 

magnitude as 
1

24

T
R

Direct Sphere 
4 23 4

  / 2( (
3 3

) )
2

h d
h

h    

This should prove that every topological fiber bends at 

  1,  1, 6, 5, 0,{ }1   1NT    

OR: Σ|NT| = 24 so 
4

    16N r
T

   or 
4

 T rDIM 

4 2  4 T r r
DIM

   , the color by second countable space 

This relation is shown further in the author’s other paper: 
Where meromorphic components are adjacent to the unit vectors by 

1
:

m
M G g


 

Theorem 1.0  
R does not equal i in the prime number field given a local group of 
imaginary areas. That is in any group defined by {X} sets, finitely a 
triad. So a closed prime group is always found with a remainder term 
of 1 until the prime root is found and the remainder term is 0, or just 
a succession of n primes in a continuous {P}=n location. 
This is shown with a basic smooth manifold and a rational smooth 
set, which is explored with variations in proving that R is not equal to 
i. 
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